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1 Introduction

Metric spaces and fixed-point theory have an important role in various areas of
mathematics such as analysis, topology, differential equation etc. Fixed-point theory
begin with the Banach’s contraction principle. Then the principle has been studied
and generalized on some metric spaces (see [1], [2], [6], [7] and [8]). Recently, it has
been introduced the notion of an S-metric space as a generalization of a metric space
[8]. Some mathematicans proved new fixed-point theorems on an S-metric space (see
[4], [5], [6], [8], [9] and [10]). Mlaiki presented the concept of a complex valued S-
metric space and gave a common fixed-point theorem of two self-mappings on a
complex valued S-metric space [3]. The present authors investigated new common
fixed-point theorems using the notion of C'S-compatibility on a complex valued S-
metric space [7].
Let X = C and the function S : C x C x C — C be defined by

S(x,y,2z)=i(lx —z|+ |y —z|),
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for all x,y,2z € C. Then the function S is a complex valued S-metric space on C.
Let us define the self-mapping T : C — C as follows:

Ter=1-—u=x,

for all x € C. Then T is a self-mapping on the complete complex valued S-metric
space (C,S). T has a fixed point z = %, but it does not satisfy the condition of
Banach’s contraction principle. Therefore it is important to study new generalized
fixed-point theorems.

Motivated by the above studies, in this paper, we investigate new fixed-point the-
orems as generalizations of the Banach’s contraction principle on a complete complex
valued S-metric spaces. We expect that new generalized fixed-point theorems will
be obtained using our main theorems.

In Section 2 we recall some known definitions, lemmas and a theorem. In Section
3 we generalize the Banach’s contraction principle on a complete complex valued S-
metric space. Also we give an example which satisfies the conditions of our results,
but does not satisfy the condition of Banach’s contraction principle.

2 Preliminary

In this section we recall some definitions, lemmas and a theorem which is called the
Banach’s contraction principle.

Let C be the set of complex numbers and z;, zo € C. The partial order 3 is
defined on C as follows:

21 3 2o if and only if Re(z;) < Re(zq), Im(z1) < Im(zz)

and
21 < 2z if and only if Re(z1) < Re(zq), Im(z1) < Im(z).

Also we write z; = 29 if one of the following conditions hold:
1. Re(z1) = Re(z) and Im(z1) < I'm(z2),
2. Re(z1) < Re(z) and Im(z1) = Im(z2),
3. Re(z1) = Re(zz) and Im(z1) = Im(z2).

Note that
0 :j 21 ;}é 29 = ‘le < |Z2|

and
leZQ, 29 X 23 = 21 < Z3.
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Definition 2.1. [3] Let X be a nonempty set. A complex valued S-metric on X
is a function S : X x X x X — C that satisfies the following conditions for all
x,y,z,t € X:

(CS1) 0 3 S(x,y, 2),

(CS2) S(x,y,z) =0 if and only if z =y = 2,

(CS3) S(z,y,2) 3 S(x,z,t) + S(y,y,t) + S(z, 2, t).

The pair (X, S) is called a complex valued S-metric space.

Definition 2.2. [3] Let (X, S) be a complex valued S-metric space. Then

1. A sequence {a,} in X converges to x if and only if for all & such that 0 <
¢ € C there exists a natural number ny such that for all n > ng, we have
S(an, an, ) < € and it is denoted by

lim a,, = x.

n—oo

2. A sequence {a,} in X is called a Cauchy sequence if for all € such that 0 <
e € C there exists a natural number ng such that for all n,m > ng, we have
S, Qn, ) < €.

3. A complex valued S-metric space (X,S) is called complete if every Cauchy
sequence is convergent.

Lemma 2.3. [3] Let (X,5) be a complex valued S-metric space and {a,} be a
sequence in X. Then {a,} converges to z if and only if

|S(an, an,x)| — 0,
as n — 00.

Lemma 2.4. [3] Let (X,S) be a complex valued S-metric space and {a,} be a
sequence in X. Then {a,} is a Cauchy sequence if and only if

|5 (an, an, am)| =0,
as n — 00.
Lemma 2.5. [3] If (X,S) be a complex valued S-metric space then
Sz, 2,y) = Sy, y, ),
for all z,y € X.

Lemma 2.6. [9] Let (X, 5),(Y,S’) be two S-metric spaces and f : X — Y be a
function. Then f is continuous at x € X if and only if f(z,) — f(z) whenever
T, — .
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In the next section, we consider two complex valued S-metric spaces in Lemma
2.6.

Now we recall the following theorem which is called the Banach’s contraction
principle.

Theorem 2.7. [7] Let (X, S) be a complete complex valued S-metric space and T
be a self-mapping of X satisfying

S(Tz, Tz, Ty) 3 hS(z,z,y) (1)

for all z,y € X and some 0 < h < 1. Then f has a fixed point in X.

3 Main Results

In this section we prove new generalizations of the Banach’s contraction principle.

Theorem 3.1. Let (X, S) be a complete complex valued S-metric space and T" be
a self-mapping of X. If there exist nonnegative real numbers ¢y, ¢, c3, ¢4 satisfying
max{c; + 3c3 + 2¢4, €1 + o + ¢3,¢o + 2¢4} < 1 such that

S(Tz, Tz, Ty) = 1Sz, z,y) +c2STx,Tx,y)+ c3S(Ty, Ty, x) (2)
teamax{S(Tz, Tz, x), S(Ty, Ty,y)},

for all z,y € X, then T has a unique fixed point z in X and 7 is continuous at x.
Proof. Let ap € X and the sequence {a,} be defined by

T"ay = a,.
Assume that a,, # a,1 for all n. Using the inequality 2 we obtain

S(an, an,anr1) = S(Tap—1,Tan_1,Ta,) = c15(an_1,0n_1,0a) (3)
+c2S(an, an, an) + c3S(ani1, Gni1, Gn_1)
+cymax{S(an, an, an-1), S(An+1, nt1,an)}

= 15(an_1,0n-1,0n) + c35(Ani1, Qny1, Qn1)

+eygmax{S(an, an, an_1), S(Ani1, Gnr1,an)}-
Using the condition (C'S3), we get
S(ns1, sty 1) =X 25(nt1, nit, an) + S(an_1, an_1, ay). (4)
Hence using the inequalities (3), (4) and Lemma 2.5, we have

S(ana A, anJrl) j Cls(anfla Ap—1, an) + 203S(an+17 Ap41, an) + C3S(an717 Ap—1, an)
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+C4S(an; G, an—l) + C4S(an+17 An+1, an)7

(1 - 2C3 - C4>S(6Ln, Qs a'n-‘,-l) = (Cl +c3+ C4)S<an—17 QAp—1, an)

and c+c3+
Cy
S Qpy Ay, A = LS Ap—1,0n—1,0p). 5
(@ n21) % TS 1,000, 00) )
Let ¢ = % Then we find ¢ < 1 since ¢; + 3c3 + 2¢4 < 1. Using the inequality

(5), we obtain
S(an, G,y api1) = " S(ag, ag, ay). (6)

For all n,m € N, n < m, using the inequality (6) and the condition (C'S3), we have

S(ana Ap, am) QS(ana Ap, an—‘rl) + QS(an—Ha An+1, an+2) + -+ 2S(am—17 Amp—1, am)
2(c" 4 "M+ ™S ag, ag, ay)
2¢"(1+c+ -+ ™" HS(ag, ap, a1)

1 — m—n
20";5'(@0, ag, ay)

1—c¢
2c"
1—c¢

LA TATA

A

A

S(a07 g, al)a

which implies
2c"
|S(an7 Ap, am)| < 1

— |S(a0a ap, a1)| .

Therefore |S(ay,, apn, a)| — 0 as n,m — oo. Hence {a,} is a Cauchy sequence. Since
(X, S) is complete, there exists x € X such that {a,} converges to .
Now we show that x is a fixed point of T'. Suppose that Tz # x. Then we get
S(an,an,Tx) = S(Tap-—1,Tan—1,Tr) < c15(an-1,0n-1,7)
+coS(an, an, x) + 38Tz, Tx,a,_1)
+eygmax{S(an, an,an_1), STz, Tx,z)}

and
|S(an, an, Tx)| < c1|S(an-1,an-1,2)| + c2|S(an, an, )| + c3|S(Tx, Tz, a,_1)|
+cy lmax{S(an, an,a,_1),S(Tx, Tx,x)}|.
If we take limit for n — 0o, then using the continuity of S and Lemma 2.5, we have
|S(z,z,Tx)| = |S(Tx, Tx,x)| < (c3+cy) |S(Tx, Tx,x)|,

which is a contradiction since 0 < ¢z + ¢4 < 1. Hence we obtain Tz = z.
Now we show that x is unique. Let y be another fixed point of T" such that x # y.
Using the inequality (2) and Lemma 2.5, we have

S(Tz, Tz, Ty) = S(z,z,y) 2 c1S(z,z,y) + c25(x, x,y)
+e35(y, y, ) + camax{S(z, z,7), S(y,y,y)}
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and
|S(.T,l‘,y)| S (Cl +C2 + 63) |S(a:,:v,y)\ )

which implies x = y since ¢; + ¢o + ¢c3 < 1.
Now we prove that 7" is continuous at z. For n € N, using the inequality (2), we
get

S(Ta,,Ta,, Tr) =< c15(an,an,x) + c2S(Tay,, Tay,, x) (7)
+c3S(Tx, Tz, a,) + cymax{S(Ta,, Ta,,a,),S(Tx, Tz, x)}.

Using the condition (C'S3), the inequality (7) and Lemma 2.5, we obtain

S(Tay, Ta,,Txr) = c15(an,an,x) + c2S(Tay, Ta,, x) + c3S(Tx, Tz, ay)
+2c4S(Tay, Tan, x) + c4S(an, an, x)

and
(1 —co—2¢4)S(Tan, Tan, Tx) < (c1 + 3+ ¢4)S(an, an, ),

which implies

1+ c3+cy
S(Tan, Tay, Tz)| < ————
1S(Tan, Ta x)\_1_02_204

|S(an, an, x)| .
If we take limit for n — oo, then we have
\S(Tay, Ta,, Tx)| — 0.

Therefore {T'a,} is convergent to Tx = x. Consequently, T" is continuous at x by
Lemma 2.6. [

Remark 3.2. (1) Theorem 3.1 is a generalization of the Banach’s contraction prin-
ciple on complete complex valued S-metric spaces. Indeed, if we take ¢; = h and
cg = c3 = ¢4 = 0 in Theorem 3.1, then we obtain the Banach’s contraction condition
in Theorem 2.7.

(2) If we take the function S : X x X x X — [0,00) in Theorem 3.1, Then we
have Theorem 3 in [6].

Corollary 3.3. Let (X, S) be a complete complex valued S-metric space and T be
a self-mapping of X. If there exist nonnegative real numbers cy, cs, c3, ¢4 satisfying
max{c; + 3¢z + 2¢4, ¢1 + o + ¢3,¢0 + 2¢4} < 1 such that

S(TPx, TPz, TPy) = c1S(z,x,y) + c2S(TPx, TPx,y) + c3S(TPy, TPy, x)
+esmax{S(T7z, TPz, ), S(T"y, T%y, y)},

for all x,y € X and some p € N, then T" has a unique fixed point x in X and T? is
continuous at x.
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Proof. Using the similar arguments in Theorem 3.1, we can easily see that T? has a
unique fixed point z in X and T? is continuous at z. Also we obtain

Te =TTPx = TPy = TPTx,

which implies that Tz is a fixed point of T?. Consequently we have T'x = x since x
is a unique fixed point. Il

Theorem 3.4. Let (X,S) be a complete complex valued S-metric space and T
be a self-mapping of X. If there exist nonnegative real numbers ¢y, o, ¢3, ¢4, C5, Co
satisfying max{c; + co + 3¢4 + ¢5 + 3¢, €1 + 3 + ¢4 + 6, 2¢2 + 3 + 2¢6} < 1 such that
S(TQS’, TQZ', Ty) j CIS(xa xz, y) + CQS(Tx7 T[L’, QZ’) + CgS(TﬁL‘, TZL’, y) (8)
+c3S(Ty, Ty, x) + e5S(Ty, Ty, y) + cg max{S(x,x,y),
S(Tx,Tx,z),S(Tx, Tz,y),S(Ty, Ty, x),S(Ty, Ty,y)},

for all z,y € X, then T has a unique fixed point z in X and 7T is continuous at .

Proof. Let ap € X and the sequence {a,} be defined by
T”ao = Qp.

Assume that a, # a,y; for all n. Using the inequality 8, the condition (C'S3) and
Lemma 2.5, we obtain

S(an, anyans1) = S(Tan_1,Tan_1,Ta,) = c15(an_1,0n_1,a,) + c25(an, an, an_1)
+c3S(an, G,y ) + €4S (Ang1, Gng1, Gn1) + c5S(Ant1, Gngt, Gn)
+cg max{S(a,_1,an_1,0n), S(An, Ap,an_1),S(Cp, p,ap),
S(an—Hv An+1, an—l)v S(an+1> An+1, an)}

= 15(ap_1,an_1,an) + 25, an, an_1) + c4S(Ani1, py1, Gn1)
+c5S5(anat1, Gngt, an) + cg max{S(a,_1,an_1,a,), S(n, ap, ay_1),

S(an+lv An+t1, anfl)v S(an+17 An+1, an)}

(c1 + o+ ca+c6)S(an—1,an-1,a,)

+(2¢4 + ¢5 + 2¢6)S(ani1, Qnit, Gn)

PN

and
C1+c+cq+ce

2¢4 4 5 + 2cq
Let ¢ = @t@etats Thep we find ¢ < 1 since ¢ 4¢3 + 3c4 + ¢5 + 3¢ < 1. Using the

) . 2c4tces+2ce .
inequality (9), we obtain

S(an, an, apr1) = S(an—1,An—1, ap). 9)

S, A, any1) = c"S(ag, ag, ar). (10)
For all n,m € N, n < m, using the inequality (10) and the condition (C'S3), we have

2 42
S(an ans @) =

S(a'07 ap, a1)7
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which implies
2c"
|S(an7 Ay, am)| = 1

. |S(a0a ap, CL1)| .

Therefore |S(an, an, am)| — 0 as n,m — oo. Hence {a,} is a Cauchy sequence. Since

(X, S) is complete, there exists x € X such that {a,} converges to .
Now we show that x is a fixed point of T'. Suppose that Tz # x. Then we get

S(an, an, Tx) = S(Tan_1,Tan_1,Tx) = c1S(an_1,0n-1,%) + c2S(apn, an, an_1)
+c3S(an, an, x) + c4S(Tx, Tx,an-1) + c5S(Tx, Tz, x)
+cg max{S(an_1,an_1,2),S(Cpn, an, an_1),S(apn, an, ),
STz, Tzx,a,—1),S(Tx, Tx,z)}

and

|S(ana an7T$)| S C1 |S(an—17 6Ln—17:17)| + co |S(an7 Qn, an—1)| +c3 |S(an7 Qn, ZL‘)|
+ey |S(Tx, Tx,an-1)|+ c5 |S(Tx, Tx, x)|

maX{S(an—l) Ap—1, ZE), S<an7 Qp, an—l); S Qpy Ap, ZL’),

+c (
6 S(Tx,Tx,a,_1),S(Tx, Tx,z)}

If we take limit for n — oo, then using the continuity of S and Lemma 2.5, we have
|S(Tz, Tz, x)| < (ca+ 5+ ¢6) [S(Tw, T2, )],

which is a contradiction since 0 < ¢4 + ¢5 + ¢ < 1. Hence we obtain Tz = x.
Now we show that x is unique. Let y be another fixed point of T" such that x # y.
Using the inequality (8) and Lemma 2.5, we have

STz, Tx,Ty) = S(z,x,y) X 1S(x,z,y) + c2S(x,x,z) + c35(z, x,y)
+aS(y,y,x) + esS(y, v, y) + ce max{S(z, z,y),
S(z,z,x),8(z,2,y), S(y,y,2), 5y, y,9)}

and
1S(z, x,y)] < (c1+ cs + ca+co) |S(x, 2,y)],

which implies x = y since ¢; + ¢35+ ¢4 + ¢ < 1.
Now we prove that 7" is continuous at x. For n € N, using the inequality (8), the
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condition (C'S3) and Lemma 2.5, we obtain

S(Ta,,Ta,,Tzr) = c15(an,an,x) + c2S(Ta,, Tay, an) + c35(Tayn, Tay, x)
+cyS(Tx, T, a,) + c5S(Tx, Tz, )

+cgmax{S(ay,an, ), S(Ta,, Tay, ,a,), S(Ta,, Tay,, ),
S(Txz,Tz,a,),S(Tz, Tx,x)}

c15(an, an, ) + 2c0S(Tay, Tay, ) + c25(an, an, x)

+c3S(Tay, Tay, z) + cyS(Tx, Tz, a,)

+cg max{S(an, an, x),25(Tay, Ta,, x) + S(an, an,x),

S(Tan, Tay,x)}

= (a+ca+ca+cp)S(an,an, )+ (2co + 3+ 2¢6)S(Tx, Tx, Tay,)

I A

and
(1 —2c9 — 3 —2¢6)S(Tayn, Ta,, Tx) < (c1 + ¢ + ¢4 + ¢6)S(an, an, x),

which implies

|S(Tan,Tan,Tx)| < C1+ C+cq+co

S(an, an, )| -
_1—262—63—266| (CL “ :L‘)|

If we take limit for n — oo, then we have
|S(Tan, Ta,, Tz)| — 0.

Therefore {T'a,} is convergent to Tx = x. Consequently, T" is continuous at = by
Lemma 2.6. ]

Remark 3.5. (1) Theorem 3.4 is a generalization of Banach’s contraction principle
on complete complex valued S-metric spaces. Indeed, if we take ¢; = h and ¢y =
c3 = ¢4 = ¢5 = ¢g = 0 in Theorem 3.4, then we obtain the Banach’s contraction
condition in Theorem 2.7.

(2) If we take the function S : X x X x X — [0,00) in Theorem 3.4, Then we
have Theorem 4 in [6].

Corollary 3.6. Let (X,S) be a complete complex valued S-metric space and T
be a self-mapping of X. If there exist nonnegative real numbers ¢y, o, 3, ¢4, C5, Co
satisfying max{c; + co + 3¢y + ¢5 + 3¢, €1 + 3 + ¢4 + 6, 2¢2 + 3 + 2¢6} < 1 such that

S(TPz, TPz, TPy) =< c1S(z,2,y) + c2S(TPx, TPz, x) + c3S(TPx, TPz, y)
+c, S(TPy, TPy, x) + ¢S (T?y, TPy, y) + c¢ max{S(z, z,y),
S(TPx, TPz, x), S(T"x, T x,y), S(T7y, Ty, x), S(T"y, Ty, y) },

for all x,y € X and some p € N, then T" has a unique fixed point x in X and T? is
continuous at x.
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Proof. Tt follows from Theorem 3.4 by the same argument used in the proof of
Corollary 3.3. O

In the following example we give a self-mapping satisfying the conditions of our
results, but does not satisfy the condition of the Banach’s contraction principle.

Example 3.7. Let X = R and the function S : X x X x X — C be defined as
S(w,y.2) = €"(|z — 2| + |z + 2 — 2y)),

for all z,y,z,t € R. Then (R,S) is a complete complex valued S-metric space. Let
us define the self-mapping 7' : R — R as follows:

Y

[ x+70 if xe€{0,6}
T = { 65 if otherwise

for all € R. Therefore T satisfies the inequality (2) in Theorem 3.1 for ¢; = ¢y =

cg =0, ¢y = % and the inequality (8) in Theorem 3.4 for ¢; = ¢3 = ¢4 = ¢5 = 0,

Co = Cg = % So T has a unique fixed point x = 65. But T does not satisfy the

Banach’s contraction condition in Theorem 2.7. Indeed, for z = 6, y = 2, we obtain
S(Tx, Tz, Ty) = S(76,76,65) = 22¢" < hS(x,z,y) = hS(6,6,2) = 8he™

and
|22¢"| = 22 < [8he| = 8,

which is a contradiction h < 1.
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