http://www.newtheory.org

ISSN: 2149-1402

ON SOME IDEALS OF INTUITIOISTIC FUZZY POINTS SEMIGROUPS

Essam Hamed Hamouda <ehamouda70@gmail.com>

Department of Basic Sciences, Faculty of Industrial Education, Beni-Suef University, Beni-Suef,

Egypt

Abstract – In this paper, the minimal ideal A of a semigroup S is characterized by the intuitionistic characteristic function χ_A . The existence of an intuitionistic fuzzy kernel in a semigroup is explored. Finally, we consider the semigroup \underline{S} of the intuitionistic fuzzy points of a semigroup S and discuss some relations between some ideals A of S and the subset C_A of the semigroup \underline{S} .

Keywords – Semigroups; Intuitionistic fuzzy points; Intuitionistic fuzzy ideals.

1 Introduction

Semigroups are important in many areas of mathematics, for example, coding and language theory, automata theory, combinatorics and mathematical analysis. Zadeh [16] introduced the concept of a fuzzy set for the first time and this concept was applied by Rosenfeld [14] to define fuzzy subgroups and fuzzy ideals. Based on this crucial work, Kuroki [9,10,11,12] defined a fuzzy semigroup and various kinds of fuzzy ideals in semigroups and characterized them. In [13], Kim considered the semigroup \underline{s} of the fuzzy points of a semigroup *S*, and discussed the relation between the fuzzy interior ideals and the subsets of 5, also see [6, 7]. Atanassov [4, 5] introduced the notion of intuitionistic fuzzy sets as a generalization of fuzzy sets. Many concepts in fuzzy set theory were also extended to intuitionistic fuzzy set theory, such as intuitionistic fuzzy relations, intuitionistic L- fuzzy sets, intuitionistic fuzzy implications, intuitionistic fuzzy logics, intuitionistic fuzzy semigroups etc. Jun and Song [8] introduced the notion of intuitionistic fuzzy points. In [15] Sardar et al., defined some relations between the intuitionistic fuzzy ideals of a semigroup S and the set of all intuitionistic fuzzy points of S. In [3] Akram characterized intuitionistic fuzzy ideals in ternary semigroups by intuitionistic fuzzy points. Also in [2] he analyzed some relations between the intuitionistic fuzzy Γ -ideals and the sets of intuitionistic fuzzy points of these Γ -ideals of a Γ -semigroup. In this paper, we consider the semigroup \underline{s} of the intuitionistic fuzzy points of a semigroup \underline{s} , and discuss some relations between some ideals A of \underline{s} and the subset c_A of the semigroup \underline{s} .

2 Basic Definitions and Results

Let **S** be a semigroup. A nonempty subset A of **S** is called a *left (resp., right) ideal* of **S** if $SA \subseteq A(resp., AS \subseteq A)$, and a two-sided ideal (or simply ideal) of **S** if A is both a left and a right ideal of **S**. A nonempty subset A of **S** is called an interior ideal of **S** if $\subseteq A$. An ideal A of **S** is called *minimal* ideal of **S** if A does not properly contains any other ideal of **S**. If the intersection K of all the ideals of a semigroup S is nonempty then we shall call *Kthe kernel* of **S**. A sub-semigroup A of S is called a *bi-ideal* of **S** if $ASA \subseteq A$. A function f from S to the closed interval [0, 1] is called a *fuzzy set* in **S**. The semigroup S itself is a fuzzy set in S such that S(x) = 1 for all $x \in S$, denoted also by S. Let A and B be two fuzzy sets inS. Then the inclusion relation $A \subseteq B$ is defined $A(x) \leq B(x)$ for all $x \in S$. $A \cap B$ and $A \cup B$ are fuzzy sets in S defined by

$$(A \cap B)(x) = A(x) \wedge B(x) = \min\{A(x), B(x)\}$$

 $(A \cup B)(x) = A(x) \vee B(x) = \max\{A(x), B(x)\}$

for all $x \in S$.

For any $\alpha \in (0,1]$ and $x \in S$, a fuzzy set x_{α} in S is called a *fuzzy point* in S if

$$x_{\alpha}(y) = \begin{cases} \alpha & if \ x = y, \\ 0 & otherwise, \end{cases}$$

for all $x \in S$. The fuzzy point x_{α} is said to be contained in a fuzzy set A, denoted by $x_{\alpha} \in A$, iff $\alpha \leq A(x)$.

Definition 1. [4, 5] The intuitionistic fuzzy sets (IFS, for short) defined on a non-empty set X as objects having the form

$$A = \{ < x, \mu_A(x), \gamma_A(x) > : x \in X \}$$

where the functions $\mu_A: X \to [0,1]$ and $\gamma_A: X \to [0,1]$ denote the degree of membership and the degree of non-membership of each element $x \in X$ to the set A respectively, and $0 \le \mu_A(x) + \gamma_A(x) \le 1$ for all $x \in X$.

For the sake of simplicity, we shall $use^{A} = (\mu_{A}, \nu_{A})$ for intuitionistic fuzzy set $A = \{ < x, \mu_{A}(x), \nu_{A}(x) >: x \in X \}$.

Definition 2. [15] Let $\alpha, \beta \in [0,1]$ with $\alpha + \beta \leq 1$. An intuitionistic fuzzy point, written as $x(\alpha,\beta)$ is defined to be an intuitionistic fuzzy subset of S, given by

$$x_{(\alpha,\beta)}(y) = \begin{cases} (\alpha,\beta) & \text{if } x = y \\ (0,1) & \text{otherwise} \end{cases}$$

Definition 3. [15] A non-empty IFS^A = (μ_A, γ_A) of a semigroup S is called an intuitionistic fuzzy subsemigroup of S if

- (i) $\mu_A(xy) \ge \mu_A(x) \land \mu_A(y), \forall x, y \in S$
- (ii) $\gamma_A(xy) \le \gamma_A(x) \lor \gamma_A(y), \forall x, y \in S$.

Definition 4. [15] An intuitionistic fuzzy subsemigroup $A = (\mu_A, \nu_A)$ of a semigroup S is called an intuitionistic fuzzy interior ideal of S if

- (i) $\mu_A(xay) \ge \mu_A(x) \quad \forall x, a, y \in S$
- (ii) $\gamma_A(xay) \leq \gamma_A(a) \quad \forall x, a, y \in S$

Definition 5. [15] An intuitionistic fuzzy subsemigroup $A = (\mu_A, \gamma_A)$ of a semigroup S is called an intuitionistic fuzzy bi-ideal of S if

- (i) $\mu_A(xwy) \ge \mu_A(x) \land \mu_A(y), \forall x, w, y \in S$
- (ii) $\gamma_A(xwy) \le \gamma_A(x) \lor \gamma_A(y) \forall x, w, y \in S$

Definition 6. [15] A non-empty IFS^A = (μ_A, γ_A) of a semigroup S is called an intuitionistic fuzzy left (right) ideal of S if

- (i) $\mu_A(xy) \ge \mu_A(y)$ (resp. $\mu_A(xy) \ge \mu_A(x)$) $\forall x, y \in S$,
- (ii) $\gamma_A(xy) \le \gamma_A(y) (\operatorname{resp}, \gamma_A(xy) \le \gamma_A(y)) \forall x, y \in S$.

Definition 7. [15] A non-empty IFS $A = (\mu_A, \nu_A)$ of a semigroup S is called an intuitionistic fuzzy two-sided ideal or an intuitionistic fuzzy ideal of S if it is both an intuitionistic fuzzy left and an intuitionistic fuzzy right ideal of S.

Let ^A be a subset of a semigroup ^S and A° be the complement of $A_{\circ} = (C_{A^{\circ}}, C_{A^{\circ}})$ is defined as:

$$C_{A}(x) = \begin{cases} 1 & if \ x \in A, \\ 0 & otherwise, \end{cases} \quad C_{A^{C}}(x) = \begin{cases} 0 & if \ x \in A, \\ 1 & otherwise, \end{cases}$$

for all $x \in S$.

Let $\mathcal{IF}(S)$ be the set of all intuitionistic fuzzy sets in a semigroup S. For each $A = (\mu_A, \gamma_A), B = (\mu_B, \gamma_B) \in \mathcal{IF}(S)$, the product of A and B is an intuitionistic fuzzy set $A \circ B$ defined as follows:

$$A \circ B = \{ < x, \mu_{A \circ B}(x), \gamma_{A \circ B}(x) >: x \in S \},\$$

where

$$\mu_{A*B}(x) = \begin{cases} \bigvee_{x=uv} \ \mu_A(u) \wedge \mu_B(v) & if uv = x \\ 0 & otherwise. \end{cases}$$

$$\gamma_{A\circ B}(x) = \begin{cases} \bigwedge_{x=uv} \gamma_A(u) \lor \gamma_B(v) & \text{if } uv = x\\ 1 & \text{otherwise.} \end{cases}$$

Lemma 1. [1] For any nonempty subsets A and B of a semigroup S, we have $A \subseteq B$ if and only if $\chi_A \subseteq \chi_B$.

Lemma 2. [1] Let A be a nonempty subset of a semigroup S, then A is an ideal of S if and only if x_A is an intuitionistic fuzzy ideal of S.

Theorem 1. A nonempty subset A of a semigroup S is a minimal ideal if and only if χ_A is a minimal intuitionistic fuzzy ideal of S.

Proof. Let A be a minimal ideal of S, then by lemma 2., χ_A is an intuitionistic fuzzy ideal of S. Suppose that χ_A is not minimalintuitionistic fuzzy ideal of S, then there exists some intuitionistic fuzzy ideal χ_B of S such that $\chi_B \subseteq \chi_A$. Hence, lemma 1 implies that $B \subseteq A$, where B is an ideal of S. This is a contradiction to the fact that A is minimal ideal of S. Thus χ_A is minimalintuitionistic fuzzy ideal of S. Conversely, let χ_A be a minimalintuitionistic fuzzy ideal of S, then there exists some ideal of S. Suppose that A is not minimal ideal of S, then there exists some ideal B of S such that $B \subseteq A$. Now by lemma 1, $\chi_B \subseteq \chi_A$ where χ_B is an intuitionistic fuzzy ideal of S. This contradicts that χ_A is a minimalintuitionistic fuzzy ideal of S. This contradicts that χ_A is a minimalintuitionistic fuzzy ideal of S. This contradicts that χ_A is a minimalintuitionistic fuzzy ideal of S. Thus A is minimal ideal of S.

Lemma 3. If $A = (\mu_A, \gamma_A)$ is a minimal intuitionistic fuzzy ideal of a semigroup S, then A is the intuitionistic fuzzy kernel of S.

Proof. Let $B = (\mu_B, \gamma_B)$ be any intuitionistic fuzzy ideal of *S*, then $B \circ A \subseteq B \cap A$. Since $B \cap A$ is an intuitionistic fuzzy ideal of *S* and $B \cap A \subseteq A$, it follows that $B \cap A = A$. But then $A = B \cap A \subseteq B$, so *A* is contained in every intuitionistic fuzzy ideal of *S* and hence is an intuitionistic fuzzy kernel of *S*.

Lemma 4. If $A = (\mu_A, \gamma_A)$ is an intuitionistic fuzzy kernel of a semigroup 5, then A is a simple intuitionistic fuzzy subsemigroup of 5.

Proof. Since A is an intuitionistic fuzzy ideal of S, so A is an intuitionistic fuzzy subsemigroup of S. To show that A is simple, let B be any intuitionistic fuzzy ideal of A, then $A \circ B \circ A$ is an intuitionistic fuzzy ideal of S, since

$$S \circ (A \circ B \circ A) = (S \circ A) \circ B \circ A \subseteq A \circ B \circ A$$

and

$$(A \circ B \circ A) \circ S = A \circ B \circ (A \circ S) \subseteq A \circ B \circ A$$

Also, $A \circ B \circ A \subseteq A \circ A \subseteq A$, but by lemma 3, A is minimal intuitionistic fuzzy ideal of S. Hence $A \circ B \circ A = A$. Also, $A \circ B \circ A \subseteq B \circ A \subseteq B$, which implies that $A \subseteq B$. Thus A = B, that is A is simple subsemigroup of S.

Lemma 5. Let $A = (\mu_{A'}, \gamma_{A})$ be an intuitionistic fuzzy left ideal of a semigroup S and $x_{(\alpha,\beta)}$ be any intuitionistic fuzzy point of S, then $A \circ x_{(\alpha,\beta)}$ is a minimal intuitionistic fuzzy left ideal of S.

Proof. $A \circ x_{(\alpha,\beta)}$ is an intuitionistic fuzzy left ideal of *S*, since $S \circ (A \circ x_{(\alpha,\beta)}) = (S \circ A) \circ x_{(\alpha,\beta)} \subseteq A \circ x_{(\alpha,\beta)}$. Suppose *B* is an intuitionistic fuzzy left ideal of $A \circ x_{(\alpha,\beta)}$ and let $D = \{y_{(\gamma,\delta)} \in A : y_{(\gamma,\delta)} \circ x_{(\alpha,\beta)} \subseteq B\}$. Let $z_{(\sigma,\tau)}$ be in *S* and $y_{(\gamma,\delta)}$ be in *D*, then $z_{(\sigma,\tau)} \circ y_{(\gamma,\delta)} \in A$ and so $z_{(\sigma,\tau)} \circ y_{(\gamma,\delta)} \circ x_{(\alpha,\beta)} \subseteq B$. Hence $z_{(\sigma,\tau)} \circ y_{(\gamma,\delta)} \in D$, which implies that $S \circ D \subseteq D$. Thus *D* is an intuitionistic fuzzy left ideal of *S* contained in *A* and besause of minimality of *A*, we get D = A. Thus for all $y_{(\gamma,\delta)} \in A$, $y_{(\gamma,\delta)} \circ x_{(\alpha,\beta)} \in B$, which implies that $A \circ x_{(\alpha,\beta)} \subseteq B$. Hence $A \circ x_{(\alpha,\beta)} = B$ and therefore, $A \circ x_{(\alpha,\beta)}$ is a minimal intuitionistic fuzzy left ideal of *S*.

3 Main Results

If **S** is a semigroup, then $\mathcal{F}(S)$ is a semigroup with the product " \circ "[15]. Let **S** be the set of all intuitionistic fuzzy points in a semigroup **S**. Then $x_{(\alpha,\beta)} \circ y_{(\gamma,\delta)} = (xy)_{(\alpha,\gamma,\beta\vee\delta)} \in S$, for $x_{(\alpha,\beta)}, y_{(\gamma,\delta)} \in S$ and $y_{(\alpha,\beta)} \circ (x_{(\sigma,\tau)} \circ z_{(\gamma,\delta)}) = (y_{(\alpha,\beta)} \circ x_{(\sigma,\tau)}) \circ z_{(\gamma,\delta)}$. Thus **S** is a subsemigroup of $\mathcal{F}(S)$ [15]. For any $A \in \mathcal{F}(S)$. A denotes the set of all intuitionistic fuzzy points contained in A, that is, $\underline{A} = \{x_{(\alpha,\beta)} \in \underline{S}: \mu_A(x) \ge \alpha, \gamma_A(x) \le \beta\}$. For any $\underline{A}, \underline{B} \subseteq \underline{S}$, we define the product of \underline{A} and \underline{B} as $\underline{A} \circ \underline{B} = \{x_{(\alpha,\beta)} \circ y_{(\gamma,\delta)}: x_{(\alpha,\beta)} \in \underline{A}, y_{(\gamma,\delta)} \in \underline{B}\}$.

Lemma 6. [15] Let $A = (\mu_A, \gamma_A)$ and $B = (\mu_B, \gamma_B)$ be two intuitionistic fuzzy subsets of a semigroup *S*, then

- 1) $\underline{A \cup B} = \underline{A} \cup \underline{B}$
- 2) $\underline{A \cap B} = \underline{A} \cap \underline{B}$.
- 3) $\underline{A} \circ \underline{B} \subseteq \underline{A \circ B}$.

Lemma 7. Let A be nonempty subset of a semigroup S, we have $x_{(\alpha,\beta)} \in \underline{\chi}_A$ if and only if $x \in A$.

Proof. Suppose that $x_{(\alpha,\beta)} \in \underline{\chi}_A$ for any $x \in S$, then $C_A(x) \ge \alpha$. Hence $C_A(x) = 1$ for any $\alpha > 0$, which implies that $x \in A$. Conversely, Let $x \in A$, then $C_A(x) = 1 \ge \alpha$ and $C_A(x) = 0 < \beta$ for any $\alpha, \beta > 0$. This means that $x_{(\alpha,\beta)} \in \underline{\chi}_A$.

Lemma 8. For any nonempty subsets A and B of a semigroup S, we have

- 1) $A \subseteq B$ if and only if $\underline{\chi}_A \subseteq \underline{\chi}_{B'}$
- 2) $\chi_A \subseteq \chi_B$ if and only if $\chi_A \subseteq \chi_B$.

Proof. (1)Assume that $A \subseteq B$, and let $x_{(\alpha,\beta)} \in \underline{\chi}_{A}$. By lemma 7, $x \in A \subseteq B$ and $x_{(\alpha,\beta)} \in \underline{\chi}_{B}$, this implies that $\underline{\chi}_{A} \subseteq \underline{\chi}_{B}$. Conversely, suppose that $\underline{\chi}_{A} \subseteq \underline{\chi}_{B}$. Let $x \in A$, then by lemma 7, for any $\alpha, \beta > 0x_{(\alpha,\beta)} \in \underline{\chi}_{A}$ and $x_{(\alpha,\beta)} \in \underline{\chi}_{B}$ which implies that $x \in B$. (2) it is obvious that if $\underline{\chi}_{A} \subseteq \underline{\chi}_{B}$ then $\underline{\chi}_{A} \subseteq \underline{\chi}_{B}$. Now assume that $\underline{\chi}_{A} \subseteq \underline{\chi}_{B}$ and let $x_{(\alpha,\beta)} \in \underline{\chi}_{A} \subseteq \underline{\chi}_{B}$, then $A \subseteq B$ and consequently, we have $\underline{\chi}_{A} \subseteq \underline{\chi}_{B}$. This completes the proof.

Lemma 9. Let A be a nonempty subset of a semigroup S. Then A is an ideal of S if and only if χ_A is an ideal of \underline{S} .

Proof. By lemma 2, A is an ideal of S if and only if χ_A is a fuzzy ideal of S. And from theorem 3.5[13], χ_A is a fuzzy ideal of S if and only if χ_A is an ideal of S.

Theorem 2. A nonempty subset A of a semigroup S is minimal ideal if and only if χ_A is a minimal intuitionistic fuzzy ideal of S.

Proof. Let A be a minimal ideal of S, then by lemma 2, χ_A is an intuitionistic fuzzy ideal of S. Suppose that χ_A is not minimalintuitionistic fuzzy ideal of S, then there exists some intuitionistic fuzzy ideal χ_B of S such that $\chi_B \subseteq \chi_A$. Hence, lemma 1 implies that $B \subseteq A$, where B is an ideal of S. This is a contradiction to the fact that A is minimal ideal of S. Thus χ_A is minimalintuitionistic fuzzy ideal of S. Conversely, let χ_A be a minimalintuitionistic fuzzy ideal of S, then there exists some ideal of S. Suppose that A is not minimal ideal of S, then there exists some ideal B of S such that $B \subseteq A$. Now by lemma, $\chi_B \subseteq \chi_A$ where χ_B is an intuitionistic fuzzy ideal of S. This contradicts that χ_A is a minimal intuitionistic fuzzy ideal of S. This contradicts that χ_A is a minimal intuitionistic fuzzy ideal of S. This contradicts that χ_A is a minimal intuitionistic fuzzy ideal of S. Thus A is minimal ideal of S.

Theorem 3. Let A be a nonempty subset of a semigroup^S. Then A is a minimal ideal of S if and only if χ_A is a minimal ideal of <u>S</u>.

Proof. By theorem 1, *A* is a minimal ideal of *S* if and only if χ_A is an intuitionistic fuzzy minimal ideal of *S*. We only need to prove that, χ_A is a minimal intuitionistic fuzzy ideal of *S* if and only if χ_A is a minimal ideal of \underline{S} . Let χ_A be a minimal intuitionistic fuzzy ideal of *S*, then χ_A is an ideal of \underline{S} . Suppose that χ_A is not minimal, then there exists some ideals χ_B of \underline{S} such that $\chi_B \subseteq \chi_A$ which implies that $\chi_B \subseteq \chi_A$, where χ_B is an intuitionistic fuzzy ideal of *S*. This is a contradiction to χ_A is a minimal intuitionistic fuzzy ideal of *S*. Thus χ_A is a minimal ideal of \underline{S} . Conversely, assume that χ_A is a minimal ideal of \underline{S} and that χ_A is not a minimal intuitionistic fuzzy ideal of *S*. Then there exists an intuitionistic fuzzy ideal χ_B is a minimal ideal of \underline{S} . This contradicts that $\chi_B \subseteq \chi_A$, where $\chi_B \equiv \chi_A$ is a minimal ideal of \underline{S} . This contradicts that χ_A is a minimal ideal of \underline{S} . This completes the proof of the theorem.

Theorem 4. Let A be a nonempty subset of a semigroup 5. Then A is the kernel of S if and only if χ_A is the kernel of \underline{S} .

Proof. Suppose that *A* is the kernel of *S*, then $A = \bigcap_i I_{i_i}$ where I_i is an ideal of *S*. Let $\chi_{\underline{B}}$ be an ideal of \underline{S} , then *B* is an ideal of *S*. Now we need to show that, $\chi_{\underline{A}} \subseteq \chi_{\underline{B}}$. Let $x_{(\alpha,\beta)} \in \chi_{\underline{A}}$, by lemma 7, $x \in A$ and also $x \in B$, since *A* is the kernel of *S*. This implies that $x_{(\alpha,\beta)} \in \chi_{\underline{B}}$ and hence, $\chi_{\underline{A}}$ is the kernel of \underline{S} . Conversely, Let $\chi_{\underline{A}}$ be the kernel of \underline{S} , then $\chi_{\underline{A}} \subseteq \chi_{\underline{B}}$, for every ideal $\chi_{\overline{B}}$ of \underline{S} . Thus $A \subseteq B$ and therefore, *A* is the kernel of *S*.

The following lemma weakens the condition of theorem 4.

Lemma 10. Let A be a minimal ideal of a semigroup S, then $\frac{X_A}{X_A}$ is the kernel of \underline{S} .

Proof. Since A is a minimal ideal of S, then χ_A is a minimal intuitionistic fuzzy ideal of S. Also lemma 3 implies that χ_A is the fuzzy kernel of S. Now, let χ_B be an intuitionistic fuzzy

ideal of S, then we have $\chi_A \subseteq \chi_{\overline{B}}$ and hence $\chi_{\overline{A}} \subseteq \chi_{\overline{B}}$. So $\chi_{\overline{A}}$ is a minimal ideal contained in every ideal of S. Thus χ_A is the kernel of S.

Theorem 5. Let A be a nonempty subset of a semigroup S. Then A is an interior ideal of S if and only if χ_A is an interior ideal of \underline{S} .

Proof. Let *A* be an interior ideal of *S*, and let $y_{(\alpha,\beta)}, z_{(\gamma,\delta)} \in \underline{S}$ and $x_{(\sigma,\tau)} \in \underline{\chi_A}$. Since $x \in A$, then $y_{(\alpha,\beta)} \circ x_{(\sigma,\tau)} \circ z_{(\gamma,\delta)} = (yxz)_{(\alpha \wedge \sigma \wedge \gamma, \beta \vee \tau \vee \delta)} \in \underline{\chi_A}$. This implies that $\underline{S} \circ \underline{\chi_A} \circ \underline{S} \subseteq \underline{\chi_A}$, thus $\underline{\chi_A}$ is an interior ideal of \underline{S} . Conversely, suppose that $\underline{\chi_A}$ is an interior ideal of \underline{S} . Let $y, z \in S$ and $x \in A$, then $x_{(\sigma,\tau)} \in \underline{\chi_A}$. Assume that, $y_{(\alpha,\beta)} \circ x_{(\sigma,\tau)} \circ z_{(\gamma,\delta)} = (yxz)_{(\alpha \wedge \sigma \wedge \gamma, \beta \vee \tau \vee \delta)} \in \underline{S} \circ \underline{\chi_A} \circ \underline{S} \subseteq \underline{\chi_A}$, then $yxz \in A$. This implies that $\underline{SAS} \subseteq A$, and hence *A* is an interior ideal of *S*.

Theorem 6. Let A be a nonempty subset of a semigroup S. Then A is a bi- ideal of S if and only if χ_A is a bi- ideal of \underline{S} .

Proof. Let A be a bi- ideal of S, and let $y_{(\alpha,\beta)}, z_{(\gamma,\delta)} \in \underline{\chi}_A$ and $x_{(\alpha,\tau)} \in \underline{S}$. Since $\gamma, z \in A$ and $\gamma xz \in A$ then

$$y_{(\alpha,\beta)} \circ x_{(\sigma,\tau)} \circ z_{(\gamma,\delta)} = (yxz)_{(\alpha \land \sigma \land \gamma, \beta \lor \tau \lor \delta)} \in \underline{\chi_A}.$$

This implies that $\underline{\chi_A} \circ \underline{S} \circ \underline{\chi_A} \subseteq \underline{\chi_{A'}}$ thus $\underline{\chi_A}$ is a bi-ideal of \underline{S} . Conversely, suppose that $\underline{\chi_A}$ is a bi-ideal of \underline{S} . Let $y, z \in A$ and $x \in S$, then $y_{(\alpha,\beta)}, z_{(\gamma,\delta)} \in \underline{\chi_A}$ by lemma 7. Assume that, $y_{(\alpha,\beta)} \circ x_{(\sigma,\tau)} \circ z_{(\gamma,\delta)} = (yxz)_{(\alpha,\alpha,\gamma)}, \beta_{\gamma\tau\gamma\delta} \in \underline{\chi_A} \circ \underline{S} \circ \underline{\chi_A} \subseteq \underline{\chi_{A'}}$ then $yxz \in A$. This implies that $ASA \subseteq A$, and hence A is a bi-ideal of S.

Acknowledgements

The author is grateful for Editor-in-Chief and the referee for their valuable efforts.

References

- [1] A. Ahn, K. Hur and H. Kay, *Intuitionistic fuzzy quasi-ideals of a semigroup*, Inter. J. Pure Applied Math. 23 (2) (2005), 207-229.
- [2] M. Akram, *Characterizing* Γ *semigroups by intuitionistic fuzzy points*, ARPN J. of System and Software, Vol. 2,12 (2012) 359-365.
- [3] M. Akram, *Intuitionistic fuzzy points and ideals of ternary semigroups*, Int. J. of Algebra Statistics, Volume 1: 1(2012), 74-82.
- [4] K. Atanassov, Intuitionistic fuzzy sets, Fuzzy Sets and Systems, 20(1986) 87-96.
- [5] K. Atanassov, 1994, *New operations defined over the intuitionistic fuzzy sets*, Fuzzy Sets and Systems, 61(1994) 137-142.
- [6] E. H. Hamouda, *On some ideals of fuzzy points semigroups*, Gen. Math. Notes Vol. 17, 2(2013) 76-80.
- [7] E. H. Hamouda, *On Some Ideals of Fuzzy Points in ternary semigroups*, J. Semigroup Theory App. 3(2014) 1-9.

- [8] Y. B. Jun, S. Z. Song, *Intuitionistic fuzzy semipreopen set and intuitionistic fuzzy semiprecontinuous mappings*, J. Appl. Math. Computing, 19(1-2) (2005) 467-474.
- [9] N. Kuroki, Fuzzy bi-ideals in semigroups, Comment. Math. Univ. St. Pauli, 28: (1979)17-21.
- [10] N. Kuroki, On fuzzy ideals and bi-ideals in semigroups, Fuzzy Sets and Systems 5(1981) 203-215.
- [11] N. Kuroki, *Fuzzy semiprime ideals in semigroups*, Fuzzy Sets and Systems, 8 (1982) 71-79.
- [12] N. Kuroki, On fuzzy semigroups, Inform. Sci., 53 (1991) 203-236.
- [13] K. H. Kim, On fuzzy points in semigroups, Int. J. Math. & Math. Sc., 26(11) (2001)707-712.
- [14] A. Rosenfeld, Fuzzy groups, J. Math. Anal. Appl., 35 (1971) 512-517.
- [15] S. K. Sardar, M. Mandal and S. K. Majumder, *Intuitionistic fuzzy points in semigroups*, World Academy of Sciences, Engineering and technology75 (2011) 1107-1112.
- [16] L. Zadeh, Fuzzy sets, Inform. & Control, 8 (1965) 338-353.