
http://www.newtheory.org ISSN: 2149-1402

Received : 17.10.2017 Year :2017, Number : 17, Pages: 1-17
Published : 27.10.2017 Original Article

DOUBLE CONNECTED SPACES

Ali Saad Kandil1

Osama Abd El-Hamed El-Tantawy2

Sobhy Ahmed Ali El-Sheikh3

Salama Hussien Ali Shaliel3,*

<dr.ali-kandil@yahoo.com>
<drosamat@yahoo.com>
<sobhyesheikh@yahoo.com>
<slamma-elarabi@yahoo.com>

1Mathematics Department, Faculty of Science, Helwan University, Helwan, Egypt.
2Mathematics Department, Faculty of Science, Zagazeg University, Zagazeg, Egypt.

3Mathematics Department, Faculty of Education, Ain Shams University, Cairo, Egypt.

Abstaract − In this paper, we introduce new types of double connected topological spaces. The
first one depends on the separated double sets and the other one depends on the quasi-coincident
separated double sets. The properties and the relation between them have investigated. Also, we
defined and study the component of each type and the properties of these types of component have
obtained.
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1 Introduction

Atanassov [1, 2, 3, 4] introduced the concept of intuitionistic fuzzy sets as a gener-
alization of fuzzy sets. Coker [5] generalized topological structures in intuitionistic
fuzzy case. The concept of intuitionistic sets and the topology on intuitionistic sets
was first given by Coker [7, 6].

In 2005, the suggestion of J. G. Garcia et al. [8] that double set is a more
appropriate name than flou (intuitionistic) set, and double topology for the flou (in-
tuitionistic) topology. In 2007, Kandil et al. [10] proved the 1 − 1 correspondence
mapping f between the set of all double sets and the set of all intuitionistic sets
defined as: f(A1, A2) = (A1, A

c
2), A

c
2 is the complement of A2. Kandil et al. [9, 10]

introduced the concept of double sets, (D-set, for short), double topological spaces,
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(DTS, for short), continuous functions between these spaces and the concept of dou-
ble point, (D-point, for short).

In this paper, we define (q-)separated double sets, (q)double connected, DC1−connected,
strongly double connected, (q)double components and quasi-hyperconnected in dou-
ble topological spaces. Moreover, we give some related results to these notions.

2 Preliminary

In this section, we collect some definitions and theorems which will be needed in the
sequel. For more details see [9, 10].

Definition 2.1. [10] Let X be a non-empty set.

1. A D-set A is an ordered pair (A1, A2) ∈ P (X)×̂P (X) such that A1 ⊆ A2.

2. D(X) = {(A1, A2) ∈ P (X)×̂P (X), A1 ⊆ A2} is the family of all D-sets on X.

3. Let η1, η2 ⊆ P (X). The product of η1 and η2, denoted by η1 × η2, defined by:
η1×̂η2 = {(A1, A2) : A1 ∈ η1, A1 ∈ η2, A1 ⊆ A2}.

4. The D-set X = (X,X) is called the universal D-set.

5. The D-set ∅ = (∅, ∅) is called the empty D-set.

Definition 2.2. [10] Let A = (A1, A2), B = (B1, B2) and C = (C1, C2) ∈ D(X).

1. A = B ⇔ A1 = B1, A2 = B2.

2. A ⊆ B ⇔ A1 ⊆ B1, A2 ⊆ B2.

3. A ∪ B = (A1 ∪B1, A2 ∪B2).

4. A ∩ B = (A1 ∩B1, A2 ∩B2).

5. Ac = (Ac
2, A

c
1), where Ac is the complement of A.

6. A \B = (A1 \B2, A2 \B1).

7. A ∩ (B ∪ C) = (A ∩ B)∪(A ∪ C).

8. Let x ∈ X. Then, the D-sets x1 = ({x}, {x}) and x 1
2

= (∅, {x}) are said

to be D-points in X. The family of all D-points, denoted by DP (X), i.e.,
DP (X) = {xt : x ∈ X, t ∈ {1

2
, 1}}.

9. x1∈ A ⇔ x ∈ A1 and x 1
2
∈ A ⇔ x ∈ A2.

Definition 2.3. [9] Two D-sets A and B are said to be a quasi-coincident, denoted
by AqB, if A1 ∩ B2 6= ∅ or A2 ∩ B1 6= ∅. A is not quasi-coincident with B, denoted
by A 6qB, if A1 ∩B2 = ∅ and A2 ∩B1 = ∅.
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Theorem 2.4. [9] Let A,B,C ∈ D(X) and xt ∈ DP (X). Then,

1. A 6q B ⇔ A ⊆ Bc.

2. A 6q B,C ⊆ B ⇒ A 6q C.

Definition 2.5. [10] Let X be a non-empty set. The family η of D-sets in X is
called a double topology on X if it satisfies the following axioms:

1. ∅, X ∈ η,

2. If A,B ∈ η, then A ∩ B ∈ η,

3. If {As : s ∈ S} ⊆ η, then ∪s∈SAs ∈ η.

The pair (X, η) is called a DTS. Each element of η is called an open D-set in X. The
complement of open D-set is called closed D-set.

Definition 2.6. [10] Let (X, η) be a DTS and A ∈ D(X). The double closure of A,
denoted by clη(A) or A, defined by: clη(A) = ∩{B : B ∈ ηc and A ⊆ B}.
Theorem 2.7. [10] Let (X, η) be a DTS and let A, B, C ∈ D(X). Then,

1. clη(A) is the smallest closed D-set containing A.

2. clη(A ∩ B) ⊆ clη(A) ∩ clη(B).

3. A q C ⇔ clη(A) q clη(C), C ∈ η.

Definition 2.8. [10] Let X be a non-empty set. The family τ of D-sets in X is
called a stratified double topology on X if it satisfies the following axioms:

1. ∅ ∈ τ, X ∈ τ and (∅, X) ∈ τ ,

2. If A,B ∈ τ , then A ∩ B ∈ τ ,

3. If {As : s ∈ S} ⊆ τ , then ∪s∈SAs ∈ τ.

The pair (X, τ) is called a stratified DTS.

Definition 2.9. [10] Let X be a non-empty set.

1. I(X) = {∅, X} is a DTS, which is called indiscrete DTS.

2. i(X)×̂i(X) = {∅, X, (∅, X)} is a DTS, which is called indiscrete stratified
DTS, i(X) is the indiscrete topology on X.

3. D(X) = P (X)×̂P (X) is a DTS, which is called discrete DTS.

Theorem 2.10. [10] Let η be a double topology on X. Then, the following collections
are ordinary topologies on X :

1. π1 = {A1 : A ∈ η}.
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2. π2 = {A2 : A ∈ η}.
Definition 2.11. [10] Let (X, η) be a DTS and Y be a non-empty subset of X.
Then, ηY = {A⋂

Y : A ∈ η and Y = (Y, Y )} is a double topology on Y. The DTS
(Y, ηY ) is called a double topological subspace of (X, η) (DT−subspace, for short).

Definition 2.12. [10] Let (X, η) be a DTS, F ∈ D(X) and Y be a non-empty
subset of X. Then, the D-subset over Y, denoted by F Y , defined by: F Y = F

⋂
Y .

Definition 2.13. [10] Consider two ordinary sets X and Y . Let f be a mapping from
X into Y . The image of a D-set A in D(X) defined by: f(A) = (f(A1), f(A2)). Also
the inverse image of a D-set B ∈ D(Y ) defined by: f−1(B) = (f−1(B1), f

−1(B2)).

Definition 2.14. [10] Let f : X → Y be a mapping and let (X, η) and (Y, η∗) be
DTS. Then, f is called a D-continuous if f−1(B) ∈ η, whenever B ∈ η∗.

Theorem 2.15. [10] Let (X, η) and (Y, η∗) be two DTS and let f : X → Y be a
mapping, A ∈ D(X) and B ∈ D(Y ). Then, the following conditions are equivalent:

1. f is a D-continuous,

2. f−1(B) ∈ ηc, ∀B ∈ η∗c,

3. f(clη(A)) ⊆ clη∗(f(A)), ∀A ∈ D(X),

4. clη(f
−1(B)) ⊆ f−1(clη∗(B)), ∀B ∈ D(Y ),

5. f−1(intη∗(B)) ⊆ intη(f
−1(B)), ∀B ∈ D(Y ).

Definition 2.16. [10] Let (X, η) and (Y, η∗) be two DTS and let f : X → Y be a
mapping and A ∈ D(X).

1. f is called D-open if f(A) ∈ η∗, ∀A ∈ η.

2. f is called D-closed if f(A) ∈ η∗c, ∀A ∈ ηc

Theorem 2.17. [10] Let (X, η) and (Y, η∗) be two DTS and let f : X → Y be a
mapping and A ∈ D(X). f is D-closed iff clη∗(f(A)) ⊆ f(clη(A)), ∀A ∈ D(X).

Definition 2.18. [9] Let (X, η) be a DTS. and let A ∈ D(X). A is said to be:

1. D-dense if clη(A) = X.

2. D-nowhere dense if intη(clη(A)) = ∅.
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3 Connectedness in DTS

Definition 3.1. Let (X, η) be a DTS and let A, B ∈ D(X).

1. A, B are said to be separated double sets (separated D-sets, for short) if
clη(A) ∩ B = ∅ and A ∩ clη(B) = ∅.

2. A, B are said to be quasi-coincident separated double sets (q-separated D-sets,
for short) if clη(A) 6qB and A 6q clη(B).

Proposition 3.2. Let (X, η) be a DTS and let A,B ∈ D(X). Then,
if A,B are separated D-sets, then A ∩ B = ∅.
Proof. Suppose A,B are separated D-sets, then clη(A) ∩ B = ∅ and A ∩ clη(B) = ∅.
But A ⊆ clη(A), then A ∩ B = ∅. Hence, the result.

The following example shows that the converse of Proposition 3.2 is not true in
general.

Example 3.3. Let X = {a, b, c, d}, η = {∅, X, ({a}, {a, b}), (∅, {a, b}), ({b, c, d}, X)}
and ηc = {∅, X, ({c, d}, {b, c, d}), ({c, d}, X), (∅, {a})}. Then, (X, η) is a DTS. Now,
({a}, {a, b})∩({c}, {c, d}) = ∅, but X = clη({a}, {a, b})∩({c}, {c, d}) = ({c}, {c, d}) 6=
∅.
Proposition 3.4. Let (X, η) be a DTS and let A,B ∈ D(X). Then,
if A,B are q-separated D-sets, then A 6qB.

Proof. Suppose A,B are q-separated D-sets, then clη(A) 6 q B and A 6 q clη(B). But
A ⊆ clη(A), then A 6q B. Hence, the result.

The following example shows that the converse of Proposition 3.4 is not true in
general.

Example 3.5. Let X = {a, b, c} and η = {∅, X, (∅, {a}), (∅, {b}), (∅, {a, b})}. Then,
∃({a}, {a}), ({b}, {b}) ∈ D(X) such that ({a}, {a}) 6q ({b}, {b}). But, clη({a}, {a}) =
({a, c}, X) q ({b}, {b}) and clη({b}, {b}) = ({b, c}, X) q ({a}, {a}).
Proposition 3.6. Let (X, η) be a DTS and let A,B ∈ D(X). Then,
if A ∩ B = ∅, then A 6q B.

Proof. Suppose that (A1, A2) = A ∩ B = (B1, B2) = ∅, then A1 ∩ B1 = ∅ and
A2 ∩ B2 = ∅, but A1 ⊆ A2, B1 ⊆ B2, then A1 ∩ B2 = ∅ and A2 ∩ B1 = ∅. Therefore,
A 6q B.

The following example shows that the converse of Proposition 3.6 is not true in
general.

Example 3.7. Let X = {a, b} and η = {∅, X, ({a}, {a}), (∅, {b}), ({a}, X)}. Then,
(∅, {b}) 6q({a}, X), but (∅, {b}) ∩ ({a}, X) = (∅, {b}) 6= ∅.
Proposition 3.8. Let (X, η) be a DTS and let A,B ∈ D(X). Then,
if A,B are separated D-sets, then A,B are q-separated D-sets.
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Proof. Straightforward.

The following example shows that the converse of Proposition 3.8 is not true in
general.

Example 3.9. In Example 3.7, we see that: (∅, {b}) 6 q clη({a}, X) = ({a}, X) and
clη(∅, {b}) = (∅, {b}) 6q ({a}, X), but (∅, {b}) = clη(∅, {b}) ∩ ({a}, X) = (∅, {b}) 6= ∅.
Remark 3.10. A ∩ B = ∅< clη(A) 6q B and A 6q clη(B).

Example 3.11. 1. In Example 3.3, we see that: ({a}, {a, b})∩({c}, {c, d}) = ∅,
but X = clη({a}, {a, b}) q ({c}, {c, d}).

2. In Example 3.7, we see that: (∅, {b}) 6q clη({a}, X) = ({a}, X) and clη(∅, {b}) =
(∅, {b}) 6q ({a}, X), but (∅, {b}) ∩ ({a}, X) = (∅, {b}) 6= ∅.

Theorem 3.12. Let (X, η) be a DTS and let A, B,C, D ∈ D(X) such that C ⊆ A
and D ⊆ B. Then, if A,B are separated D-sets, then C,D are separated D-sets.

Proof. Suppose A,B are separated D-sets, then clη(A) ∩ B = ∅ and A ∩ clη(B) = ∅.
Since C ⊆ A and D ⊆ B, then clη(C) ⊆ clη(A) and clη(D) ⊆ clη(B). Implies,
D ∩ clη(C) = ∅ and clη(D) ∩ C = ∅. Hence, C,D are separated D-sets.

Theorem 3.13. Let (X, η) be a DTS and let A, B,C, D ∈ D(X) such that C ⊆ A
and D ⊆ B. Then, if A,B are q-separated D-sets, then C, D are q-separated D-sets.

Proof. Suppose A,B are q-separated D-sets, then clη(A) 6q B and A 6q clη(B). Since
C ⊆ A and D ⊆ B, then clη(C) ⊆ clη(A) and clη(D) ⊆ clη(B). Implies, D 6 q clη(C)
and C 6q clη(D) [by Theorem 2.4]. Hence, C,D are q-separated D-sets.

Definition 3.14. Let (X, η) be a DTS, and let E be a nonempty subset of X.

1. If there exist two non-empty separated D-sets A,B ∈ D(X) such that A ∪ B =
E, then the D-sets A and B form a D-separation of E and it is said to be double
disconnected set (D-disconnected set, for short). Otherwise, E is said to be
double connected set (D-connected set, for short).

2. If there exist two non-empty q-separated D-sets A,B ∈ D(X) such that
A ∪ B = E, then the D-sets A and B form a qD−separation of E and it
is said to be quasi-coincident double disconnected set (qD−disconnected set,
for short). Otherwise, E is said to be quasi-coincident double connected set
(qD−connected set, for short).

Remark 3.15. The D-point xt in any DTS (X, η) is a qD−connected set, provided
that x 1

2
q clη(x 1

2
).

Example 3.16. Let X = {a, b}, η = {∅, X, (∅, {a}), ({b}, X)} and ηc = {∅, X, (∅, {a}),
({b}, X)}. Then,

1. (∅, {a}) = cl(∅, {a}) 6 q (∅, {a}) and (∅, {a})∪(∅, {a}) = (∅, {a}). Therefore,
(∅, {a}) is not qD−connected set.
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2. ({b}, X) = cl(∅, {b}) q (∅, {b}) and (∅, {b})∪(∅, {b}) = (∅, {b}). Therefore,
(∅, {b}) is qD−connected set.

Definition 3.17. Let (X, η) be a DTS.

1. If there exist two non-empty separated D-sets A,B ∈ D(X) such that A ∪ B =
X, then A and B are said to be double division (D-division, for short) for DTS
(X, η). (X, η) is said to be double disconnected space (D-disconnected space,
for short), if (X, η) has a D-division. Otherwise, (X, η) is said to be double
connected space (D-connected space, for short).

2. If there exist two non-empty q-separated D-sets A,B ∈ D(X) such that
A ∪ B = X, then A and B are said to be a double quasi division (qD−division,
for short) for DTS (X, η). (X, η) is said to be quasi-coincident double discon-
nected space (qD−disconnected space, for short), if (X, η) has a qD−division.
Otherwise, (X, η) is said to be quasi-coincident double connected space (qD−
connected space, for short).

Corollary 3.18. 1. Each indiscrete (stratified) DTS is D-connected (qD−connected).

2. Each discrete DTS is D-disconnected (qD−disconnected).

Proof. 1. It is obvious.

2. Suppose that (X, η) is a discrete DTS, then x1 ∈ DP (X). Implies, X =
x1 ∪ xc

1, x1 = clη(x1) ∩ xc
1 = ∅ and xc

1 = clη(x
c
1) ∩ x1 = ∅. Therefore, (X, η) is

a D-disconnected. Similarly, (X, η) is a qD−disconnected.

Theorem 3.19. Let (X, η) be a DTS. Then, the following are equivalent:

1. (X, η) has a D-division,

2. There exist two disjoint closed D-sets A and B such that A ∪ B = X,

3. There exist two disjoint open D-sets A and B such that A ∪ B = X.

Proof. (1 → 2) Suppose that (X, η) has a D-division A and B, then A ∪ B = X and
clη(A) ∩ B = ∅. Implies, clη(A) ⊆ Bc = X \ B ⊆ A, but A ⊆ clη(A), so that
A = clη(A). Therefore, A is a closed D-set. Similarly, we can see that B is also a
closed D-set. Since A = clη(A), clη(A) ∩ B = ∅, then A ∩ B = ∅. Hence, the result.
(2 → 3) Suppose that (X, η) has a D-division A and B such that A and B are
closed D-sets, then Ac and Bc are open D-sets, A = Bc and B = Ac. Therefore,
Ac ∪ Bc = X and Ac ∩ Bc = ∅. Hence, the result.
(3 → 1) Since X = A ∪ B such that A ∩ B = ∅ and A,B are open D-sets, then
Ac and Bc are closed D-sets, A = Bc and B = Ac. This implies that, A = clη(A).
Therefore, clη(A) ∩ B = ∅. Similarly, we have A ∩ clη(B) = ∅. Hence, (X, η) has a
D-division.

Theorem 3.20. Let (X, η) be a DTS. Then, the following are equivalent:

1. (X, η) has a qD−division,
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2. There exist two non quasi-coincident closed D-sets A and B such that A ∪ B =
X,

3. There exist two non quasi-coincident open D-sets A and B such that A ∪ B =
X.

Proof. (1 → 2) Suppose that (X, η) has a qD−division A and B, then A ∪ B = X
and clη(A) 6 q B, Implies, clη(A) ⊆ Bc = X \ B ⊆ A. but A ⊆ clη(A), so that
A = clη(A). Therefore, A is a closed D-set. Similarly, we can see that B is also a
closed D-set and A 6 q B [by theorem 3.4]. Hence, the result.

(2 → 3) Suppose that (X, η) has a qD−division A and B such that A and B
are closed D-sets, then Ac and Bc are open D-sets, A = Bc and B = Ac. Therefore,
Ac ∪ Bc = X and Ac 6 q Bc. Hence, the result.

(3 → 1) Since X = A ∪ B such that A 6 q B and A,B are open D-sets, then
A ⊆ X \ B This implies that, clη(A) ⊆ X \ B. Therefore, clη(A) 6 q B. Similarly,
we have A 6q clη(B). Hence, (X, η) has a qD−division.

Theorem 3.21. Let (X, η) be a DTS. Then, the following are equivalent:

1. (X, η) is D-connected,

2. X cannot be written as the union of two disjoint non-empty closed D-subsets,

3. X cannot be written as the union of two disjoint non-empty open D-subsets.

Proof. It follows from Theorem 3.19.

Theorem 3.22. Let (X, η) be a DTS. Then, the following are equivalent:

1. (X, η) is qD−connected,

2. X cannot be written as the union of two non quasi-coincident closed D-subsets,

3. X cannot be written as the union of two non quasi-coincident open D-subsets.

Proof. It follows from Theorem 3.20.

Theorem 3.23. Let (X, η) be a DTS and let Y be a non-empty subset of X. Then,
if A and B are D-sets in Y, then A and B are separated D-sets in Y if and only if A
and B are separated D-sets in X.

Proof. clη(A) ∩ B = Y ∩ clη(A) ∩ B, B ⊆ Y
= Y ∩ B ∩ clη(A)
= B ∩ Y ∩ clη(A)
= B ∩ clηY

(A)
= ∅.

Similarly, we have: clη(B) ∩ A = ∅.
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Conversely, clηY
(A) ∩ B = Y ∩ clη(A) ∩ B = Y ∩ (clη(A) ∩ B) = Y ∩ ∅ = ∅.

Similarly, we have: clηY
(B) ∩ A = ∅. Hence, the result.

Theorem 3.24. Let (X, η) be a DTS and let Y be a non-empty subset of X. Then,
if A and B are D-sets in Y, then A and B are q-separated D-sets in Y if A and B
are q-separated D-sets in X.

Proof. Suppose that A and B are qSD−sets in Y, then clη(A) 6q B and clη(B) 6q A.
So that, clη(A) ⊆ Bc. Thus, Y ∩ clη(A) ⊆ Y ∩ Bc. It follows that, clηY

(A) ⊆ Bc.
Therefore, clηY

(A) 6q B.
Similarly, we have: clηY

(B) 6q A. Hence, the result.

Lemma 3.25. Let (Y, ηY ) be a DT−subspace of a DTS (X, η). Then, if (Y, ηY ) is
a D-connected, then for every pair A and B of a separated D-subsets of X such that
Y = A ∪ B, we have either A = ∅ or B = ∅.
Proof. Let A 6= ∅ 6= B and Y = A ∪ B. Since A,B ⊆ Y and separated D-sets in X,
then they are separated D-sets in Y [by Theorem 3.23]. This implies that, (Y, ηY ) is
D-disconnected, which a contradiction. Hence, the result.

Lemma 3.26. Let (Y, ηY ) be a DT−subspace of a DTS (X, η). Then, if (Y, ηY ) is
a qD−connected, then for every pair A and B of a q-separated D-subsets of X such
that Y = A ∪ B, we have either A = ∅ or B = ∅.
Proof. Let A 6= ∅ 6= B and Y = A ∪ B. Since A,B ⊆ Y and q-separated D-sets
in X, then they are q-separated D-sets in Y [by Theorem 3.24] This implies that,
(Y, ηY ) is qD−disconnected, which a contradiction. Hence, the result.

Theorem 3.27. Let (X, η) be a DTS and let Y be a non-empty subset of X such
that (Y, ηY ) is D-connected. Then, if A and B are separated D-subsets of X such
that Y ⊆ A ∪ B, then Y ⊆ A or Y ⊆ B.

Proof. Since Y ⊆ A ∪ B, then Y = Y ∩ (A ∪ B) = (Y ∩ A) ∪ (Y ∩ B). By
Theorem 3.23, Y ∩ A and Y ∩ B are separated D-sets of Y. Since (Y, ηY ) is D-
connected, then Y ∩ A = ∅ or Y ∩ B = ∅ [by Lemma 3.25]. Therefore, Y ⊆ A or
Y ⊆ B.

Theorem 3.28. Let (X, η) be a DTS and let Y be a non-empty subset of X such
that (Y, ηY ) is qD−connected. Then, if A and B are q-separated D-subsets of X
such that Y ⊆ A ∪ B, then Y ⊆ A or Y ⊆ B.

Proof. Since Y ⊆ A ∪ B, then Y = Y ∩ (A ∪ B) = (Y ∩ A) ∪ (Y ∩ B). By
Theorem 3.24 and Theorem 2.4, Y ∩ A and Y ∩ B are q-separated D-sets of Y.
Since (Y, ηY ) is qD−connected, then Y ∩ A = ∅ or Y ∩ B = ∅ [by Lemma 3.26].
Therefore, Y ⊆ A or Y ⊆ B.

Theorem 3.29. Let {(Xα, ηXα) : α ∈ J} be a family of non-empty D-connected
subspaces of DTS (X, η). Then, if

⋂
α∈J Xα 6= ∅, then (

⋃
α∈J Xα, ηS

α∈J Xα) is D-
connected subspace of a (X, η).
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Proof. Let Y =
⋃

α∈J Xα. Choose a D-point xt∈Y . Let A and B be D-division of
(
⋃

α∈J Xα, ηS
α∈J Xα). Then, xt∈A or xt∈B without loss of generality, we may assume

that xt∈A. For each α ∈ J, since (Xα, ηXα) is D-connected. It follows from Theorem
3.27 that, Xα ⊆ A or Xα ⊆ B. Therefore, we have Y ⊆ A, since xt∈A, and then
B = ∅, which a contradiction. Hence, (

⋃
α∈J Xα, ηS

α∈J Xα) is a D-connected subspace
of the DTS (X, η).

Theorem 3.30. Let {(Xα, ηXα) : α ∈ J} be a family of non-empty qD−connected
subspaces of DTS (X, η). Then, if

⋂
α∈J Xα 6= ∅, then (

⋃
α∈J Xα, ηS

α∈J Xα) is qD-
connected subspace of a (X, η).

Proof. Straightforward.

Theorem 3.31. Let {(Xα, ηXα) : α ∈ J} be a family of non-empty D-connected
subspaces of DTS (X, η). Then, if Xα

⋂
Xβ 6= ∅ for arbitrary α, β ∈ J, then

(
⋃

α∈J Xα, ηS
α∈J Xα) is D-connected subspace of a (X, η).

Proof. Fix an αo ∈ J. For arbitrary β ∈ J, put Aβ = Xαo

⋃
Xβ. By Theorem 3.29,

each (Aβ, ηAβ
) is D-connected. Then, {(Aβ, ηAβ

) : β ∈ J} is a family non-empty
D-connected subspaces of DTS (X, η) and

⋂
β∈J Aβ = Xαo 6= ∅. Obvious, we have⋃

α∈J Xα =
⋃

β∈J Aβ. It follows from Theorem 3.29 that, (
⋃

α∈J Xα, ηS
α∈J Xα) is D-

connected subspace of the DTS (X, η).

Theorem 3.32. Let {(Xα, ηXα) : α ∈ J} be a family of non-empty qD−connected
subspaces of DTS (X, η). Then, if Xα

⋂
Xβ 6= ∅ for arbitrary α, β ∈ J, then

(
⋃

α∈J Xα, ηS
α∈J Xα) is qD−connected subspace of a (X, η).

Proof. Straightforward.

Theorem 3.33. Let (X, η) be a DTS and let Y be a non-empty subset of X such
that (Y, ηY ) is D-connected. Then, if Y ⊆ A ⊆ clη(Y ), then (A, ηA) is a D-connected
subspace of (X, η). In particular, (clη(Y ), ηclη(Y )) is a D-connected subspace of (X, η).

Proof. Suppose that (A, ηA) is a D-disconnected subspace of (X, η), then A has a
D-separation F and G Implies, Y ⊆ F or Y ⊆ G [by Theorem 3.27]. Without loss of
generality, we may assume that Y ⊆ F , so clη(Y ) ⊆ clη(F ), clη(F ) ∩ G = ∅. Thus,
clη(Y ) ∩ G = ∅. Otherwise, G ⊆ A ⊆ clη(Y ). Therefore, (clη(Y ))c ∩ G = ∅, which
a contradiction with clη(Y ) ∩ G = ∅. Also, Y ⊆ clη(Y ) ⊆ clη(Y ). This complete the
proof.

Theorem 3.34. Let (X, η) be a DTS and let Y be a non-empty subset of X
such that (Y, ηY ) is qD−connected. Then, if Y ⊆ A ⊆ clη(Y ), then (A, ηA) is a
qD−connected subspace of (X, η). In particular, (clη(Y ), ηclη(Y )) is a qD−connected
subspace of (X, η).

Proof. Suppose that (A, ηA) is a qD−disconnected subspace of (X, η), then A has a
qD−separation F and G. Implies, Y ⊆ F or Y ⊆ G [by Theorem 3.28]. Without
loss of generality, we may assume that Y ⊆ F , so clη(Y ) ⊆ clη(F ), clη(F ) 6 q G.
Thus clη(Y ) 6 q G. Otherwise, G ⊆ A ⊆ clη(Y ), Therefore, (clη(Y ))c 6 q G, which a
contradiction with clη(Y ) 6q G. Also, Y ⊆ clη(Y ) ⊆ clη(Y ). This complete the proof.
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Theorem 3.35. The image of D-connected under a D-continuous map are D-
connected.

Proof. Let (X, η) and (Y, τ) be two DTS, where (X, η) is a D-connected and let f
be a D-continuous from X onto Y.
Suppose that (Y, τ) is a D-disconnected space, then ∃ A,B ∈ τ such that A ∩ B = ∅
and A ∪ B = Y . Implies A ⊆ Bc, thus f−1(A) ⊆ f−1(Bc) = (f−1(B))c. So that,
f−1(A) ∩ f−1(B) = ∅ and f−1(A ∪ B) = f−1(Y ). It follows that f−1(A) ∪ f−1(B) =
X, i.e., (X, η) is a D-disconnected, which a contradiction. Hence, (Y, τ) is a D-
connected.

Theorem 3.36. The image of qD−connected under a D-continuous map are qD-
connected.

Proof. Let (X, η) and (Y, τ) be two DTS, where (X, η) is a qD−connected and let
f be a D-continuous from X onto Y.

Suppose that (Y, τ) is a qD−disconnected space, then ∃ A,B ∈ τ such that A 6q B
and A ∪ B = Y . Implies, A ⊆ Bc, thus f−1(A) ⊆ f−1(Bc) = (f−1(B))c. So that,
f−1(A) 6 q f−1(B) and f−1(A ∪ B) = f−1(Y ). It follows that f−1(A) ∪ f−1(B) =
X, i.e., (X, η) is a qD−disconnected, which a contradiction. Hence, (Y, τ) is a
qD−connected.

Theorem 3.37. Let (X, η) be a DTS. Then, if (X, η) is a D-disconnected space,
then (X, πi), (i = 1, 2) are disconnected spaces.

Proof. Let (X, η) be a D-disconnected. Then, ∃ A,B ∈ η such that (A1, A2) =
A ∩ B = (B1, B2) = ∅ and A ∪ B = X. Thus, A1∩B1 = ∅, A2∩B2 = ∅, A1∪B1 = X
and A2 ∪ B2 = X. Therefore, Ai ∩ Bi = ∅, Ai ∪ Bi = X and Ai, Bi ∈ πi, (i = 1, 2).
Hence, (X, π1) and (X, π2) are disconnected spaces.

The following Example shows that the converse of Theorem 3.37 is not true in
general.

Example 3.38. Let X = {a, b, c} and π1 = {∅, X, {a}, {b, c}}, π2 = {∅, X, {b}, {a, c}}.
Then, (X, π1) and (X, π2) are topological spaces and disconnected spaces. Since
η = (π1, π2) = {∅, X, (∅, {b}), (∅, X), (∅, {a, c}), ({a}, {a, c}), ({b, c}, X), ({a}, X)},
then (X, η) is not D-disconnected.

Theorem 3.39. Let (X, η) be a DTS. Then, if (X, η) is a qD−disconnected space,
then (X, π1) is disconnected space.

Proof. Let (X, η) be a qD−disconnected space. Then, ∃ A,B ∈ η such that (A1, A2) =
A 6 q B = (B1, B2) and A ∪ B = X. Thus, A1 ∩ B2 = ∅ and A1 ∪ B1 = X,B1 ⊆ B2.
So that A1∩B1 = ∅ and A1∪B1 = X, A1, B1 ∈ π1. Hence, (X, π1) is a disconnected.

The following Example shows that the converse of Theorem 3.39 is not true in
general.
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Example 3.40. In Example 3.38, we see that: (X, π1) is topological space and
disconnected. But, (X, η) is not qD−disconnected.

Theorem 3.41. Let (X, η), (X, η∗) be two DTS. Then, if (X, η) is D-connected and
η∗ ≤ η, then (X, η∗) is also D-connected.

Proof. Suppose that (X, η∗) is a D-disconnected and η∗ ≤ η, then ∃ A, B ∈ η∗ such
that A ∩ B = ∅ and A ∪ B = X. Implies, A,B ∈ η, A ∩ B = ∅ and A ∪ B = X.
Therefore, (X, η) is a D-disconnected, which a contradiction. Hence, (X, η∗) is D-
connected.

Theorem 3.42. Let (X, η), (X, η∗) be two DTS. Then, if (X, η) is qD−connected
and η∗ ≤ η, then (X, η∗) is also qD−connected.

Proof. Suppose that (X, η∗) is a qD−disconnected and η∗ ≤ η, then ∃ A,B ∈ η∗

such that A 6 q B and A ∪ B = X. Implies, A,B ∈ η,A 6 q B and A ∪ B = X.
Therefore, (X, η) is a qD−disconnected, which a contradiction. Hence, (X, η∗) is
qD−connected.

Theorem 3.43. Every qD−connected space is D-connected.

Proof. Suppose that (X, η) is a D-disconnected space, then ∃ A,B ∈ D(X) such
that clη(A) ∩ B = ∅, A ∩ clη(B) = ∅ and A ∪ B = X. It follows from Propo-
sition 3.6 that clη(A) 6 q B, A 6 q clη(B) and A ∪ B = X. Therefore, (X, η) is a
qD−disconnected space, which a contradiction. Hence, (X, η) is D-connected space.

Definition 3.44. The DTS (X, η) is said to be:

1. DC1−disconnected, if (X, η) has a proper open and closed D-set in X.

2. DC1−connected, if (X, η) is not DC1−disconnected.

Corollary 3.45. Let (X, η) be a DTS or stratified DTS. Then, if the only open and
closed D-sets are ∅, X in (X, η) and ∅, X and (∅, X) in stratified DTS, then (X, η)
is qD−connected.

Proposition 3.46. Every DC1−connected space is qD−connected.

Proof. Suppose that (X, η) is a qD−disconnected space, then ∃ A 6= ∅, B 6= ∅ ∈
η such that A 6 q B and A ∪ B = X. Implies A ⊆ Bc and Bc ⊆ A, so that
A = Bc. Therefore, A is a proper open and closed D-set in X. Thus, (X, η) be a
DC1−disconnected, which a contradiction. Hence, (X, η) is DC1−connected.

The converse of Proposition3.46 is not true in general.

Example 3.47. Let X = {a, b, c} and η = {∅, X, (∅, {b}), ({a}, {a}), ({a}, {a, b}),
({c}, {c}), ({c}, {b, c}), ({a, c}, {a, c}), ({a, c}, X)}, ηc = {∅, X, ({a, c}, X), ({b, c}, {b, c}),
({c}, {b, c}), ({a, b}, {a, b}), ({a}, {a, b}), ({b}, {b}), (∅, {b})}. Then, (X, η) is a DTS
and qD−connected space. But, (X, η) is not DC1−connected because, ∃ (∅, {b}), ({a},
{a, b}), ({c}, {b, c}) and ({a, c}, X) are open and closed D-sets.
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Example 3.48. Let X = {a, b, c} and η = {∅, X, (∅, {a}), (∅, {b}), (∅, {c}), (∅, {a, b}),
(∅, {a, c}), (∅, {b, c}), (∅, X), ({a}, {a}), ({a}, {a, b}), ({a}, {a, c}), ({a}, X), ({b}, {b}),
({b}, {a, b}), ({b}, {b, c}), ({b}, X), ({a, b}, {a, b}), ({a, b}, X)},

ηc = {∅, X, ({b, c}, X), ({a, c}, X), ({a, b}, X), ({c}, X), ({b}, X), ({a}, X), (∅, X),
({b, c}, {b, c}), ({c}, {b, c}), ({b}, {b, c}), (∅, {b, c}), ({a, c}, {a, c}), ({c}, {a, c}),
({a}, {a, c}), (∅, {a, c}), ({c}, {c}), (∅, {c})}.

Then, (X, η) is stratified DTS and qD−connected space. But, (X, η) is not
DC1−connected because, ∃ (∅, {c}), ({a}, X), ({a}, {a, c}), (∅, {a, c}), (∅, {b, c}),
({b}, {b, c}), ({b}, X), and ({a, b}, X) are open and closed D-sets.

Example 3.49. From Example 3.48 (X, η) is stratified DTS and qD−connected,
but ∃ (∅, {c}),
({a}, X), ({a}, {a, c}), (∅, {a, c}), (∅, {b, c}), ({b}, {b, c}), ({b}, X), and ({a, b}, X), are
open and closed D-sets.

Corollary 3.50. For a DTS (X, η) we have the following implication:
DC1−connected → qD−connected → D-connected.

Definition 3.51. The DTS (X, η) is said to be:

1. Strongly double connected (strongly SD−connected, for short), if there exist
no non-empty closed D-sets A,B ∈ X such that A ∩ B = ∅.

2. Strongly SD−disconnected, if (X, η) is not strongly SD−connected.

Proposition 3.52. (X, η) is strongly SD−connected if and only if there exist no
open D-sets A,B in X such that A 6= X 6= B and A ∪ B = X.

Proof. Let A,B be open D-sets in X such that A 6= X 6= B. If we take C = Ac and
D = Bc, then C and D become closed D-sets in X and C 6= ∅ 6= D, C ∩ D = ∅,
which a contradiction.
Conversely, it is obvious.

Proposition 3.53. Strongly SD−connectedness does not imply DC1−connectedness,
and DC1− connectedness does not imply StD−connectedness.

Example 3.54. In Example3.7, we see that: (X, η) is strongly SD−connected, but
it is not DC1− connected, for ∃ (∅, {b}) is both open and closed D-set.

Example 3.55. In Example3.3, we see that: (X, η) is DC1−connected, but it is not
strongly SD−connected, for

∃ ({a}, {a, b}), ({b, c, d}, X) ∈ η and ({a}, {a, b}) ∪ ({b, c, d}, X) = X.

Definition 3.56. Let (X, η) be a DTS and Y ⊆ X with xt∈DP (Y ). The union of
all D-connected subsets of Y containing the D-point xt is called double component
(D-component, for short) of Y with respect to xt, denoted by C(Y , xt), i.e.,
C(Y , xt) = ∪{A ⊆ Y : xt∈A and A is a D − connected set}.
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Remark 3.57. The D-component C(Y , xt) is the largest D-connected subset of Y
containing xt.

Definition 3.58. Let (X, η) be a DTS and Y ⊆ X with xt∈DP (Y ), x 1
2

q clη(x 1
2
).

Then, the union of all qD−connected subsets of Y containing the D-point xt is called
quasi-coincident double component (qD−component, for short) of Y with respect to
xt, denoted by Cq(Y , xt), i.e., Cq(Y , xt) = ∪{A ⊆ Y : xt∈A and A is a qD −
connected set}.
Remark 3.59. The qD−component Cq(Y , xt) is the largest qD−connected subset
of Y containing xt.

Theorem 3.60. Every D-component of a DTS is a closed D-set.

Proof. Let (X, η) be a DTS and let C(Y , xt) be a D-component of the DTS (X, η)
with respect to an arbitrary D-point xt ∈ DP (X). Then, C(Y , xt) is a D-connected
subset of X [Theorem 3.29]. Also, by Theorem 3.33 clη(C(Y , xt)) is D-connected sub-
set of X containing xt, then clη(C(Y , xt)) ⊆ C(Y , xt). But, C(Y , xt) ⊆ clη(C(Y , xt)).
Hence, C(Y , xt) = clη(C(Y , xt)), which shows that the D-component C(Y , xt) is a
closed D-set.

Theorem 3.61. Every qD−component of a DTS is a closed D-set.

Proof. Let (X, η) be a DTS and let Cq(Y , xt) be a qD−component of the DTS (X, η)
with respect to an arbitrary D-point xt ∈ DP (X). Then, Cq(Y , xt) is a qD−connected
subset of X [Theorem 3.30]. Also, by Theorem 3.34 clη(Cq(Y , xt)) is qD−connected
subset of X containing xt, then clη(Cq(Y , xt)) ⊆ Cq(Y , xt). But, Cq(Y , xt) ⊆
clη(Cq(Y , xt)). Hence, Cq(Y , xt) = clη(Cq(Y , xt)), which shows that the qD-component
Cq(Y , xt) is a closed D-set.

Theorem 3.62. Let (X, η) be a DTS. Then, each D-point in X is contained in
exactly one D-component of X.

Proof. Let xt∈X and consider the collection:
C = {Y ⊆ X : xt∈Y and Y is a D − connected set}.
Then, we have:

1. C 6= ∅, for the D-point xt is a D-connected subset of X. Then, xt ∈ C.

2.
⋂{Y ⊆ X : xt ∈ Y and Y is a D−connected set} 6= ∅. Since xt ∈ Y , ∀ Y ∈ C.

3.
⋃{Y ⊆ X : xt ∈ Y and Y is a D − connected set}, having non null double
intersection, is D-connected subset of X containing xt.

4.
⋃{Y ⊆ X : xt ∈ Y and Y is a D − connected set} is the largest D-connected
subset of X containing xt, which is the D-component C(X, xt) of X with respect
to xt and containing xt from Definition 3.56.
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Now, suppose that C∗(X, xt) be another D-component containing xt, then C∗(X, xt)
is D-connected subset of X containing xt. Since C(X, xt) is D-component containing
xt, then C∗(X, xt) ⊆ C(X, xt). Again, since C∗(X, xt) is D-component containing xt,
then C(X, xt) ⊆ C∗(X, xt). Therefore, C(X, xt) = C∗(X, xt). Hence, xt is contained
in exactly one D-component of X.

Theorem 3.63. Let (X, η) be a DTS. Then, each D-point in X, x 1
2

q clη(x 1
2
), is

contained in exactly one qD−component of X.

Proof. Let xt∈X and consider the collection:
Cq = {Y ⊆ X : xt∈Y and Y is a qD − connected set}.
Then, we have:

1. Cq 6= ∅, for the D-point xt is a qD−connected subset of X, x 1
2

q clη(x 1
2
). Then,

xt ∈ Cq.

2.
⋂{Y ⊆ X : xt ∈ Y and Y is a qD−connected set} 6= ∅. Since xt ∈ Y , ∀ Y ∈ C.

3.
⋃{Y ⊆ X : xt ∈ Y and Y is a qD − connected set}, having non null double
intersection, is qD−connected subset of X containing xt.

4.
⋃{Y ⊆ X : xt ∈ Y and Y is a qD−connected set} is the largest qD−connected
subset of X containing xt, which is the qD−component Cq(X, xt) of X with
respect to xt and containing xt from Definition 3.58.

Now, suppose that Cq∗(X, xt) be another qD−component containing xt, thus Cq∗(X, xt)
is qD−connected subset of X containing xt. Since Cq(X, xt) is qD−component con-
taining xt, then Cq∗(X, xt) ⊆ Cq(X, xt). Again, since Cq∗(X, xt) is qD−component
containing xt, then Cq(X, xt) ⊆ Cq∗(X, xt). Therefore, Cq(X, xt) = Cq∗(X, xt).
Hence, xt is contained in exactly one qD−component of X.

Theorem 3.64. Let (X, η) be a DTS. Then, any two D-components with respect
to two disjoint D-points in X are either disjoint or identical.

Proof. Let C(X, xt) and C(X, y
r
) be two D-components of the DTS (X, η) with re-

spect to the D-points xt, yr
in X. and xt∩y

r
= ∅. Then, if C(X, xt) ∩ C(X, y

r
) = ∅,

then we are done. So let C(X, xt)∩ C(X, y
r
) 6= ∅. We may choose zs∈C(X, xt)∩ C(X, y

r
).

Clearly, zs∈ C(X, xt) and zs∈ C(X, y
r
). Thus, C(X, xt) = C(X, y

r
) [from Theorem

3.62]. Therefore, C(X, xt) and C(X, y
r
) are identical. This completes the proof.

Theorem 3.65. Let (X, η) be a DTS. Then, any two qD−components with respect
to two disjoint D-points in X are either not quasi-coincident or identical.

Proof. Let Cq(X, xt) and Cq(X, y
r
) be two qD−components of the DTS (X, η) with

respect to the D-points xt, yr
in X, x 1

2
q clη(x 1

2
), y 1

2

q clη(y 1
2

) and xt∩y
r

= ∅. Then,

if
Cq(X, xt) 6 q Cq(X, y

r
), then we are done. So let Cq(X, xt) q Cq(X, y

r
). Then,

Cq(X, xt)∩
Cq(X, y

r
) 6= ∅. We may choose zs∈Cq(X, xt)∩ Cq(X, y

r
). Clearly, zs∈ Cq(X, xt)

and zs∈ Cq(X, y
r
), thus Cq(X, xt) = Cq(X, y

r
) [from Theorem 3.63]. Therefore,

Cq(X, xt) and Cq(X, y
r
) are identical. This completes the proof.
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Definition 3.66. A DTS (X, η) is said to be a quasi-coincident hyperconnected
(q-hyperconnected, for short) if every pair of non null proper open D-sets A and B
are quasi-coincident, i. e.,
(X, η) is said to be q-hyperconnected if ∀ A,B ∈ η, we have A q B.

Theorem 3.67. Every q-hyperconnected DTS is qD−connected.

Proof. Suppose that (X, η) is is qD−disconnected, then there exist two open D-sets
A and B such that A 6 q B [Theorem 3.20]. Hence, (X, η) is not q-hyperconnected
DTS, which a contradiction. Thus, (X, η) is qD−connected.

Remark 3.68. The converse of Theorem 3.67 is not true in general, as shown in the
following Examples.

Example 3.69. In Example3.7, we see that: The DTS (X, η) is a qD−connected,
but it is not a q-hyperconnected, for ({a}, {a}) 6q (∅, {b}).
Example 3.70. Let X = {a, b} and η = {∅, X, (∅, {a}), (∅, {b}), (∅, X)}. Then, η
defines a stratified double topology on X. Hence, the DTS (X, η) is qD−connected,
but it is not q-hyperconnected, for (∅, {a}) 6q (∅, {b}).
Theorem 3.71. Let (X, η) be a DTS. Then, the following are equivalent:

1. (X, η) is q-hyperconnected,

2. A is D-dense, ∀ A ∈ η,

3. A is D-dense or D-nowhere dense, ∀ A ∈ D(X).

Proof. (1) → (2) Suppose that ∃ B ∈ η such that B is not D-dense in X, thus
clη(B) 6= X. Hence, X \ clη(B) and B are not quasi-coincident [by Proposition 3.3],
which a contradiction with q-hyperconnected of (X, η).
(2) → (3) Suppose that B is not D-nowhere dense, then intη(clη(B)) 6= ∅. So by (2),
clη(intη(clη(B))) = X. Since clη(intη(clη(B))) ⊆ clη(B), then clη(B) = X. Hence, B
is D-dense.
(3) → (1) Suppose that A 6 q B, for some non-empty open D-subsets A,B of X,
then clη(A) 6 q B [by Theorem 2.7], and A is not D-dense. Since A ∈ η, then
∅ 6= A ⊆ intη(clη(A)), which a contradiction with (3). Hence, the result.

Remark 3.72. If the DTS (X, η) is a stratified, then the Theorems 3.19, 3.20, ....,
3.71 and Propositions 3.2, ...., 3.53 are satisfied.
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