http://www.newtheory.org

ISSN: 2149-1402

Received: 16.10.2017 Published: 28.10.2017 Year:2017, Number: 17, Pages: 38-44 Original Article

ON NANO \wedge_g -CLOSED SETS

Ilangovan Rajasekaran^{1,*} <sekarmelakkal@gmail.com> Ochanan Nethaji² <jionetha@yahoo.com>

¹Department of Mathematics, Tirunelveli Dakshina Mara Nadar Sangam College, T. Kallikulam-627 113, Tirunelveli District, Tamil Nadu, India ²2/71, West Street, Sangampatti - 625 514, Madurai District, Tamil Nadu, India

Abstaract – In this paper, we introduce nano \wedge_g -closed sets in nano topological spaces. Some properties of nano \wedge_g -closed sets and nano \wedge_g -open sets are weaker forms of nano closed sets and nano open sets.

Keywords - Nano \wedge -set, nano λ -closed set, nano \wedge_g -closed set.

1 Introduction

In 2017, Rajasekaran et.al [5] introduced the notion of nano \wedge -sets in nano topological spaces and nano \wedge -set is a set H which is equal to its nano kernel and we introduced the notion of nano λ -closed set and nano λ -open sets. In this paper to introduce new classes of sets called nano \wedge_g -closed sets and nano \wedge_g -open sets in nano topological spaces. We also some properties of such sets and nano \wedge_g -closed sets and nano \wedge_g -open sets are weaker forms of nano closed sets and nano open sets.

2 Preliminaries

Throughout this paper $(U, \tau_R(X))$ (or X) represent nano topological spaces on which no separation axioms are assumed unless otherwise mentioned. For a subset H of a space $(U, \tau_R(X))$, Ncl(H) and Nint(H) denote the nano closure of H and the nano interior of H respectively. We recall the following definitions which are useful in the sequel.

Definition 2.1. [4] Let U be a non-empty finite set of objects called the universe and R be an equivalence relation on U named as the indiscernibility relation. Elements

^{*} Corresponding Author.

belonging to the same equivalence class are said to be indiscernible with one another. The pair (U, R) is said to be the approximation space. Let $X \subseteq U$.

- 1. The lower approximation of X with respect to R is the set of all objects, which can be for certain classified as X with respect to R and it is denoted by $L_R(X)$. That is, $L_R(X) = \bigcup_{x \in U} \{R(x) : R(x) \subseteq X\}$, where R(x) denotes the equivalence class determined by x.
- 2. The upper approximation of X with respect to R is the set of all objects, which can be possibly classified as X with respect to R and it is denoted by $U_R(X)$. That is, $U_R(X) = \bigcup_{x \in U} \{R(x) : R(x) \cap X \neq \phi\}.$
- 3. The boundary region of X with respect to R is the set of all objects, which can be classified neither as X nor as not - X with respect to R and it is denoted by $B_R(X)$. That is, $B_R(X) = U_R(X) - L_R(X)$.

Proposition 2.2. [2] If (U, R) is an approximation space and $X, Y \subseteq U$; then

- 1. $L_R(X) \subseteq X \subseteq U_R(X);$
- 2. $L_R(\phi) = U_R(\phi) = \phi$ and $L_R(U) = U_R(U) = U;$
- 3. $U_R(X \cup Y) = U_R(X) \cup U_R(Y);$
- 4. $U_R(X \cap Y) \subseteq U_R(X) \cap U_R(Y);$
- 5. $L_R(X \cup Y) \supseteq L_R(X) \cup L_R(Y);$
- 6. $L_R(X \cap Y) \subseteq L_R(X) \cap L_R(Y);$
- 7. $L_R(X) \subseteq L_R(Y)$ and $U_R(X) \subseteq U_R(Y)$ whenever $X \subseteq Y$;
- 8. $U_R(X^c) = [L_R(X)]^c$ and $L_R(X^c) = [U_R(X)]^c$;
- 9. $U_R U_R(X) = L_R U_R(X) = U_R(X);$
- 10. $L_R L_R(X) = U_R L_R(X) = L_R(X).$

Definition 2.3. [2] Let U be the universe, R be an equivalence relation on U and $\tau_R(X) = \{U, \phi, L_R(X), U_R(X), B_R(X)\}$ where $X \subseteq U$. Then by the Property 2.2, R(X) satisfies the following axioms:

- 1. U and $\phi \in \tau_R(X)$,
- 2. The union of the elements of any sub collection of $\tau_R(X)$ is in $\tau_R(X)$,
- 3. The intersection of the elements of any finite subcollection of $\tau_R(X)$ is in $\tau_R(X)$.

That is, $\tau_R(X)$ is a topology on U called the nano topology on U with respect to X. We call $(U, \tau_R(X))$ as the nano topological space. The elements of $\tau_R(X)$ are called as nano open sets and $[\tau_R(X)]^c$ is called as the dual nano topology of $[\tau_R(X)]$. **Remark 2.4.** [2] If $[\tau_R(X)]$ is the nano topology on U with respect to X, then the set $B = \{U, \phi, L_R(X), B_R(X)\}$ is the basis for $\tau_R(X)$.

Definition 2.5. [2] If $(U, \tau_R(X))$ is a nano topological space with respect to X and if $H \subseteq U$, then the nano interior of H is defined as the union of all nano open subsets of H and it is denoted by Nint(H).

That is, Nint(H) is the largest nano open subset of H. The nano closure of H is defined as the intersection of all nano closed sets containing H and it is denoted by Ncl(H).

That is, Ncl(H) is the smallest nano closed set containing H.

Definition 2.6. [3] Let $(U, \tau_R(X))$ be a nano topological spaces and $H \subseteq U$. The nano $Ker(H) = \bigcap \{U : H \subseteq U, U \in \tau_R(X)\}$ is called the nano kernal of H and is denoted by $\mathcal{N}Ker(H)$.

Definition 2.7. [5] A subset H of a space $(U, \tau_R(X))$ is called

- 1. a nano \wedge -set if H = NKer(H).
- 2. nano λ -closed if $H = L \cap F$ where L is a nano \wedge -set and F is nano closed.

Definition 2.8. A subset H of a nano topological space $(U, \tau_R(X))$ is called nano g-closed [1] if $Ncl(H) \subseteq G$, whenever $H \subseteq G$ and G is nano open.

Remark 2.9. [5] In a nano topological space, the concepts of nano g-closed sets and nano λ -closed sets are independent.

3 Nano \wedge_q -closed Sets

Definition 3.1. A subset H of a space $(U, \tau_R(X))$ is called nano λ -open if $H^c = U - H$ is nano λ -closed.

Example 3.2. Let $U = \{a, b, c, d\}$ with $U/R = \{\{a\}, \{c\}, \{b, d\}\}$ and $X = \{a, b\}$. Then the nano topology $\tau_R(X) = \{\phi, \{a\}, \{b, d\}, \{a, b, d\}, U\}$. Then $\{a\}$ is nano λ -open.

Definition 3.3. A subset H of a space $(U, \tau_R(X))$ is called a nano \wedge_g -closed set if $Ncl(H) \subseteq G$, whenever $H \subseteq G$ and G is nano λ -open.

The complement of nano \wedge_g -open if $H^c = U - H$ is nano \wedge_g -closed.

Example 3.4. In Example 3.2, then $\{a, c\}$ is nano \wedge_q -closed set.

Lemma 3.5. In a space $(U, \tau_R(X))$, every nano open set is nano \wedge_g -open but not conversely

Remark 3.6. The converse of statements in Lemma 3.5 are not necessarily true as seen from the following Example.

Example 3.7. In Example 3.2, then $\{b\}$ is nano \wedge_a -open but not nano open.

Remark 3.8. The following example shows that the concepts of nano \wedge_g -closed sets and nano λ -closed are independent for each other.

Example 3.9. In Example 3.2,

- 1. then $\{b, c\}$ is nano \wedge_q -closed but not nano λ -closed.
- 2. then $\{a\}$ is nano λ -closed but not nano \wedge_q -closed.

Theorem 3.10. In a space $(U, \tau_R(X))$, the union of two nano \wedge_g -closed sets is nano \wedge_g -closed.

Proof. Let $H \cup Q \subseteq G$, then $H \subseteq G$ and $Q \subseteq G$ where G is nano λ -open. As H and Q are \wedge_g -closed, $Ncl(H) \subseteq G$ and $Ncl(Q) \subseteq G$. Hence $Ncl(H \cup Q) = Ncl(H) \cup Ncl(Q) \subseteq G$.

Example 3.11. In Example 3.2, then $H = \{a, c\}$ and $Q = \{b, c\}$ is nano \wedge_g -closed. Clearly $H \cup Q = \{a, b, c\}$ is nano \wedge_g -closed.

Theorem 3.12. In a space $(U, \tau_R(X))$, the intersection of two nano \wedge_g -open sets is nano \wedge_g -open.

Proof. Obvious by Theorem 3.10.

Example 3.13. Let $U = \{a, b, c, d\}$ with $U/R = \{\{a\}, \{b\}, \{c, d\}\}$ and $X = \{b, d\}$. Then the nano topology $\tau_R(X) = \{\phi, \{b\}, \{c, d\}, \{b, c, d\}, U\}$ Then $H = \{b, c\}$ and $Q = \{b, d\}$ is nano \wedge_g -open. Clearly $H \cap Q = \{b\}$ is nano \wedge_g -open.

Remark 3.14. In a space $(U, \tau_R(X))$, the intersection of two nano \wedge_g -closed sets but not nano \wedge_g -closed.

Example 3.15. Let $U = \{1, 2, 3\}$ with $U/R = \{\{1\}, \{2, 3\}\}$ and $X = \{1\}$. Then the nano topology $\tau_R(X) = \{\phi, \{1\}, U\}$, Then $H = \{1, 21\}$ and $Q = \{1, 3\}$ is nano \wedge_q -closed. Clearly $H \cap Q = \{1\}$ is but not nano \wedge_q -closed.

Theorem 3.16. In a space $(U, \tau_R(X))$ is nano \wedge_g -closed, then Ncl(H) - H contains no nonempty nano closed.

Proof. Let P be a nano closed subset contains in Ncl(H) - H. Clearly $H \subseteq P^c$ where H is nano \wedge_g -closed and P^c is an nano open set of U. Thus $Ncl(H) \subseteq P^c$ (or) $P \subseteq (Ncl(H))^c$. Then $P \subseteq (Ncl(H))^c \cap (Ncl(H) - H) \subseteq (Ncl(H))^c \cap Ncl(H) = \phi$. This is show that $P = \phi$.

Theorem 3.17. A subset H of a space $(U, \tau_R(X))$ is nano \wedge_g -closed $\iff Ncl(H) - H$ contains no nonempty nano λ -closed.

Proof. Necessity. Assume that H is nano \wedge_g -closed. Let K be a nano λ -closed subset of Ncl(H) - H. Then $H \subseteq K^c$. Since H is nano \wedge_g -closed, we have $Ncl(H) \subseteq K^c$. Consequently $K \subseteq (Ncl(H))^c$. Hence $K \subseteq Ncl(H) \cap (Ncl(H))^c = \phi$. Therefore Kis empty.

Sufficiency. Assume that Ncl(H) - H contains no nonempty nano λ -closed sets. Let $H \subseteq C$ and C be a nano λ -open. If $Ncl(H) \notin C$, then $Ncl(H) \cap C^c$ is a nonempty nano λ -closed subset of Ncl(H) - H. Therefore H is nano \wedge_q -closed. **Theorem 3.18.** In a space $(U, \tau_R(X))$, if H is a nano \wedge_g -closed and $H \subseteq Q \subseteq Ncl(H)$, then Q is a nano \wedge_q -closed.

Proof. Let $H \subseteq Q$ and $Ncl(Q) \subseteq Ncl(H)$. Hence $(Ncl(Q) - Q) \subseteq (Ncl(H) - H)$. But by Theorem 3.17, Ncl(H) - H contains no nonempty nano λ -closed subset of U and hence neither does Ncl(B) - B. By Theorem 3.17, Q is nano \wedge_q -closed.

Theorem 3.19. In a space $(U, \tau_R(X))$, if H is nano λ -open and nano \wedge_g -closed, then hence H is nano closed.

Proof. Since H is nano λ -open and nano λ -closed, $Ncl(H) \subseteq H$ and hence H is nano closed.

Theorem 3.20. For each $x \in U$, either $\{x\}$ is nano λ -closed (or) $\{x\}^c$ is nano \wedge_q -closed.

Proof. Assume $\{x\}$ is not nano λ -closed. Then $\{x\}^c$ is not nano λ -open and the only nano λ -open set containing $\{x\}^c$ is the space of U itself. Therefore $Ncl(\{x\}^c) \subseteq U$ and so $\{x\}^c$ is nano \wedge_q -closed.

Theorem 3.21. In a space $U, \tau_R(X)$, H is nano \wedge_g -open $\iff P \subseteq Nint(H)$ whenever P is nano λ -closed and $P \subseteq H$.

Proof. Assume that $P \subseteq Nint(H)$ whenever P is nano λ -closed and $P \subseteq H$. Let $H^c \subseteq C$, where C is nano λ -open. Hence $C^c \subseteq H$. By assumption $C^c \subseteq Nint(H)$ which implies that $(Nint(H))^c \subseteq C$, so $Ncl(H^c) \subseteq C$. Hence H^c is nano \wedge_g -closed that is, H is nano \wedge_g -open.

Conversely, let H be nano \wedge_g -open. Then H^c is nano \wedge_g -closed. Also let P be a nano λ -closed set contained in H. Then P^c is nano λ -open. Therefore whenever $H^c \subseteq P^c$, $Ncl(H^c) \subseteq P^c$. This implies that $P \subseteq (Ncl(H^c))^c = Nint(H)$. Thus $H \subseteq Nint(H)$.

Theorem 3.22. In a space $(U, \tau_R(X))$, H is \wedge_g -open $\iff C = U$ whenever C is nano λ -open and $Nint(H) \cup H^c \subseteq C$.

Proof. Let H be a nano \wedge_g -open, C be a nano λ -open and $Nint(H) \cup H^c \subseteq C$. Then $C^c \subseteq (Nint(H))^c \cap (H^c)^c = (Nint(H))^c - H^c) = Ncl(H^c) - H^c$. Since H^c is nano \wedge_g -closed and C^c is nano λ -closed, by Theorem 3.17 it follows that $C^c = \phi$. Therefore U = C. Conversely, suppose that P is nano λ -closed and $P \subseteq H$. Then $Nint(H) \cup H^c \subseteq Nint(H) \cup P^c$. It follows that $Nint(H) \cup P^c = U$ and hence $P \subseteq Nint(H)$. Therefore H is nano \wedge_g -open.

Theorem 3.23. In a space $(U, \tau_R(X))$, if $Nint(H) \subseteq Q \subseteq H$ and H is nano \wedge_g -open, then Q is nano \wedge_g -open.

Proof. Assume $Nint(H) \subseteq Q \subseteq H$ and H is nano \wedge_g -open. Then $H^c \subseteq Q^c \subseteq Ncl(H^c)$ and H^c is nano \wedge_g -closed. By Theorem 3.18, Q is nano \wedge_g -open.

Theorem 3.24. In a space $(U, \tau_R(X))$, H is nano \wedge_g -closed $\iff Ncl(H) - H$ is nano \wedge_g -open.

Proof. Necessity. Assume that H is nano \wedge_g -closed. Let $P \subseteq Ncl(H) - H$, where P is nano λ -closed. By Theorem 3.17, $P = \phi$, Therfore $P \subseteq Nint(Ncl(H) - H)$ and by Theorem 3.21, Ncl(H) - H is nano \wedge_g -open.

Sufficiency. Let $H \subseteq C$ where C is a nano λ -open set. Then $Ncl(H) \cap C^c \subseteq Ncl(H) \cap H^c = Ncl(H) - H$. Since $Ncl(H) \cap C^c$ is nano λ -closed and Ncl(H) - H is nano \wedge_g -open, by Theorem 3.21, we have $Ncl(H) \cap C^c \subseteq Nint(Ncl(H) - H) = \phi$. Hence H is nano \wedge_g -closed.

Theorem 3.25. In a nano topological space $(U, \tau_R(X))$, the following properties are equivalent:

- 1. *H* is nano \wedge_q -closed.
- 2. Ncl(H) H contains no nonempty nano λ -closed set.
- 3. Ncl(H) H is nano \wedge_q -open.

Proof. This follows from by Theorems 3.17 and 3.24.

Definition 3.26. A subset H of a space $(U, \tau_R(X))$ is called

- 1. a nano $_q \wedge$ -closed set if $N \lambda cl(H) \subseteq G$, whenever $H \subseteq G$ and G is nano open.
- 2. a nano \wedge -g-closed set if $N\lambda cl(H) \subseteq G$, whenever $H \subseteq G$ and G is nano λ -open.

The complement of the above mentioned sets are called their respective open sets.

Example 3.27. In Example 3.2, then $\wp(U)$ is nano $_{q}\wedge$ -closed and nano \wedge -g-closed.

Remark 3.28. For a subset of a space $(U, \tau_R(X))$, we have the following implications:

$nano \ closed$	\rightarrow	$nano \ \lambda$ - $closed$
\downarrow		\downarrow
$nano \wedge_g$ - $closed$	\rightarrow	$nano \land -g-closed$
\downarrow		\downarrow
nano g-closed	\rightarrow	$nano$ $_g \wedge$ - $closed$

None of the above implications is reversible.

Theorem 3.29. In a space $(U, \tau_R(X))$, H is nano \wedge_g -closed $\iff N\lambda cl(\{x\}) \cap H \neq \phi$ for every $x \in Ncl(H)$.

Proof. Necessity. Suppose that $N\lambda cl(\{x\}) \cap H = \phi$ for some $x \in Ncl(H)$. Then $U - N\lambda cl(\{x\})$ is a nano λ -open set containing H. Furthermore, $x \in Ncl(H) - (U - N\lambda cl(\{x\}))$ and hence $Ncl(H) \nsubseteq U - N\lambda cl(\{x\})$. This shows that H is not nano \wedge_q -closed.

Sufficiency. Suppose that H is not nano \wedge_g -closed. There exist a nano λ -open set G containing H such that $Ncl(H) - G \neq \phi$. There exist $x \in Ncl(H)$ such that $x \notin G$, hence $N\lambda cl(\{x\}) \cap G = \phi$. Therefore, $N\lambda cl(\{x\}) \cap H = \phi$ for some $x \in Ncl(H)$.

Acknowledgement

The authors thank the referees for their valuable comments and suggestions for improvement of this paper.

References

- K. Bhuvaneshwari and K. Mythili Gnanapriya, Nano Generalizesd closed sets, International Journal of Scientific and Research Publications, 4(5)2014,1-3.
- [2] M. Lellis Thivagar and Carmel Richard, On Nano forms of weakly open sets, International Journal of Mathematics and Statistics Invention,1(1) 2013, 31-37.
- [3] M. Lellis Thivagar, Saeid Jafari and V. Sutha Devi, On new class of contra continuity in nano topology, Italian Journal of Pure and Applaied Mathematics, 2017, 1-10.
- [4] Z. Pawlak, *Rough sets*, International journal of computer and Information Sciences, 11(5)(1982), 341-356.
- [5] I. Rajasekaran and O. Nethaji, On some new subsets of nano topological spaces, Journal of New Theory, 16(2017), 52-58.