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1 Introduction

The concepts of θ-closed set, δ-closed set, first introduced by Velicko [16]. θ-closed
set have been studied intensively by many authors. Since the advent of these notions,
several researches have been done which produced interesting results. θg-closed set
introduced by Dontchev and Maki [7] in 1999. In 1965 Njastad [9] introduced α-
open sets. In [3], θg*α closed set introduced by Chandrasekar et al. In this paper,
we discussed properies and applications of θg*α-neighbourhoods, θg*α-limit points,
θg*α- border, θg*α-frontier and θg*α-exterior.

2 Preliminary

Let us recall the following definition, which are useful in the sequel.

*Corresponding Author.
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Definition 2.1. A subset A of a space (X, τ) is called:

1. α- closed set [9] if cl(int(cl(A))) ⊆ A

2. θ-closed [16] if A = clθ(A), where clθ(A) = {x∈X : cl(G) ∩ A6=φ,G∈τ and
x∈G}

3. a generalized closed (briefly, g-closed) set [8] if cl(A) ⊆ G whenever A ⊆ Gand
G is open in (X, τ).

4. a θ-generalized closed (briefly, θg-closed) set [6] if clθ(A) ⊆ G whenever A ⊆ G
and G is open in (X, τ).

5. θg*α-closed set if αcl(A) ⊆ G whenever A ⊆ G and G is θg-open in (X, τ).

The complements of the above mentioned closed sets are their respective open sets.

Definition 2.2. The union (respectively intersection) of all θg*α-open (respectively
θg*α-closed) sets, each contained in (respectively containing) a set A of X is called
the θg*α-interior (respectively θg*α-closure) of A, which is denoted by θg*α-int(A)
(respectively θg*α-cl(A)).

Proposition 2.3. If A and B are subsets of X, then

1. A is θg*α-open if and only if θg*α-int(A)=A.

2. θg*α-int(A) is θg*α-open.

3. A is θg*α-closed if and only if θg*α-cl(A)=A.

4. θg*α-cl(A) is θg*α-closed.

5. θg*α-cl(X∩ A)=X∩ θg*α-int(A).

6. θg*α-int(X∩ A)=X∩ θg*α-cl(A).

7. If A is θg*α-open in X and B is open in X, then A B is θg*α-open in X.

8. A point x ∈ θg*α-cl(A) if and only if every θg*α-open set in X containing x
intersects A.

9. Arbitrary intersection of θg*α-closed sets in X is also θg*α-closed in X.

3 θg*α-Neighbourhoods

In this section, we define and study about θg*α-neighbourhood, and some of their
properties are analogous to those for open sets.

Definition 3.1. Let (X, τ) be a topological space and let x∈ X. A subset N of X
is said to be θg*α-neighbourhood of a point x∈ X if there exists a θg*α-open set G
such that x∈G⊂ N
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Definition 3.2. Let(X, τ) be a topological space and A be a subset of X .A subset
N of X is said to be θg*α-neighbourhood of A if there exists a θg*α-open set G such
that A∈G⊂ N.

The collection of all θg*α-neighbourhood of x∈X is called the θg*α-neighbourhood
system at x and shall be denoted by θg*α-N(x).

It is evident from the above definition that a θg*α-open set is a θg*α-neighbourhood
of each of its points. But a θg*α-neighbourhood of a point need not be a θg*α-open
set. Also every θg*α-open set containing x is a θg*α-neighbourhood of x.

Theorem 3.3. A subset of a topological space is θg*α-open if it is a θg*α-neighbourhood
of each of its points.

Proof: Let a subset G of a topological space be θg*α-open. Then for every
x∈G,x∈G⊂ N and therefore G is a θg*α-neighbourhood of each of its points. anal-
ogous to those for open sets. The converse of the above Theorem need not be true
as seen from the following example.

Example 3.4. Let (X, τ) be topological space and X={a,b,c,d} with topology

τ ={X,φ ,{a},{b},{a, b},{b,c},{a,b,c}}.
θg*α-Cl(X) = {X, φ ,{c},{d},{a, d},{b, d},{c, d},{a, c, d},{a ,b ,d},{b, c, d}}
θg*α-O(X) = {X,φ ,{a},{b},{c},{a, b},{b, c},{a ,c},{a, b ,c},{a, b, d}}

the set{a, c, d} is the neighbourhood of {a, c}, since a, c ∈{a, c}⊂ {a, c, d},
and {a, c, d} is the θg*α-neighbourhood of each of its points.

Theorem 3.5. Let (X, τ) be a topological space. If A is a θg*α-closed subset of X
and x∈ X\ A, then there exists a θg*α-neighbourhood N of x such that N ∩A=φ

Proof: Since A is θg*α-closed, then X\ A is θg*α-open set in (X, τ) . By the
above Theorem 3.3, X\ A contains a θg*α-neighbourhood of each of its points. Hence
there exists a θg*α-neighbourhood N of x, such that N⊂ X\ A.That is, no point of
N belongs to A and hence N∩A=φ .

Theorem 3.6. Let (X, τ) be a topological space and A⊆X. Then x∈ θg*α-cl(A) if
and only if for any θg*α-neighbourhood N of x in (X, τ),A∩ N 6=φ.

Proof: Suppose x∈ θg*α-cl(A). Let us assume that there is aθg*α-neighbourhood
N of the point x in (X, τ) such that N ∩ A=φ . Since N is a θg*α-neighbourhood
of x in (X, τ) by definition of θg*α-neighbourhood there exists an θg*α-open set G
of x such that x∈G⊂ N. Therefore we have G ∩ A=φ and so A ⊆ Hc. Since X\G is
an θg*α-closed set containing A.We have by definition of θg*α-closure, θg*α-cl(A)⊆
X\G and therefore x/∈θg*α-cl(A), which is a contradiction to hypothesis x∈ θg*α-
cl(A). Therefore A∩ N6=φ . Conversely, Suppose for each θg*α-neighbourhood N of
x in (X, τ) .A ∩ N6=φ . Suppose that x ∈ θg*α-cl(A). Then by definition of θg*α-
cl(A), there exists a θg*α-closed set G of (X, τ) such that A⊆ G and x/∈G. Thus x∈
X\G and X\ G is θg*α-open in (X, τ) and hence X\G is a θg*α-neighbourhood of
x in (X, τ) .But A∩ (X\ G)= φ which a contradiction.Hence x∈ θg*α-cl(A).
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Theorem 3.7. Let (X, τ) be a topological space and p∈ X. Let θg*α-N(p) be the
collection of all θg*α-neighbourhoods of p. Then

1. θg*α-N(p) 6=φ and p each member of θg*α-N(p).

2. The intersection of any two members of θg*α-N(p) is again a member of θg*α-
N(p).

3. If N ∈ θg*α-N(p) and M⊆N, then M ∈θg*α-N(p).

4. Each member N∈ θg*α -N(p) is a superset of a member G∈ θg*α-N(p) where G
is a θg*α-open set.

Proof:

1. Since X is a θg*α-open set containing p, it is a θg*α-neighbourhood of every p∈
X. Hence there exists at least one θg*α-neighbourhood namely X for each p ∈X.
Here θg*α-N(p) 6=φ. Let N ∈θg*α-N(p), N is a θg*α-neighbourhood of p.Then
there exists a θg*α-open set G such that p∈ G ⊆N.So p∈ N.Therefore p ∈ every
member N of θg*α-N(p).

2. Let N ∈ θg*α-N(p) and M∈θg*α-N(p). Then by definition of θg*α-neighbourhood,
there exists θg*α-open sets G and F such that p∈ N and p∈ F ⊆ M. Hence p∈
G∩F⊆ M ∩N, Note that G ∩ F is a θg*α-open set since intersection of θg*α-open
sets is θg*α-open.Therefore it follows that N ∩ M is a θg*α - neighbourhood of
p. Hence N∩ M θg*α-N(p).

3. If N∈ θg*α-N(p) then there is an θg*α-open set G such that p∈ G⊆ N.Since M
∩ N, M is a θg*α- neighbourhood of p. Hence M ∈ θg*α-N(p).

4. Let N ∈ θg*α-N(p).Then there exist an θg*α-open set G such that p∈ G⊆ N.Since
G is θg*α-open and p ∈ G, G is θg*α-neighbourhood of p. Therefore G ∈ θg*α-
N(p) and also G⊆ N.

4 θg*α-limit Points

In this section, we define and study about θg*α-limit point and θg*α-derived set of
a set and show that some of their properties.

Definition 4.1. Let(X, τ) be a topological space and A be a subset of X.Then a
point x∈ X is called a θg*α-limit point of A if and only if every θg*α-neighbourhood
of x contains a point of A distinct from x. That is [N\x]∩ A 6=φ for each θg*α-
neighbourhood N of x.

Also equivalently if and only if every θg*α-open set G containing x contains a
point of A other than x.

In a topological space (X, τ) the set of all θg*α-limit points of a given subset A
of X is called a θg*α-derived set of A and it is denoted by θg*α-d(A).
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Theorem 4.2. Let A and B be subsets of a topological space(X, τ). Then

1. θg*α-D(φ) = φ

2. θg*α-D(A) ⊂ D(A) where D(A) is the derived set of A.

3. If A\B, then a θg*α-D (A)⊆ θg*α-D(B),

4. If x∈θg*α-D(A), then x∈ θg*α-D[A\{x}],
5. θg*α-D(A∪ B)⊃ θg*α-D(A)∪ θg*α-D(B),

6. θg*α-D(A∩ B)⊆θg*α-D(A) ∩ θg*α-D(B).

Proof:

1. For all θg*α open set U and for all x∈X, U∩ {φ\x} =φ . Hence θg*α-D(φ) = φ.

2. Since every open set is θg*α-open, the proof follows.

3. If X∈θg*α-D(A), that is if x is θg*α-limit point of A, then by Definition 4.1[G\{x}]A∩
φ . for every θg*α-open set G containing x. Since A⊆ B implies [G\{x}]∩ A ⊆
[G\{x}]∩ B. Thus if x is a θg*α-limit point of A it is also a θg*α-limit point of
B, that is x ∈ θg*α-D(B). Hence θg*α-D(A)⊆ θg*α-D(B).

4. If x∈ θg*α-D(A), that is x is a θg*α-limit point of A. Then by Definition 4.1
every θg*α- open set G containing x contains at least one point other than x of
A \ {x}. That is G∩(A \{x})6= φ Hence x is a θg*α-limit point of A\{x} and
as such it belongs to θg*α-D[A\{x}].Therefore x∈ θg*α-D(A) ⇒ x∈ θg*α-D[A\
{x}].

5. Since A⊆ A∪B and B ⊆ A∪ B,it follows from (2)θg*α-D(A)⊆ θg*α-D(A∪ B)
and θg*α-D(B)⊆ θg*α-D(A∪ B) and hence θg*α-D(A) ∪ θg*α-D(B)⊆ θg*α-(A∪
B).To prove the other way that is θg*α-D(A∪B)⊆ θg*α-d(A) ∪ θg*α-d(B).If x∈
θg*α-d(A)∪ θg*α-d(B),then x∈ θg*α-d(A) and x∈ θg*α-d(B),that is x is neither
a θg*α-limit point of A nor a θg*α-limit point of B. Hence there exist θg*α-
neighbourhoods G1 and G2 of x such that G1 ∩ (A\{x}) = φ and G2∩ (B\x)=φ
Since G1∩ G2 is a θg*α-neighbourhood of x,we have (G1∩ G2)∩ [(A∪B)\{x}] =φ .
Therefore x∈ θg*α-D(A∪ B).Thus θg*α-D(A∪ B) ⊆ θg*α-D(A) θg*α-(B). Hence
θg*α-D(A∪ B) = θg*α-D(A)∪ θg*α-D(B).

6. Since A ⊆ B∪ A and A ⊆ B ∪ A, by (2)θg*α-D(A∩ B) ⊆ θg*α-D(A) and θg*α-
D(A∩ B) ⊆ θg*α-D(B). Consequently θg*α-D(A∩ B) ⊆ θg*α-D(A)∩ θg*α-D(B).

Example 4.3. Let X = {a, b, c,d} and τ ={φ, {a, b}, X}. Then β ∗O( τ )=( P(X)
\ {a}, {b}, {a, b}). Let A={a, b, d} and B ={c}. Then Dβ ∗ (A∪ B) = {a, b} and
Dβ∗(A)=φ, Dβ ∗(B)=φ.

Theorem 4.4. Let (X, τ) be a topological space and A be subset of X. If A is
θg*α-closed, then θg*α-D(A)⊆A.
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Proof: Let A be to θg*α-closed, Now we will show that θg*α-D(A) ⊆ A. Since A is
θg*α-closed, X \A is θg*α-open. To each x∈ X\ A there exists θg*α-neighbourhood
G of x such that G⊂ X\A. Since A ∩ (X\A) =φ , the θg*α-neighbourhood G
contains no point of A and so x is not a θg*α-limit point of A. Thus no point of X
\ A can be θg*α-limit point of A that is, A contains all its θg*α-limit points. That
is θg*α-D(A)⊆ A.

5 θg*α-Border of a Set

Definition 5.1. For any subset A of X,The border of A is defined by Bd(A)=A
\int(A).

Definition 5.2. For any subset A of X, θg*α-border of A is defined by θg*α-
Bd(A)=A \ θg*α-int(A).

Theorem 5.3. In a topological space (X, τ), for any subset A of X, the following
statements hold.

1. θg*α-Bd(φ ) = θg*α-Bd(X) =φ .

2. θg*α-Bd(A) ⊆ Bd(A).

3. A=θg*α-int(A)∪ θg*α-Bd(A).

4. θg*α-int(A)∩θg*α-Bd(A) = φ .

5. θg*α-int(A) = A \θg*α-Bd(A).

6. θg*α-int(θg*α-Bd(A)) =φ .

7. A is θg*α-open if and only if θg*α-Bd(A) =φ .

8. θg*α-Bd(θg*α-int(A)) = φ .

9. θg*α-Bd(θg*α-Bd(A)) = θg*α-Bd(A).

10. θg*α-Bd(A) = A∩ θg*α-cl(X\A).

Proof: (1) , straight forward. (2) , (3) , (4) and (5) follows From the Definition 5.2
To prove(6) if possible let x∈θg*α-int(θg*α-Bd(A)).Then x∈ θg*α-Bd(A),since θg*α-
Bd(A)⊆A, x∈θg*α-int(θg*α-Bd(A))⊆ θg*α-int(A). Therefore x∈ θg*α-int(A)∩ θg*α-
Bd(A) which is a contradiction to (4). Thus (6)is proved. A is θg*α-open if and
only if θg*α-int(A)=A . But θg*α-Bd(A)= A\ θg*α-int(A) implies θg*α-Bd(A)=
φ . This proves (7) and (8).When A = θg*α-Bd(A),Definition 5.2 becomes θg*α-
Bd(θg*α-Bd(A))= θg*α-Bd(A)\θg*α-int(θg*α-Bd(A)). Using (8), we get (9). To
prove (10).θg*α-Bd(A)=A\θg*α-int(A)= A∩ (X\ θg*α-int(A))= A∩ θg*α-cl(X\A).
Hence (10)is proved.

Example 5.4. Let X={a,b,c,d} with topology τ ={X,φ ,{a},{b},{c},{a,b},{a,c},{b,c},
{a,b,c}}. In this topological space(X, τ), θg*α-O(X) = {X, φ ,{a},{b},{c},{a, b},{b,
c},{a ,c}{a, b ,c}} Let A = {a, c}, then θg*α-Bd(A) = {a, c} -{a, c} = φ and Bd-(A)
= {a, c}\{a} = {c}. Therefore Bd-(A) * θg*α-Bd(A)
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6 θg*α- Frontier of a Set

Definition 6.1. For any subset A of X,The frontier of A is defined by Fr(A)=cl(A)
\ int(A).

Definition 6.2. For any subset A of X, its θg*α-Frontier is defined by θg*α-Fr(A)=
θg*α-cl(A) \ θg*α-int(A).

Theorem 6.3. For any subset A of X, in a topological space(X, τ),the following
statements hold.

(1). θg*α-Fr( φ )= θg*α-Fr(X)= φ .

(2). θg*α-cl(A)= θg*α-int(A) ∩ θg*α-Fr(A).

(3). θg*α-int(A) ∩ θg*α-Fr(A)=φ .

(4). θg*α-bd(A) ⊆ θg*α-Fr(A) ⊆ θg*α-cl(A).

(5). If A is θg*α-closed, then A=θg*α-int(A) ∪ θg*α-Fr(A).

(6). θg*α-Fr(A)= θg*α-cl(A)∩θg*α-cl(X\A).

(7). A point x∈θg*α-Fr(A), if and only if every θg*α-open set containing x intersects
both A and its complement X\A.

(8). θg*α-cl(θg*α-Fr(A))= θg*α-Fr(A), i.e, θg*α-Fr(A) is θg*α-closed.

(9). θg*α-Fr(A) = θg*α-Fr(X\A).

(10). A is θg*α-closed if and only if θg*α-Fr(A) = θg*α-bd(A), i.e, A is θg*α-closed
if and only if A contains its θg*α-frontier.

(11). θg*α-Fr(θg*α-int(A))⊆ θg*α-Fr(A).

(12). θg*α-Fr(θg*α-cl(A))⊆ θg*α-Fr(A).

(13). θg*α-Fr(θg*α-Fr(A))⊆ θg*α-Fr(A).

(14). X=θg*α-int(A)∪ θg*α-int(X\A)∪ θg*α-Fr(A).

(15). θg*α-int(A) = A\θg*α-Fr(A).

(16). If A is θg*α-open, then A ∩ θg*α-Fr(A) =φ , i.e, θg*α-Fr(A) ⊆ X\A.

Proof: (1), (2), (3) and (4) follows from Definition 6.2 (5) follows from (2) and
Proposition2.3 (2). (6) follows from Proposition2.3 (5). (7) can be proved using
(6)and Proposition2.3 (8). From (6), we can prove (8) by applying the results of
Proposition2.3 (3) and (9). Proof of (9)is similar. To prove (10): If A is θg*α-closed,
then A = θg*α-cl(A).Hence Definition 6.2 reduces to θg*α-Fr(A)= A\ θg*α-int(A)
= θg*α-bd(A). Conversely, suppose that θg*α-Fr(A) = θg*α-bd(A),using Definition
6.2 and 6.1, we get θg*α-cl(A) = A, which proves the sufficient part.
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(11) and (12) Since θg*α-int(A) is θg*α-open, (11) holds. Similarly (12) can also
be proved. Since θg*α-Fr(A) is θg*α-closed, invoking (10), (13) can be proved. since
X=θg*α-cl(A) (X\θg*α-cl(A)), but from (2) θg*α-cl(A) = θg*α-int(A) θg*α-Fr(A).
Also X\θg*α-cl(A)=θg*α-int(X\A). Hence X = θg*α-int(A) θg*α-Fr(A) θg*α-int(X\
A). Thus (14) is proved. Proof of (15) is obvious. If A is θg*α-open, A= θg*α-int(A).
(16) follows from (3).

Theorem 6.4. If a subset A of X is θg*α-open or θg*α-closed in (X, τ), then θg*α-
Fr(θg*α-Fr(A))=θg*α-Fr(A).

Proof: By Theorem 6.3 (6), we have θg*α-Fr(θg*α-Fr(A))= θg*α-cl(θg*α-
Fr(A)) ∩ θg*α-cl(X \ θg*α-Fr(A))= θg*α-Fr(A)∩θg*α-cl(X\θg*α-Fr(A))= θg*α-
cl(A)\θg*α-cl(X∩ A)∩ θg*α-cl(X∩ θg*α-Fr(A)).If A is θg*α-open in X, by Theorem
6.3 (16), we have θg*α-Fr(A) ∩A =φ . Therefore A⊆ X ∩ θg*α-Fr(A). Hence θg*α-
cl(A) θg*α-cl(X∩ θg*α-Fr(A)).i.e,θg*α-cl(A)\ θg*α-cl(X∩ θg*α-Fr(A))=θg*α-cl(A).
If A is θg*α-closed in X,then X ∩ A is θg*α-open and hence From the above case, we
have θg*α-cl(X\A)\ θg*α-cl(X∩θg*α-Fr(X\A))= θg*α-cl(X\A). In both the cases
using Theorem 6.3(6), we get θg*α-Fr(θg*α-Fr(A))=θg*α-cl(A)/∈θg*α-cl(X \A)=
θg*α-Fr(A).

Theorem 6.5. If A is any subset of X, then θg*α-Fr(θg*α-Fr(θg*α-Fr(A)))= θg*α-
Fr(θg*α-Fr(A)).

Proof: It follows From Theorem 6.3 (8) and Theorem 6.4.

Theorem 6.6. If A and B are subsets of X such that A∩B=φ, where A is θg*α-open
in X, then A∩θg*α cl(B)=φ.

Proof: If possible, let x∈A∩θg*α-cl(B). Then A is a θg*α-open set containing
x and also x∈ θg*α-cl(B).By Proposition2.3 (8)A∩B =φ, which is a contradiction.
Thus A∩θg*α-cl(B)=φ.

Theorem 6.7. If A and B are subsets of X such that A B and B is θg*α-closed in
X, then θg*α-Fr(A)⊆ B.

Proof: θg*α-Fr(A)= θg*α-cl(A) /∈ θg*α-int(A) θg*α-cl(B)\θg*α-int(A)= B \θg*α-
int(A) ⊆ B.

Theorem 6.8. If A and B are subsets of X such that A ∩ B=φ, where A is θg*α-open
in X, then A /∈θg*α-Fr(B)=φ.

Proof: Since θg*α-Fr(B) ⊆ θg*α-cl(B), proof is obvious From Theorem 6.6.

Theorem 6.9. If A , B⊆ X such that θg*α-Fr(A)∩Fr(B) =φ and Fr(A)∩θg*α-Fr(B)
=φ, then θg*α-int(A ∪ B)=θg*α-int(A) ∪θg*α-int(B).

Proof: We know that θg*α-int(A) ∪θg*α-int(B) ⊆ θg*α-(A ∪ B). Let x∈θg*α-
int(A ∪ B). i.e, x∈ U⊆ A ∪ B, U is a θg*α-open set. Thus either x∈θg*α-Fr(A)
/∈Fr(B), since θg*α-Fr(A) ∩ Fr(B) = φ. Hence x∈int(B). i.e, x/∈cl(B). Since x∈ int(B)
⊆ θg*α-int(B), x⊆ θg*α-int(B). Moreover since x /∈cl(B), there exists an open set
V containing x which is disjoint From B, i.e, V ⊆ X \B. So x∈ U∩V⊆ A. Hence
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U∩V is a θg*α-open subset of A containing x.(By Proposition2.3 (7)). i.e, x∈θg*α-
int(A). Thus x∈θg*α-int(A) ∪θg*α-int(B). If x/∈ θg*α-Fr(A), x∈θg*α-int(A) or x /∈
θg*α-cl(A). If x /∈ θg*α-cl(A), there exists a θg*α-open set W containing x which is
disjoint From A, i.e, W⊆ X\A. i.e, x∈ U∩W⊆ B θg*α-cl(B). i.e, x∈θg*α-Fr(B).Hence
From the above case, we get x∈θg*α-int(A) ∪θg*α-int(B). So θg*α-int(A∪B)⊆ θg*α-
int(A) ∪θg*α-int(B). Thus θg*α-int(A ∪ B)=θg*α-int(A)∪θg*α-int(B).

7 θg*α -Exterior of a Set

Definition 7.1. For any subset A of X,The exterior of A is defined by Ext(A)=int(X\A).

Definition 7.2. For any subset A of X, its θg*α-Exterior is defined by θg*α-Ext(A)=
θg*α-int(X\A).

Theorem 7.3. For any subset A of X, in a topological space(X, τ),the following
statements hold.

(1). θg*α-Extφ) = θg*α-Ext(X)=φ.

(2). Ext(A) ⊂ θg*α-Ext(A) where Ext(A) denote the exterior of A.

(3). If A ⊆ B, then θg*α-Ext(B)⊆ θg*α-Ext(A).

(4). θg*α-Ext(A) is θg*α-open.

(5). A is θg*α-closed if and only if θg*α-Ext(A)= X\ A.

(6). θg*α-Ext(A) = X\θg*α-cl(A).

(7). θg*α-Ext(θg*α-Ext(A))=θg*α-int(θg*α-cl(A)).

(8). Ext(A) ⊆ θg*α-Ext(A) where Ext(A) denote the exterior of A.

(9). θg*α-Ext(A)= θg*α-Ext(X\θg*α-Ext(A)).

(10). θg*α-int(A) θg*α-Ext(θg*α-Ext(A)).

(11). X=θg*α-int(A) ∪θg*α-Ext(A) ∪ θg*α-Fr(A).

(12). θg*α-Ext(A ∪B)⊆ θg*α-Ext(A)∩θg*α-Ext(B)

(13). θg*α-Ext(A ∪B) ⊆ θg*α-Ext(A) ∪θg*α-Ext(B)r(A) ⊆X\A.

Proof: (1) ,(2)and (3)can be proved From Definition 7.2. Since θg*α-int(A) is
θg*α-open, Proof of (4) is obvious. Since θg*α-int(X\A)= X\θg*α-cl(A),(5) follows
From Definition 7.2.Similarly (6) and (7)can be proved.

To Prove (8), θg*α-Ext(X\ θg*α-Ext(A))=θg*α-Ext(X\ θg*α-int(X\A))= θg*α-
int(X\(X\ θg*α- int(X\A)))=θg*α-int(θg*α-int(X\A))=θg*α- int(X\A)= θg*α-Ext(A).
Hence (8)is proved. Since A ⊆ θg*α-cl(A), using (6), (9)can be proved. (10).follows
From Theorem 6.3 (14) and Definition 7.2. Proof of (11),(12)and (13)are obvious.
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Example 7.4. LetX={a,b,c,d}with topology τ ={X,φ ,{a},{b},{a,b}, {a,b,c}}. In
this topological space(X, τ), θg*α-O(X) ={X,φ ,{a},{b},{c},{a, b},{b, c}, {a ,c},{a,
b ,c},{a,b,d}} Let A = {a,b.d}, then θg*α-Ext (A) = {c} and Ext-(A)=φ. Therefore
θg*α-Ext-(A) * Ext (A)

8 Conclusion

Every year many topologist introduced diffrent type of closed sets.we introduced
θg*α-closed sets in topological spaces. In this paper, we discussed properies and
applications of θg*α-neighbourhoods,θg*α-limit points, θg*α- border, θg*α-frontier
and θg*α-exterior.This shall be extended in the future Research with some applica-
tions
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