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Abstract

Accurately predicting earthquakes’ time, location and size is nearly impossible with today’s technology.
Severe earthquakes require prompt and effective mobilization of available resources, as the speed
of intervention has a direct impact on the number of people rescued alive. This, in turn, calls for a
strategic pre-disaster allocation of search and rescue (SAR) units, both teams and equipment, to make
the deployment of resources as quick and equitable as possible. In this paper, a seismic risk-based
framework is introduced that takes into account distance-based contingencies between cities. This
framework is then integrated into a mixed-integer non-linear programming (MINLP) problem for
the allocation of SAR units under uncertainty. The two minimization objectives considered are the
expected maximum deployment time of different SAR units and the expected mean absolute deviation
of the fulfillment rates. We recover the best vulnerability-adjusted routes for each size-location scenario
as input to the optimization model using the dynamic programming (DP) approach as part of the
broader area of reinforcement learning (RL). The results of the hypothetical example indicate that
the comprehensive model is feasible in various risk scenarios and can be used to make allocation-
deployment decisions under uncertainty. The results of the sensitivity analysis verify that the model
behaves reasonably against changes in selected parameters, namely the number of allowed facilities
and weights of individual objectives. Under the assumption that the two objectives are equally
important, the model achieves a total deviation of 3.5% from the objectives with an expected maximum
dispatch time of 1.1327 hours and an expected mean absolute deviation of 0.01%.
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1 Background

Disasters due to natural hazards rarely occur, but once they occur, they can cause extreme fatalities
and physical damages. World Health Organization (WHO) estimates that, between 1998-2017,
earthquakes claimed nearly 750,000 lives worldwide, which is more than 50% of all deaths related
to natural disasters [1]. Disaster risk from earthquakes can be mitigated by decreasing both the
exposure of the property to active fault zones and its fragility. On the other hand, the effects of
SAR on disaster fatality have long been recognised and explored (see, e.g., [2, 3]). That being
said, there is also a need for effective pre-disaster allocation of search-and-rescue (SAR) units
for the response to the earthquake to be timely and life-saving. It is a well-known fact that the
likelihood of finding survivors in any location is inversely related to time [4]. Research has shown
that many more victims could survive if medical care in SAR was provided quickly and effectively
[5]. With data collected from the China Earthquake Database for 51 earthquakes globally, Figure 1
aims to highlight the difference in SAR efficiency for earthquakes with different scales, where
the completion ratio denotes the ratio of cumulative death toll up to the current time to the
final death toll. It is clear that larger-scale earthquakes are associated with slower growth in the
percentage of victims reached, thus lower SAR efficiency, especially during the golden 72 hours into
the earthquake’s occurrence. This implies that there is an ample room for improving SAR efficiency
by making a better use of the available resources. The efficient planning of SAR operations has a
significant role in saving lives in the response phase to disasters [6]. To guarantee an adequate
and timely response, effective prepositioning of different SAR units to certain locations and in
certain quantities is crucial [7].

Figure 1. SAR completion ratio curves for the reported death tolls in earthquakes globally [8] (Groups A-D
represent earthquakes with death tools < 100, 100 − 1, 000, 1, 000 − 10, 000 and > 10, 000, respectively)

All in all, disaster risk management problems are strongly characterized by random outcomes,
which indicates the importance of using mathematical tools that can thoroughly take into account
the stochastic nature of these problems [9]. In this study, our primary focus is on the humanitarian
losses due to devastating earthquakes, and we classify the latter mainly into the following groups:

• Those captured under and lost lives immediately after the earthquake happens due to collapse
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of buildings,
• Those captured under and lost lives after a period since they could not be rescued on time,
• Those rescued from wreckage but could not been hospitalized timely.

As only the losses belonging to the second and third group are preventable with the collective
availability of rescue entities (i.e., rescue teams, ambulances, and heavy equipment), the present
study seeks to optimize the pre-disaster allocation of SAR units through minimizing two objectives,
namely, the expected maximum time it takes to dispatch all needed SAR units and the expected
mean percentage deviation of fulfillment rates across all cities.
In this regard, starting from a fault map, the present study focuses on designing a pre-disaster
framework for allocating disaster rescue teams and equipment with a view to minimizing both the
maximum of the average delivery times associated with each SAR unit type to entire earthquake
region and absolute deviation of fulfillment rates across cities. The first objective can be justified
by the reasonable assumption that entities will largely be dysfunctional without one another.
To give an example, rescue teams without excavators, ambulances without rescue teams, or
excavators without ambulances will not be able to perform their functions. Therefore, one entity
can start performing its rescue action only after other entity types arrive. This, in turn, calls for the
minimization of the longest time period it takes for a specific entity to arrive at the disaster site.
The second objective, on the other hand, will ensure that SAR units will not be clustered in one
location to prioritize only the city with highest conditional disaster risk.
The study aims to develop an integrated and flexible framework for SAR unit allocation and
deployment, combining a seismic risk framework similar to that in [10] with a MINLP model to
achieve the joint objective of minimizing the dispatch time of SAR units and variation between
response rates. Particularly, the incorporation of seismic risk components and consideration of
conditional damage on infrastructure to calculate shortest routes constitute significant research
gaps that the present study seeks to address. The rest of the study is organized as follows: Section 2
offers a summary of the related literature. Section 3 provides the details of the risk-based model,
including the seismic hazard framework as well as the DP model for recovering vulnerability-
adjusted shortest routes and the main MINLP model. Section 4 presents a numerical example on
the comprehensive model introduced in Section 3. In Section 5, we give results and the related
discussion. Section 6 then concludes.

2 Related literature

The literature on planning the allocation and displacement of earthquake SAR units is broad and
focuses on a variety of methods ranging from mixed integer programming (MIP) to stochastic
programming and meta-heuristics. Fairly comprehensive reviews of the literature on the use of
optimization methods in disaster response are presented, e.g., in [11–13]. We refer the interested
reader to these studies.

Stochastic programming

Authors such as, but not limited to, [14–18] presented stochastic programming (SP) models, some
of which are multi-stage. For example, [14] applied multi-stage SP for deploying urban search
and rescue teams with a view to maximizing the total expected number of people rescued. To
make the model more realistic, the likelihood of survival is assumed to diminish over time. Using
a two-stage model, [15] sought to minimize the total cost of facility location, inventory holding,
transportation and shortage in the context of a humanitarian relief problem. [18] proposed a
tri-objective model for pre-and post-earthquake decisions, whereas a novel multi-objective particle
swarm optimization (PSO) algorithm was used for solving the model. [17] introduced a stochastic
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multi-objective mixed-integer mathematical programming logistic distribution and evacuation
planning during earthquake. [19] used a stochastic modeling framework to incorporate various
uncertainties such as facility damage and casualty losses as a function of the magnitude of the
earthquake, and developed an evolutionary optimization heuristic aided by an innovative mixed
integer programming (MIP) model that was used to initialize the algorithm. The model was
showcased with an application to a region that is prone to earthquakes.

Integer programming

Some other authors like [20–22] opted for pure integer programming (IP) models −linear or
non-linear− to tackle the allocation problem. [21] proposed an integer nonlinear multi-objective,
multi-period, multi-commodity model to minimize the travel time and total cost and increases
reliability of the routes from distribution centers. [20] employed a multi-objective integer nonlinear
programming model for assigning rescue teams to disaster sites. The model aimed to minimize the
maximum arrival time of all rescue teams to the affected areas and, at the same time, maximize the
satisfaction of rescue teams for their assignments. Methods such as NSGA-II, C-METRIC and fuzzy
logic were then used to solve the model. The model was then applied to a real earthquake event.
[23] combined simulation with a two-phase IP model whereby the first phase aimed to minimize
the total distance to be covered for distributing relief supplies by determining the optimal amount
of these supplies each neighborhood sent and/or received and, the second phase, to minimize the
total number of facilities. [24] proposed a two-stage robust scenario-based optimization problem
to facilitate decisions regarding, inter alia, suitable locations for shelters, the optimal route for
evacuating people, total rescue time, required budget. NSGA-II was proposed as the solution
method. [25] designed a bi-objective robust mixed-integer linear programming (MILP) model
for rescue units’ allocation and scheduling also by considering the learning feature of rescue
units. [6] offered a robust decision support framework for post-earthquake planning SAR resource
deployment. In this regard, a two-stage MIP-based decomposition approach was proposed where
the first phase performs the allocation of SAR units for maximizing fair and effective demand
coverage and the second phase deals with the routing of resources with the aim of minimizing the
weighted sum of fulfillment times. [26] developed a decision support model, namely, a MINLP,
that minimizes the sum of completion times of incidents weighted by their severity and compared
several heuristics and meta-heuristics.

Other modelling approaches

In [27], a dynamic combinatorial optimization model was introduced to find the best assignment
of available resources to operational areas, thereby minimizing the total number of fatalities. First
three days after an earthquake takes place were considered to be essential to the success of relief
efforts. Heuristics, namely, Simulated Annealing (SA) and Tabu Search (TS), were used to solve
the model. [28] presented a simulation-based approach for probabilistic modelling to improve
post-disaster relief and recovery operations.

Incorporating a seismic-risk model

[10] presented a risk-based approach that incorporates hazard, exposure and vulnerability data, for
the pre-positioning of relief resources in appropriate locations. Again, a MILP model used in the
study aimed to allocate assets to the locations with the highest levels of risk and then minimize the
residual risk. Applying the model on 87 counties Wyoming and Colorado, US, authors reported an
at least 33% improvement in residual risk when compared to historical allocations. [7] proposed a
two-phase framework based on a compound stochastic process that models’ disaster attributes
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such as occurrence time, intensity and severity. [29] developed a machine learning framework to
predict the casualty rate and direct economic loss induced by earthquakes. They found earthquake
magnitude, position, and population density to be the leading indicators for loss prediction.
Table 1-Table 2 summarize the relevant literature in a tabular format and in comparison with the
present work. Against this background, methodological as well as managerial contributions of the
current study can be outlined as follows. Unlike the majority of the previous studies, this paper:

• Presents an integrated and flexible approach that can be adapted to various hazard / fragility /
exposure scenarios. Yet, the model’s ability to adapt is partly undermined by

• Links the resource allocation and dispatching problem to a seismic risk modelling framework.
This aspect is missing from a vast majority of the studies reviewed.

• Incorporates vulnerability-adjusted shortest routes into the problem for more realistic resource
allocation. This is achieved through identifying post-disaster optimal routes for each possible
scenario through dynamic programming.

• Helps policymakers make more equitable earthquake dispatchment decisions by understanding
its marginal impact on the speed of dispatchment. This aspect is also usually omitted in the
existing literature.

3 Model description

In this paper, we apply a seismic-risk-based stochastic bi-objective pre-disaster resource allocation
framework modelled as a mixed-integer non-linear programming (MINLP) model, starting from
the formulation of a seismic hazard framework and incorporating the vulnerability of cities
through fragility curves. The framework deals with the question of how the available SAR
resources should be located throughout an earthquake zone, with a view to minimizing not only
the expected maximum time it takes for each SAR unit type to be dispatched to the cities affected
but also the expected mean absolute deviation of fulfillment rates across cities.
More specifically, we present a stochastic resource allocation model that takes the map of existing
fault lines on an IxJ grid, with their hazard (i.e., probability) of producing an earthquake with a
certain demand parameter g in the planning period (e.g., 10 years) as input and decides on the
optimal allocation of SAR units to facilities and dispatch of these units to earthquake zones based
on the realized scenarios, and taking into account their post-earthquake accessibilities which will
be affected by potential damages in the transportation infrastructure.
SAR units considered in this study consist of 4 types: rescue teams, excavators or bulldozers,
trucks, and ambulances. These units are needed to make the first intervention in any earthquake
rescue operation. As explained later, the number of available units from each type k will be set
to the conditionally expected number of collapsed buildings (i.e., conditional risk of disaster)
provided that an earthquake occurs, multiplied by a factor αk that determines the quantity of
equipment needed per collapsed building.
We start by introducing fault zones z ∈ Z where fault zone z has nz fault segments, each with a city
on it. A fault segment will be activated during a seismic event and cause an earthquake with a peak
ground acceleration (PGA) value g ∈ G.1 Each segment on a fault zone is assumed to have even
probability of being epicenter to an earthquake. When an earthquake occurs, it is known that the
hazard of natural disaster is transformed into the risk of environmental / economic / social disaster
through vulnerability (or fragility) of cities and property stock’s level of exposure. Fragility curves,
in this regard, are widely used to associate the demand parameter of the earthquake with the

1 ground motion, of which PGA is a measure, is argued to be related more closely to the level of damage to buildings
and infrastructure in an earthquake, rather than the magnitude of the earthquake itself.
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conditional probability of a certain damage state (e.g., total damage or collapse) occurring.
As stated earlier, the objective of our model is to minimize the preventable humanitarian losses
through the optimal allocation of SAR units to have them timely and equitably dispatched to
disaster sites. As the preventable losses increases with time due to lack of SAR units and as
different types of units have to work together (inter-dependence), our objective of timeliness will be
based on shortening the arrival time of the latest-arriving SAR unit type.
Severe earthquakes are extremely rare events yet with huge conditional impact. One challenge
for policymakers is therefore to decide on the quantity of SAR units to be kept available at SAR
facilities. A conservative but unrealistic strategy is to make available the amount of equipment
that is adequate for the worst-case size-location scenario assuming that it will materialize. An
alternative yet opposite approach would be based on the unconditional risk of disaster. A flowchart
of the modelling methodology followed in this paper in presented in Figure 2. We first introduce a
seismic risk methodology based on hazard, vulnerability and exposure maps. This framework
provides conditional risk values (expected demand for SAR units) as an input to the bi-objective
optimization model, whereas the conditional shortest routes are served by the DP model for each
earthquake scenario and city pair. The optimization model is then solved using the weighted sum
approach and for different values of the selected parameters.

Figure 2. Methodology flowchart

Mathematical model

Model assumptions, sets and indices
Model assumptions that are made to avoid some undesired complexities can be stated as follows:

i. Each city will have at most one earthquake over the planning period,
ii. Earthquakes are independent among fault zones, i.e., they will not happen around the same
time,

iii. A break can occur at any segment of a fault zone with even probability,
iv. Each city can only be in a single fault zone,
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v. The Impact of an earthquake on a city is homogeneous,
vi. Distribution of the residential property stock in a city is homogeneous,

vii. Residential properties have an equal number of independent units each with an equal number
of residents,

viii. SAR facilities and units are not affected by the earthquake,
ix. There is no setup time or minimum batch size for SAR units to mobilize.

The sets, indices and parameters related to the model are given in Table 3 and Table 4.

Table 3. Sets and indices

i : Index of vertical coordinate (i ∈ I where I = {1, 2, . . . , I})
j : Index of horizontal coordinate (j ∈ J where J = {1, 2, . . . , J})
f : Index of facilities ( f ∈ F where F = { f1, f2, . . . })
c : Index of cities (c ∈ C where C = {c1, c2, . . . })
k : Index of equipment types (k ∈ K where K = {k1, k2, . . . })
s : Index of spatial states of earthquake (s ∈ S where S = {s1, s2, . . . })
g : Index of PGA states of an earthquake (g ∈ G where G = {g1, g2, . . . })
ξz : Sets of fault zones (z ∈ Z where Z = {1, 2, . . . , Z}) indicating cities in the fault zone

Table 4. Parameters

nz Number of cities located on fault zone ξz
nk

F Number of facilities allowed for SAR unit type k
Avk Number of available SAR units of type k
βc Current building stock in city c
αk The number of SAR unit type k needed for each collapsed building
υk Average velocity (in 100 mph) of SAR unit type k under normal conditions

Seismic risk framework

Let nz be the number of cities on the fault zone z. Assuming that the fault zone can fail in any
part of it with even probability, the hazard of city c on fault zone z for being the epicenter to a
devastating earthquake with a demand parameter g can be defined as

EPcg = I{c∈ξz}

pzg

nz
, ∀c ∈ C, g ∈ G, (1)

where pzg is the probability of fault zone z being activated and causing a PGA of g. However,
any city c will also be contingent on other cities geographically, which means that the hazard of
an earthquake in any city s will also add to the total hazard of city c by a factor relative to the
distance between them. We define the contingency between any two cities c and s in terms of their
proximity and using an arbitrary function of the Euclidean distance dcs as follows:

Cocs =
1

2dcs
, ∀c ∈ C, s ∈ S . (2)

Note that the choice of Cocs is not our primary concern and the framework can accommodate any
reasonable function. Further discussion on the relation between PGA and distance can be found in
[32] and the references therein. To illustrate; if the distance between two (not necessarily adjacent
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cities) is 200 miles, then an earthquake of demand parameter g in city s is assumed to be felt as
an earthquake of size 0.25g in city c. In other words, the hazard of city s being epicenter to an
earthquake of size g will contribute to the total hazard in city c for an earthquake of the same size
by 25%. The hazard in city c for being affected from an earthquake of size g in city s can then be
written as

Hcsg = CocsEPsg, ∀c ∈ C, s ∈ S , g ∈ G. (3)

Note that (3) boils down to EPcg for any city that hosts the eartquake. Integrating over all scenarios,
we can find the cumulative hazard in city c as

Hcg =
∑

s
Hcsg =

∑
s

CocsEPsg = EPcg +
∑
s ̸=c

CocsEPsg, ∀c ∈ C, s ∈ S , g ∈ G. (4)

Therefore, the cumulative hazard of city c is the probability that city c will be the epicenter of the
next devastating earthquake, plus the sum of the same probabilities for other cities in C adjusted
by a factor of geographical contingency.
As stated previously, the level of damage from an earthquake is determined collectively by its
hazard together with the vulnerability of infrastructure as well as exposure of property stock.
Given an earthquake of parameter g occurs in city c, the probabilistic vulnerability (i.e., conditional
probability that the building stock in city c will exceed the complete damage or collapse threshold d0)
is determined by a fragility curve [33] and can be stated as

VPcg = Pc(D > d0|G = g), ∀c ∈ C, g ∈ G. (5)

Therefore, given the building stock in city c is Sc, the expected number of buildings in city c
reaching the complete damage state (i.e., collapse) given a devastating earthquake occurs can be
computed as

Vcg = VPcgSc, ∀c ∈ C, g ∈ G, (6)

where, again, the conditional probability of collapse given the earthquake demand parameter g,
Vcg, is recovered from the vulnerability curve that is specific to city c. Figure 3 illustrates sample
curves which are constructed from log-normal CDFs with arbitrary µ values ranging from 0 to 1,
and σ = 0.5. A discussion of the calibration of these curves to real earthquake data is beyond the
scope of our work and can be found in [33] or [34]. Note that the fragility curves depicted here
reflect varying vulnerability levels only for a single damage state, i.e., complete damage, which
will be our focus in this study.2

Therefore, the risk of city c from a disaster due to an earthquake of size g in city s, that is, the
expected number of buildings in city c reaching the total damage state, can be expressed as

Rcsg = HcsgVcg, ∀c ∈ C, s ∈ S , g ∈ G. (7)

Summing over all possible size-location scenarios, we state the overall risk from an earthquake

2 In general, fragility curves are used to depict the conditional probability of exceeding certain damage levels for a
given vulnerability level.
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Figure 3. Probabilistic vulnerability curves (only the total damage state)

disaster in city c as

Rc =
∑
s,g

Rcsg, ∀c ∈ C. (8)

Note that the risk values already incorporate the contingencies through the hazard values H.
Given the seismic risk framework above, the expected demand of city c for SAR unit type k can be
determined by the equation

E [DMck] = αkRc, ∀c ∈ C, k ∈ K. (9)

Since devastating earthquakes are considered as low-probability events (although with extreme
conditional damage), one challenging task for the policymakers and relevant authorities is to
determine the appropriate number of SAR units to keep ready because it is not rational for
governments to ensure the availability of SAR units in an anticipation of the worst-case scenario
(vulnerability-based approach) by setting

Avk = max
s,g

{
αk
∑

c

(
Hcsg

EPsg

)
Vcg

}
= max

s,g

{
αk
∑

c
CoscVcg

}
, ∀k ∈ K. (10)

On the contrary, taking a solely risk-based approach such that

Avk = αk
∑

c
Rc =

∑
c

E [DMck] = E [DMk] , ∀k ∈ K, (11)

would again be unrealistic as it will overlook the devastating conditional impact of severe earth-
quakes. In this paper, acknowledging the fact that predicting the size and/or location of an
earthquake is much more difficult than predicting whether or not an earthquake will occur, we
suggest that countries with high risks of earthquake can take a conditional-risk-based approach by
assuming that there will be definitely an earthquake and basing their provision policies on the
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conditional risk of an earthquake (i.e., given one of the cities becomes an epicenter with certainty):

Avk = E [DMk|EP] = αk

∑
c Rc∑

s,g EPsg

= αk

∑
c,s,g CocsEPsgVcg∑

s,g EPsg
= αk

∑
c,s,g

CocsVcgEPsg|EP, ∀k ∈ K,

where we introduced the conditional probability of city s being an epicenter to an earthquake of
size g (given there is an earthquake) as

EPsg|EP :=
EPsg

EP
, ∀s ∈ S , g ∈ G, (12)

with EP =
∑

s,g EPsg. To summarize the three approaches,

i. Vulnerability-based approach: the worst-case scenario will happen with probability one.
ii. Risk-based approach: whether, where and at which size an earthquake will occur should be
handled as an expected value.

iii. Conditional-risk-based approach: an earthquake will definitely happen, but we don’t know
where it will happen and at which size.

Vulnerability-adjusted fastest routes via RL: a DP approach

As an input to the mathematical optimization model to be discussed in Section 3, we also recover
the fastest route between any two cities on the grid that takes into account accessibility during
an earthquake using a DP approach. The explicit enumeration approach offers a relatively poor
runtime performance on larger grids (e.g., it can take long hours to enumerate all paths on a 5x5
grid).

Given an earthquake of size g occurs in city s, the vulnerability-adjusted travel time of SAR unit
type k between two adjacent cities c and c ′ is introduced as

T̃cc ′ksg =
dcc ′

vk

(
1 −

HcsgVPcg+Hc ′sgVPc ′g
2

) =
dcc ′

ṽcc ′ksg
, ∀c, c ′ ∈ C, k ∈ K, s ∈ S , g ∈ G, (13)

where ṽcc ′ksg can be considered as the vulnerability-adjusted speed of unit type k between cities
c and c ′ should there be an earthquake of size g in city s. It is obvious from Eq. (13) that if the
probabilistic vulnerabilities of any pairs of cities (c, c ′) get closer to 1, then ṽcc ′ksg will get close to
0, meaning that the route will be unusable.

We formulate the fastest route problem using the DP approach [35]. A policy π is the probabilities
assigned to a certain set of actions a ∈ A (moves on the grid map in our case) for each state c ∈ C.
In particular, πsg(a|c) is the probability that the SAR entity will choose to make one of the eight
possible moves (↑ ↗→↘ ↓↙←↖) given it is currently in city c. The value of an action a in city
c under policy π (or the city-action value), denoted by vπ(a|c), is determined by the sum of the
immediate reward from transitioning to city c ′, denoted by r(c ′|c), and the continuation value
vπ(c ′)

vπ
sg(c, a) =

∑
c ′

p(c ′|c, a)
(

rsg(c ′|c) + vπ
sg(c

′)
)

, ∀s ∈ S , g ∈ G, (14)
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where p(c ′|c, a) is the probability of ending up in city c ′ by taking move a in city c (which
is obviously 1 for the city in the direction of the move and 0 for others in our case). We set
rsg(c ′|c) = −T̃cc ′ksg depending on the equipment type k. Integrating (14) over all possible actions
(each with appropriate probabilities π(a|c) yields the city value function

vπ
sg(c) =

∑
c ′

p(c ′|c)
(

rsg(c ′|c) + vπ
sg(c

′)
)

, ∀s ∈ S , g ∈ G, (15)

where p(c ′|c) =
∑

a∈A p(c ′|c, a)πsg(a|c). The optimal policy is then the one that maximizes the
value of being in each city:

π∗
sg = arg maxπvπ

sg(c), ∀c ∈ C, s ∈ S , g ∈ G. (16)

The search for π∗
sg involves two steps, namely, policy evaluation and policy iteration (improve-

ment). Evaluation of an arbitrary policy is a recursive operation that runs until the value of vπ(c)
stabilizes across all cities. At each step, the value of vπ(c)sg is calculated by evaluating all possible
actions for all cities through vπ

sg(c, a). At policy iteration step, the policy is updated based on the
re-calculated values of vπ

sg(c) and vπ
sg(c, a), ∀c ∈ C, a ∈ A.

As an example, the calculated values of the city value function as well as the corresponding
optimal routes and travel times on a 4x4 grid for various endpoints, SAR unit types, scenarios and
earthquake sizes are shown in Figure 4.

0
1

2
3

11.28% 17.43% 30.07% 32.97%

2.49% 14.97% 39.56% 20.91%

9.95% 4.56% 15.23% 3.09%

2.10% 1.99% 6.30% 8.39%

VPc, s8, 1.5

↓ ↓ ↙ ↙

↘ ↓ ↙ ↙

→ O ↙ ↙

↗ ↘ ↗ ↙

Optimal route
(cend, k, s, g) = (c6, k3, s8, 1.5)

1.63 1.41 1.84 2.2

0.95 0.69 1.05 1.68

0.67 0.0 0.68 1.36

0.95 0.67 0.95 1.62

Travel time
(cend, k, s, g) = (c6, k3, s8, 1.5)

x-coord

0
1

2
3

y-
co

or
d

1.96% 1.44% 1.02% 2.83%

0.48% 3.58% 10.61% 3.55%

14.82% 2.74% 11.14% 0.66%

3.56% 4.15% 10.59% 11.17%

VPc, s7, 1.0

x-coo%d

→ → ↘ ↓

→ → → O

→ ↗ ↗ ↗

↗ ↗ ↗ ↗

(cend, k, s, g) = (c13, k0, s7, 1.0)

3.42 2.42 1.42 1.0

3.03 2.03 1.01 0.0

3.49 2.45 1.45 1.0

3.89 2.92 2.46 2.02

(cend, k, s, g) = (c13, k0, s7, 1.0)

0 1 2 3
x-coord

0
1

2
3

y-
co

or
d

7.54% 12.18% 19.55% 41.90%

3.37% 15.63% 45.86% 76.41%

9.70% 8.82% 30.14% 15.77%

3.84% 5.13% 15.31% 22.37%

VPc, s13, 2.0

0 1 2 3
x-coo%d

→ → O ←

↗ ↗ ↗ ↖

↗ ↗ ↗ ↖

↗ ↗ ↗ ↗

(cend, k, s, g) = (c8, k2, s13, 2.0)

0 1 2 3
x-coord

2.59 1.32 0.0 1.46

3.11 1.87 1.47 3.04

3.69 3.16 2.98 3.56

4.94 4.43 4.33 4.9

(cend, k, s, g) = (c8, k2, s13, 2.0)

Figure 4. Percentage vulnerabilities (left), optimal routes (middle) and shortest travel times (right) on a 4x4 grid
for different end-points and values of k, s, g
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MINLP model variables, objectives and constraints

Decision and non-decision variables of the MINLP model and their explanations are provided in
Table 5-Table 6.

Table 5. Decision variables defined in the MINLP model

Z f k ∈ {0, 1} whether a facility f for SAR unit type k is established or not
X f k ∈ Z+ amount of SAR unit type k to be allocated to facility f

Yf cksg ∈ Z+ amount of SAR unit type k to be dispatched from facility f to city c in an earthquake of size g
in city s

Table 6. Non-decision variables defined in the MINLP model

Tksg average dispatch time of SAR unit type k in an earthquake of size g in city s
Tmax

sg maximum average dispatch time across SAR unit types in an earthquake of size g in city
s

Tmax Expected maximum average dispatch time
Ful f illcksg ∈ [0, 1] proportion of demand by city c for SAR unit type k fulfilled given an earthquake of size

g occurs in city s
Ful f illck ∈ [0, 1] expected proportion of demand by city c for SAR unit type k fulfilled
Ful f illksg ∈ [0, 1] proportion of demand for SAR unit type k fulfilled given an earthquake of size g occurs

in city s
Ful f illk ∈ [0, 1] expected proportion of demand for SAR unit type k fulfilled

Our two main objectives in this model is to minimize (i) the expected upper bound for the
average dispatch time of SAR units taking into account all size-location scenarios, and (ii) the
expected mean absolute deviation across fulfillment rates of cities. This will also help us minimize
preventable humanitarian losses, as the survival rate is generally considered to be a decreasing
function of time. To this end, we define the average time it takes to dispatch SAR unit type k under
any scenario as the vulnerability-adjusted dispatch times between all facility-city pairs, T̃f cksg,
weighted by the percentage of flow:

Tksg =
∑
f ,c

T̃f cksg
Yf cksg∑
f ,c Yf cksg

, ∀k ∈ K, s ∈ S , g ∈ G. (17)

So, on average, all demand for SAR unit type k will have arrived at earthquake sites in Tksg
hours, should there be any earthquake of size g in city s. Since we assume that SAR units are
interdependent (e.g., rescue teams on excavators, excavators on ambulances, ambulances on
rescue teams), our aim is the minimize, in each scenario, the maximum of the average times across
all cities for equipment type k, which is defined as

Tmax
sg = max

{
Tksg : k ∈ K

}
, ∀s ∈ S , g ∈ G. (18)

Expected maximum dispatch time is then the average of the maximum dispatch times Tmax
sg

weighted by the possibility of a given scenario:

Tmax =
∑
s,g

Tmax
sg EPsg|EP. (19)



384 | Mathematical Modelling and Numerical Simulation with Applications, 2024, Vol. 4, No. 3, 370–394

Accordingly, we can state our first objective as

min θ1 = Tmax. (20)

Our second objective will ensure the fair distribution of SAR assets by minimizing the mean
absolute deviation of fulfillment rate for each city from the average fulfillment rate under each
size-location scenario. The rate of fulfillment of demand from each city for SAR unit type k under
scenario (s, g) is given by

Ful f illcksg =

∑
f Yf cksg

DMcksg
, ∀c ∈ C, k ∈ K, s ∈ S , g ∈ G, (21)

fulfillment of demand from each city for SAR unit type k is then the average of Ful f illcksg values
weighted by the conditional probability of each scenario:

Ful f illck =
∑
s,g

Ful f illcksgEPsg|EP, ∀c ∈ C, ∀k ∈ K. (22)

Similary, fulfillment of demand for SAR unit type k, both under each scenario and on average, can
be expressed as

Ful f illksg =

∑
f ,c Yf cksg∑

c DMcksg
, ∀k ∈ K, s ∈ S , g ∈ G, (23)

Ful f illk =
∑
s,g

Ful f illksgEPsg|EP, ∀k ∈ K. (24)

We then state mean absolute deviation for each size-location scenario and expected mean absolute
deviation as

Ful f illdev
ksg =

∑
c

∣∣∣Ful f illcksg − Ful f illksg

∣∣∣
|C |) , ∀k ∈ K, s ∈ S , g ∈ G, (25)

and

Ful f illdev
k =

∑
s,g

Ful f illdev
ksg EPsg|EP, ∀k ∈ K, (26)

respectively. Our second objective is therefore

min θ2 = Ful f illdev
k0sg. (27)

In Eq. (27), we were able to change k to k0 (i.e., SAR unit type 0) because availability of SAR units,
and deployment to cities under each scenario, namely, Avk and Yf cksg, are proportional among
SAR unit types (recall the interdependence argument).

On the other hand, we deal with the bi-objectiveness of the MINLP model by applying the
weighted sum over the deviations of objectives given in Eq. (20) and Eq. (27) from their respective
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best possible values, scaled by the difference between their respective best and worst values θ and
θ:

min θ = w
(

θ1 − θ1

θ1 − θ1

)
+ (1 − w)

(
θ2 − θ2

θ2 − θ2

)
. (28)

Before implementing the objective (28), the model is first solved as single-objective for (20) to
obtain best and worst values for θ1 and θ2, respectively, and then for (27) to obtain the best and
worst values for θ2 and θ1, again, respectively.

Having defined the decision variables and objective functions, we can now express the constraints
of the model to be satisfied while achieving the objective (28). First, we require all T̄ksg values to
be less than or equal to their supremum Tmax

sg :

Tksg ≤ Tmax
sg , ∀k ∈ K, s ∈ S , g ∈ G. (29)

The total number of facilities for each SAR unit type should not exceed the allowed quantity:∑
f

Z f k ≤ nk
F, ∀k ∈ K. (30)

Furthermore, decision-makers need to make sure that all available equipment is allocated to the
facilities and, if allocated, that the facility is established:∑

f

X f k = Avk, ∀k ∈ K, (31)

X f k ≤ MZ f k, ∀ f ∈ F , k ∈ K, (32)

where M is a sufficiently large number. Amount of dispatch from facilities to earthquake sites
should not exceed the respective capacities of those facilities:∑

c
Yf cksg ≤ Z f kX f k, ∀ f ∈ F , k ∈ K, s ∈ S , g ∈ G. (33)

If the sum of equipment k allocated to facilities is less than or equal to the total demand under
any scenario, then the total amount of dispatch to earthquake sites should be equal to the amount
available (otherwise, it should be equal to the demand), namely,∑

f

X f k ≥
∑

c
DMcksg =⇒∑

f ,c

Yf cksg =
∑

c
DMcksg, ∀k ∈ K, s ∈ S , g ∈ G,

and ∑
f∈F

X f k <
∑
c∈C

DMcksg =⇒∑
f ,c

Yf cksg =
∑

f

X f k, ∀k ∈ K, s ∈ S , g ∈ G.

In other words, amount of total deployment of SAR unit type k under each scenario should be the
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minimum among the available and demanded amount of SAR units of type k:

∑
f ,c

Yf cksg = min

∑
f

X f k,
∑

c
DMcksg

 , ∀k ∈ K, s ∈ S , g ∈ G. (34)

We linearize Eq. (34) to improve runtime.3

Amount of SAR units dispatched to any city should not exceed its demand under any scenario:∑
f

Yf cksg ≤ DMcksg, ∀c ∈ C, k ∈ K, s ∈ S , g ∈ G. (35)

Finally, the deployment of SAR units should preserve proportionality since they are interdepen-
dent: ∑

f

Yf cksg = αk
∑

f

Yf ck0sg, ∀c ∈ C, k ∈ {K \ k0}, s ∈ S , g ∈ G. (36)

The allocation-dispatchment model described through Eqs. (28)-(36) is obviously non-linear,
with the non-linearity arising from the two objectives, namely, due to the maximum function in
Eq. (18) and ratio of decision variables in Eq. (27). The non-linearity in Eq. (18) is eliminated
through constraint (29). Handling Eq. (27) requires transformation of model variables, which is
not straightforward. A further non-linearity is imposed by Eq. (34), which is also substituted
with linear constraints. The remaining non-linearity, coupled with large number of constraints
and arbitrarily generated initial problem settings, manifests itself high computation times (see
Section 5). The comprehensive model presented throughout this section will be applied to a
hypothetical example in Section 4 where we will also present some analysis of results and policy
insights.

4 A numerical example

The numerical example presented in this section aims to illustrate the seismic-risk-based resource
allocation and dispatch framework through a minimal example but is flexible enough to extend to
cover higher-dimensional scenarios. Figure 5 (panels i-vi) displays the main components of the

3 This is done by representing Eq. (34) by the following constraints and restrictions:∑
f

X f k ≥
∑

c
DMcksg + M(uksg − 1), ∀k ∈ K, s ∈ S , g ∈ G,

∑
c

DMcksg + M(uksg − 1) ≤
∑
f ,c

Yf cksg ≤
∑

c
DMcksg + M(1 − uksg), ∀k ∈ K, s ∈ S , g ∈ G,

∑
f

X f k + ϵ ≤
∑

c
DMcksg + M(1 − u

′
ksg), ∀k ∈ K, s ∈ S , g ∈ G,

∑
f

X f k + M(u
′
ksg − 1) ≤

∑
f ,c

Yf cksg ≤
∑

f

X f k + M(1 − u
′
ksg), ∀k ∈ K, s ∈ S , g ∈ G,

uksg + u
′
ksg = 1, ∀k ∈ K, s ∈ S , g ∈ G,

uksg, u
′
ksg ∈ {0, 1}, ∀k ∈ K, s ∈ S , g ∈ G.
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seismic hazard framework based on expectations.4 There are 4 fault zones in the map (i-ii) and
these zones can trigger earthquakes with assigned probabilities (iii). Together with contingencies,
these probabilities constitute the overall hazard of earthquake (iv). Combined with percentage
vulnerabilities for different demand parameters derived from fragility curves given in Figure 3,
the level of exposure determines the risk of a disaster (vi).
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Figure 5. Main components of the seismic hazard framework

Figure 6, on the other hand, demonstrates a realized scenario, namely, s = s2 and g = 2.0 (that is,
an earthquake of size 2.0 occurs in city 2). Now, since the hazard is realized, the hazard map turns
into a realized hazard map where the impact propagates based on distances. From the realized
risk map (iv), we can see how many collapses this scenario can cause in different cities based on
their vulnerabilities (ii) and building stocks (iii).
The optimization model presented in Section 3 is implemented using Gurobi solver on a worksta-
tion with an Intel(R) Xeon(R) W-2245 CPU @ 3.90GHz processor with a 64.0GB installed RAM.
Figure 7 displays the optimal allocation of equipment type k0 for nF = 7 (top left), as well
as conditional risk levels (top right), average dispatch times (bottom left) and fulfillment rates
(bottom right) for a single scenario (i.e., s = s6, g = 1.0) where we also arbitrarily set w = 0.5.
Figure 8 illustrates the deployment plan for the sample scenario. The overall fulfillment rate
for k0 under this allocation plan is calculated as 83.4%. Expected fulfillment rates across cities
for nk

F = 7 ∀k are depicted in Figure 9 where we observe a small variation (thanks to our second
objective function θ2). For w = 0.5 and nk

F = 7 ∀k, the optimal values of θ1 and θ2 are calculated
as 0.8281 hours and 0.025%. We present results for some more scenarios in Table 7.
We extend these results through a number sensitivity analyses based on two key model parameters,
namely, the maximum number of facilities for SAR unit type k, nk

F, and the objective weight factor,
w. Figure 10 displays the sensitivity of each objective function value with respect to these two
parameters whereas Table 7 presents these results in numerical format. As expected, optimal value

4 For reproducibility, we use seed 51 in Python’s NumPy library, which is chosen as it yielded a lower computation
time.
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Figure 6. Main components of the seismic hazard framework (a realized scenario with s = s2 and g = 2.0)

0
1

2
3

y-
co

or
d

11.3

8.4 15.4

6.3 12.3

11.6 34.9

Xc, k0 (103 units)

2.5 4.8 6.1 9.0

1.9 8.5 21.8 3.3

12.0 10.9 41.3 2.3

9.5 7.6 30.0 38.7

Rc, s6, 1.0 (103 units)

0 1 2 3
x-coord

0
1

2
3

y-
co

or
d

2.48 3.56 1.01 0.00

2.08 1.03 0.00 1.01

0.00 1.05 0.73 1.47

3.61 2.05 0.19 0.00

Tc, k0, s6, 1.0 (hours)

0 1 2 3
x-coord

47.7% 47.7% 47.7% 47.7%

47.7% 47.7% 47.7% 47.7%

47.7% 47.7% 47.7% 47.7%

47.7% 47.7% 47.7% 47.7%

Fulfillc, k0, s6, 1.0

Figure 7. Optimal allocation of SAR unit type k0 for nF = 7 (top left), as well as realized risk (top right), average
dispatch times (bottom left) and fulfillment rates (bottom right) for s = s6, g = 1.0

of the expected maximum deployment time decreases with the number of allowed facilities (left).
The impact of the latter on mean absolute deviation of fulfillment rates is somewhat reverse (mid).
Increasing the number of facilities somehow worsens the optimal value of θ2, leading to a higher
deviation across fulfillment rates. As far as the main objective function θ is concerned (right), we
can observe that the total percentage deviation from the two goals peaks at (w, nF) = (0.75, 6)
with 6.98%. The sensitivity analyses can assist decision-makers in choosing the optimal number
of facilities and devising an allocation-dispatchment plan. For example, if the primary focus is
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on the speed of dispatchment, then the choice of (w, nF) = (1, 7) yields an expected maximum
deployment time of as low as 0.3514 hours, although with an expected mean deviation of 10.94%.
Or, if the policymakers are of the view that the deployment speed is three times as important as
having an equitable deployment, namely, (w, nF) = (0.75, 7), then a 0.67% expected deviation can
be achieved with an increase in expected maximum dispatch time to 0.6859 hours (again, Table 7).

5 Results and discussion

In real earthquake situations, survival rate is largely determined by the speed of intervention,
whereas poor planning can result in the clustering of available resources in a subset of affected
locations, resulting in an inequitable situation for victims. Recent big earthquakes, such as the
two that struck 11 cities in southern Turkey in 2023, has shown that it is not the abundance of
resources that matters for the well-functioning of disaster response but how these resources are
pre-positioned and deployed.

Results from hypothetical examples (including the one presented in Section 4) indicate that the
seismic-risk-based bi-objective MINLP model is feasible under various risk scenarios and can be
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Table 7. Optimal values for various w and nF

nF
w 3 4 5 6 7

0
θ1 8,0135 6,7374 7,5972 7,0617 8,0135
θ2 0,00% 0,00% 0,00% 0,00% 0,00%
θ -0,01% -0,01% 0,00% -0,01% -0,23%

0.25
θ1 1,7402 1,4128 1,1352 0,9547 0,8411
θ2 0,00% 0,00% 0,00% 0,00% 0,00%
θ 1,75% 1,88% 1,75% 2,63% 2,25%

0.5
θ1 1,7333 1,4084 1,1327 0,9363 0,8281
θ2 0,01% 0,01% 0,01% 0,04% 0,03%
θ 3,51% 3,78% 3,50% 5,23% 4,70%

0.75
θ1 1,6320 1,3171 1,0527 0,7811 0,6859
θ2 0,43% 0,32% 0,27% 0,80% 0,67%
θ 4,91% 5,33% 5,00% 6,98% 6,40%

1
θ1 1,2527 0,8765 0,6148 0,4470 0,3514
θ2 12,79% 12,24% 11,80% 11,30% 10,94%
θ -0,19% -0,05% -0,02% -0,01% -0,04%

applied to make allocation-deployment decisions when the size and location of earthquakes are
uncertain. With equal weights for two objectives, the model achieves a total of 3.5% deviation
from single-objective solutions (more precisely, the difference between negative and positive ideal
solutions) with an expected maximum dispatch time of 1.1327 hours and expected mean absolute
deviation of 0.01%. Sensitivity analysis results, on the other hand, verify that the model behaves
in accordance with our expectations as far as the changes in the number of allowed facilities and
weights of individual objectives are concerned.

Yet, the ability of the model to adapt to different problem sizes is hindered by rapidly growing
computational complexity and runtimes, which is illustrated in Table 8.

Table 8. DP and MINLP model runtimes for different problem sizes (random seed: 51)

Grid DP runtime DP runtime Number of MINLP model
size (sec, per scenario) (sec, total) constraints runtime (sec)
3x3 0.13 4.7 9,417 6.4
4x4 0.90 57.6 27,029 350
5x5 4.09 409 62,921 5,469
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6 Conclusion

This paper sought to develop an integrated and versatile framework for SAR unit pre-allocation
and deployment, incorporating a seismic risk component similar to the one discussed in [10] into
a MINLP model to minimize the dispatch time of SAR units and deviation between response rates.
The features of the model introduced in this paper are by no means exhaustive. In particular, the
seismic risk framework presented here offers a simple yet flexible approach that can be adapted to
various problem sizes and hazard maps, as well as vulnerability and exposure profiles. The bi-
objective MINLP model then linked the seismic hazard framework with the resource allocation and
dispatchment problem where the vulnerability-(or conditional-risk-)adjusted shortest routes were
recovered from the computationally efficient DP algorithm. The bi-objectiveness of the problem
under study is handled through derivation of a pareto optimality surface for the weighted sum of
percentage deviations from the individual objectives.
The model’s efficiency, however, is mainly limited by the runtime that is exponentially increasing
with the problem size. Moreover, lack of a real case study might be concealing the potential hassles
in representing real maps as simple grids (e.g., a single node might include multiple cities or vice
versa). Besides, various assumptions made in the study (e.g., contingency structure assumed
in Eq. (2), uniform distribution of property stock, even probability for any part of a fault line
being activated, etc.) might render the model difficult to apply in real life. Thus, as an outlook,
acquiring real seismic hazard and exposure data for model validation purposes, working with
fragility curves calibrated to observed vulnerabilities, a critical review of the assumptions made
through expert solicitations, integrating meta-heuristics for improving computational efficiency
for larger problem sizes can further enhance the applicability of the model to real-life situations.
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