
Black Sea Journal of Engineering and Science
doi: 10.34248/bsengineering.1517904

BSJ Eng Sci / Maide Feyza ER and Turgay Tugay BİLGİN 960

This work is licensed (CC BY-NC 4.0) under Creative Commons Attribution 4.0 International License

Open Access Journal

e-ISSN: 2619 – 8991

PERFORMANCE COMPARISON OF SUPERVISED MACHINE
LEARNING METHODS IN CLASSIFYING CELESTIAL OBJECTS

Maide Feyza ER1*, Turgay Tugay BİLGİN2

1Bandirma Onyedi Eylul University, Faculty of Engineering and Natural Sciences, Department of Software Engineering, 10200, Balıkesir,

Türkiye
2Bursa Technical University, Faculty of Engineering and Natural Sciences, Department of Computer Engineering, 16350, Bursa, Türkiye

Abstract: In recent times, astronomy has entered a new era with rapidly growing data sources and advanced observation techniques.

The construction of powerful telescopes has enabled the collection of spectral data from millions of celestial objects. However, the

increasing number and variety of data have made it challenging to categorize these celestial objects. This study employs machine

learning methods to address the fundamental problem of classifying stars, galaxies, and quasars in astronomy. The dataset underwent

detailed preprocessing to identify effective features for classification. KNIME Analytics Platform was used for data analysis and

visualization, facilitating rapid and efficient data analysis through its drag-and-drop interface. Among the machine learning methods

used in our study—Decision Trees, Random Forest, and Naive Bayes—the highest accuracy rate of 97.86% was achieved with the

Random Forest model. Notably, despite its lower overall performance compared to other models, the Naive Bayes classifier exhibited

superior performance in distinguishing the STAR class, which is one of the study's interesting findings. Future studies aim to enhance

model accuracy by using larger and more diverse datasets and exploring different machine learning algorithms. Additionally, the

impact of deep learning methods on classification performance will be investigated.

Keywords: Machine learning, Classification, Decision tree, Naive Bayes, Random forest

*Sorumlu yazar (Corresponding author): Bandirma Onyedi Eylul University, Faculty of Engineering and Natural Sciences, Department of Software Engineering, 10200, Balıkesir,

Türkiye

E mail: mer@bandirma.edu.tr (M. F. ER)

Maide Feyza ER https://orcid.org/0000-0003-2580-1309 Received: July 18, 2024

Accepted: September 03, 2024

Published: September 15, 2024

Turgay Tugay BİLGİN https://orcid.org/0000-0002-9245-5728

Cite as: Er MF, Bilgin TT. 2024. Performance comparison of supervised machine learning methods in classifying celestial objects. BSJ Eng Sci, 7(5): 960-

970.

1. Introduction
Nowadays, astronomy has entered a new era with rapidly

growing data sources and advanced observation

techniques. With the construction of more powerful

telescopes, spectral data from millions of celestial objects

are being collected. Additionally, it is anticipated that the

volume of data generated by next-generation telescopes

will significantly increase in the future (Hughes et al.,

2022). Consequently, it is becoming increasingly difficult

for astronomers to manually examine and label the ever-

growing astronomical data. In situations where large

quantities of data are available, as well as detailed data,

distinguishing the source type is time-consuming and

often impractical. Therefore, understanding this vast

amount of data and conducting large-scale analyses to

classify galactic and extragalactic sources has become a

challenging task. For such large datasets, machine

learning methods have emerged as useful and valuable

tools for analyzing and classifying data.

Machine learning provides powerful tools for extracting

meaningful information from large and complex datasets,

enabling more precise and efficient classification.

Consequently, in recent years, the use of machine

learning methods in the classification of quasars, stars,

and galaxies has become increasingly widespread.

Machine learning methods perform well in identifying

and characterizing different types of galactic objects

through techniques such as modeling large datasets and

feature extraction.

Quasars, stars, and galaxies are fundamental building

blocks of the universe, and accurately classifying these

cosmic objects is crucial for astronomical research.

Quasars are highly luminous active galactic nuclei

(Hughes et al., 2022). The identification of quasars

emerged following the detection of radio emissions from

star-like sources with high redshift values (Clarke et al.,

2020). Even with larger optical telescopes at their

disposal, astronomers find it extremely difficult to

distinguish between a star and a quasar since both

appear as bright points of light. Machine learning

methods are particularly advantageous in this domain

due to their potential to overcome the limitations of

human vision and traditional techniques.

Machine learning algorithms can recognize complex

patterns in large datasets and classify these objects with

high accuracy. These algorithms process spectral

features, brightness variations, and other astronomical

data to distinguish subtle differences between quasars,

stars, and galaxies. Additionally, machine learning

provides astronomers with more precise and rapid

Research Article
Volume 7 - Issue 5: 960-970 / September 2024

Black Sea Journal of Engineering and Science

BSJ Eng Sci / Maide Feyza ER and Turgay Tugay BİLGİN 961

classification capabilities. In this context, a study by Omat

et al. (2022) highlighted the importance of feature

engineering techniques in classifying galaxies, stars, and

quasars using machine learning methods. By employing

machine learning methods such as Decision Trees, K-

Nearest Neighbors, Multinomial Logistic Regression,

Naive Bayes Classifier, Support Vector Classification, and

Random Forest, their study found that Random Forest

performed best with an accuracy of 98%. Furthermore,

Random Forest was found to correctly classify all

instances labeled as stars in the dataset.

Mehta et al. (2022) conducted a study on a dataset

consisting of 100,000 observations, investigating the

classification of stellar features into Galaxy and Star

categories using machine learning algorithms. The study

aimed to explore the effectiveness of various machine

learning algorithms, including K-Nearest Neighbors,

Support Vector Classifier, Random Forest, Logistic

Regression, Decision Tree, and Naive Bayes, in classifying

stars based on their spectral features. The findings

revealed that the Support Vector Classifier demonstrated

the highest accuracy among the tested models,

highlighting its effectiveness in star classification, while

the Decision Tree model showed the lowest accuracy.

In their study, Kumar and Gharat (2023) presented a

novel approach to classify stars as binary or exoplanet

candidates using deep learning techniques. The proposed

model is designed to accept two different types of inputs

to enhance both accuracy and generalization. One input

layer receives pre-computed statistical features, while

the other input layer takes time series data from light

curves. The proposed method demonstrated a strong

performance with a test accuracy of 81.17%.

Haghighi (2023) examined various machine learning

algorithms, including Linear Regression, Logistic

Regression, Naive Bayes, SVM, Decision Trees, and Neural

Networks. Some of the proposed models were applied to

a dataset consisting of variable and non-variable stars

from the SDSS Survey Stripe 82. The findings showed that

Decision Trees provided the best accuracy and F1 score.

In their study, Huichaqueo and Orrego (2022) presented

a machine learning-based method for the automatic

spectral classification of stars using data from the SDSS

database. They developed a Random Forest model to

extract the spectral class of observed stars, training the

model considering three data usage scenarios: the use of

original data, undersampling, and oversampling

techniques. Their study found that the model trained

with augmented data outperformed the other scenarios.

Furthermore, experimental results showed that the

combinatorial use of data as an input model contributed

to the improvement of prediction scores across all data

usage scenarios (Huichaqueo and Orrego, 2022).

In his study, Brice (2019) utilized standard classification

methods such as K-Nearest Neighbors, Random Forest,

and Support Vector Machine to automatically classify

spectra using data from the SDSS. The study focused on

reducing the high dimensionality of stellar spectrum data

through Feature Selection methods, including Chi-Square

and Fisher score, as well as incorporating domain-

specific astronomical knowledge to enable classification

in a lower-dimensional space. The research highlighted

the potential of machine learning to automate the

classification of stellar spectra, offering a more efficient

alternative to traditional, observation-based methods,

which can be time-consuming.

Lastly, Savyanavar et al. (2023) compared the

performance of traditional machine learning classifiers

with a proposed CNN model to classify star and galaxy

images. Their study aimed to improve classification

accuracy by leveraging the feature extraction capabilities

of CNNs in star-galaxy classification. They proposed a

novel CNN architecture consisting of three sub-blocks for

feature extraction, enhancement, and noise reduction.

While traditional machine learning algorithms achieved a

maximum accuracy of 78%, the proposed CNN model

outperformed them, achieving an accuracy of 92.44% on

the star-galaxy dataset.

The similarity of quasars to both galaxies and stars

makes their differentiation challenging. Therefore, this

study aims to classify stars, galaxies, and quasars based

on their spectral features and to determine which

classifier performs better for this problem. Decision

Trees, Random Forest, and Naive Bayes classifiers were

employed for this purpose, and performance metrics

were evaluated.

The classification of galactic objects using machine

learning methods is a well-studied topic in the literature.

However, determining which classifier performs better in

classifying specific classes such as quasars, stars, and

galaxies is the focus of this study. The KNIME Analytics

Platform was employed for data analysis, visualization,

and classification in the study. Its user-friendly drag-and-

drop interface facilitates rapid and effective analysis of

data, requiring minimal technical expertise.

2. Materials and Methods
The dataset used in the study aims to classify stars,

galaxies, and quasars based on their spectral features.

The data, comprising a total of 100,000 space

observations, was obtained by the Sloan Digital Sky

Survey (SDSS) and is available on the Kaggle website

under the title ‘Stellar Classification Dataset - SDSS17’

(Fedesoriano, 2022). Each data point consists of 17

feature columns and one class column that categorizes

the data into stars, galaxies, or quasars. The names and

descriptions of the features are provided in Table 1.

The analysis, model training, performance evaluation,

graphs, and visual figures in the study were conducted

using the KNIME Analytics Platform. The KNIME

Analytics Platform is an open-source software that

enables accessing, analyzing, and visualizing data without

any coding requirements. KNIME provides a visual

programming environment with an intuitive interface

that integrates various technologies (Fillbrunn et al.,

2017).

Black Sea Journal of Engineering and Science

BSJ Eng Sci / Maide Feyza ER and Turgay Tugay BİLGİN 962

Table 1. Attributes and descriptions of the dataset.

Attribute Description

obj_ID Unique value that identifies the object

alpha Right ascension angle

delta Deviation angle

u
Ultraviolet filter in the photometric

system

g Green filter in the photometric system

r Red filter in the photometric system

i
Near infrared filter in photometric

system

z Infrared filter in photometric system

run_id
Run Number used to identify the specific

scan

rereun_id
Rerun number to indicate how the image

was processed

cam_col
Camera column that defines the scan line

within the study

field_id Field number to identify the field

spec_obj_id
Unique identification used for optical

spectroscopic objects

class Object class

redshift
Redshift value depending on the increase

in wavelength

plate
License plate ID that identifies each

license plate in SDSS

mjd
Modified Julian Date used to indicate

when a particular piece of SDSS data was
received

fiber_id
Fiber ID, which identifies the fiber

directing light to the focal plane in each
observation

In KNIME, a workflow is constructed with nodes. Data is

passed between nodes through connections throughout

the workflow. Each node can perform various tasks such

as reading and writing files, transforming data, training

models, or generating visuals. Depending on their tasks,

nodes have specific settings that can be configured in

their configuration dialogs.

2.1. Dataset Overview

The KNIME Data Explorer node was used to examine the

dataset broadly and to observe the characteristics of its

attributes. The Data Explorer node provides a variety of

options to interactively view the properties of input data

through a table. It was checked from the resulting table

whether there were any missing, empty, or NaN (Not-a-

Number) values in the dataset, and none of these values

were found.

The table also displayed the statistical properties of

numerical columns, including their minimum, maximum,

mean, standard deviation, and variance. Upon inspection,

notably high standard deviation and variance values for

certain attributes (especially u, g, and z) provided a

significant indication that outliers might be present.

Another important clue for identifying outliers is

provided by the histogram of the attribute, which visually

represents the frequency of values in the dataset. The

histogram graph was obtained using the Statistics node

in KNIME. Similar to the Data Explorer node, the

Statistics node displays statistical properties but

produces histogram graphs in a less complex and more

easily readable format compared to the Data Explorer

node. Therefore, histogram graphs were obtained using

the Statistics node.

Upon examining the histogram graphs of all attributes in

the dataset, it was observed that the attributes u, g, z,

field_ID, and redshift contain outliers. Additionally, the

attribute rerun_ID was found to have the same value for

all records. The histogram graphs of these attributes are

provided in Figure 1.

Figure 1. Histogram graphs of u (a), rerun_ID (b), g (c),

field_ID (d), z (e) and redshift (f) attributes obtained with

the Statistics node.

Standard deviation, variance, or histogram alone are not

sufficient to accurately identify outliers in all attributes.

For a more detailed analysis, KNIME’s Box Plot node was

used. Box Plot node; Displays statistical parameters such

as minimum, lower quartile, median, upper quartile and

maximum. The Box Plot node provides a quick overview

of the outliers of a dataset.

Box Plot graphics were examined for all attributes of the

data set and it was seen that in addition to the u, g, z,

field_ID and redshift attributes, the r and i attributes also

had outliers. An example graphic for this is given in

Figure 2 for the r and i attributes.

In addition to missing and outlier values, another

important issue to check in the data set is whether class

labels are distributed fairly. The chart in which the

number of data according to classes is obtained using

KNIME’s Bar Chart node is given in Figure 3. When the

graph is examined, it is seen that the class labels are

unevenly distributed.

Black Sea Journal of Engineering and Science

BSJ Eng Sci / Maide Feyza ER and Turgay Tugay BİLGİN 963

Figure 2. Representation of r and i attributes with box

plot.

When the data set is examined with KNIME’s

visualization tools; It was determined that there were

outliers for some attributes and class labels were

unevenly distributed. The methods used in the study to

overcome these problems are explained in detail under

the heading of Data Preprocessing.

Figure 3. Number of data by classes.

2.2. Data Preprocessing

KNIME’s Numeric Outliers node was used to remove

outliers in the data set. The Numeric Outliers node

detects and processes outliers separately for each of the

selected columns via the interquartile range (IQR).

KNIME's Numeric Outliers node first calculates the IQR

value to detect outliers of a particular column. IQR

calculation is as in equation 1. The formula used to

calculate whether an entry is an outlier, such that the

interquartile distance factor k≥0, is given in equation 2.

Accordingly, if the R value falls outside its calculated

range, it is marked as an outlier.

𝐼𝑄𝑅 = 𝑄3 − 𝑄1 (1)

𝑅 = [𝑄1 − 𝑘(𝐼𝑄𝑅), Q3 + 𝑘(𝐼𝑄𝑅)] (2)

In the study, 𝑘 = 1.5 value was used for the Numeric

Outliers node, and the configuration of the node was

made to convert these values into missing data when

outlier treatment was found.

After applying the Numeric Outliers node to the dataset,

the outliers turned into missing data. KNIME’s Missing

Value node was used to fill in the missing data. The

configuration of the Missing Value node has been set to

use the Linear Interpolation method to fill in the missing

data. Linear Interpolation is a mathematical technique

used to estimate the value between two known data

points on a line. This method assumes a linear

relationship between data points. The formula of Linear

Interpolation is as in equation 3. Where 𝑦1 and 𝑦2 are two

known points, 𝑥1 and 𝑥2 are the x-coordinates of the

known points, y is the estimated value between 𝑦1 and

𝑦2.

𝑦 = 𝑦1 +
(𝑦2−𝑦1)×(𝑥−𝑥1)

𝑥2−𝑥1
 (3)

After filling in the missing data, KNIME’s SMOTE node

was used to eliminate the imbalance in class labels.

SMOTE is a technique based on the k-Nearest Neighbor

(kNN) algorithm. Creates new synthetic samples using

sampling data from the minority class. These synthetic

samples increase the representation of the minority class

in the dataset while considering the immediate neighbors

of existing samples, thus reducing class imbalance (Li et

al., 2021). The graph showing the number of data in the

classes after sampling the minority class with SMOTE is

given in Figure 4.

Figure 4. Data distribution according to classes after
sampling with SMOTE.

2.3. Feature Selection

After the data preprocessing phase, feature selection was

made. Feature selection reveals which features are more

important and add valuable information in training the

classifier. In addition to revealing the features that

distinguish classes from each other, it also enables the

removal of features that are not decisive in classification,

thus training the model faster. For this purpose, two

different feature selection methods were used in the

study. The first of these is correlation analysis.

Correlation analysis is a method used to understand the

relationship between variables and evaluate the

connection between data. Correlation measures the

direction and strength of the relationship between two

Black Sea Journal of Engineering and Science

BSJ Eng Sci / Maide Feyza ER and Turgay Tugay BİLGİN 964

variables, whether positive or negative.

KNIME’s Linear Correlation node was used to perform

correlation analysis of the features in the data set. This

node calculates the correlation coefficient for each

selected pair of columns. Which correlation measure to

apply depends on the type of variables. The Linear

Correlation node uses the Pearson Correlation Coefficient

method for numerical data and Pearson’s Chi Square Test

for nominal data.

Since all values in the data set, except the class attribute,

consist of numerical variables, the Pearson correlation

coefficient method was used. The linear correlation

analysis graph of the attributes in the relevant data set is

given in Figure 5. Accordingly, the value of the

measurement varies between -1 (strong negative

correlation) and +1 (strong positive correlation). A value

of 0 indicates that there is no linear correlation.

Figure 5. Linear correlation analysis graph of attributes
in the data set.

When the linear correlation analysis given in Figure 5 is

examined, it is seen that the rerun_ID attribute is not

related to other attributes. It can be seen that the u, g and

z attributes have a positive correlation with each other.

While spec_obj_ID, plate, and MJD have a strong positive

correlation with each other, the positive correlation with

the redshift attribute is relatively weak. Likewise, it is

seen that these attributes have a positive correlation,

albeit weak, with the r and i attributes.

When the correlation analysis was examined, it was seen

that the rerun_ID attribute was not positively or

negatively correlated with other attributes in the data

set. However, it was observed from the histogram of the

attribute in Figure 1 that it gave the same value for all

records. Based on these analyses, it is understood that

the attribute does not play a decisive role in the

formation of classes. Therefore, the rerun_ID attribute is

removed from the data set as it will not help in model

training.

Another method used for feature selection is Kernel

Density Estimation (KDE). It was used to reveal at which

values the attributes were concentrated.

Kernel Density Estimation is given in equation 4.

Accordingly, 𝐾(𝑥) is called the Kernel function. The

kernel function is symmetrical, like the Gaussian

distribution, it increases as it gets closer to the data point

and decreases as it gets further away. KDE basically

applies the Kernel function to each 𝑋𝑖 in the sample, with

𝑋𝑖 being the data point. Thus, each data point represents

𝑋𝑖 as small density bumps and then sums all these small

bumps to get the final density estimate (Chen, 2018).

𝑝�̂�(𝑥) =
1

𝑛ℎ
∑ 𝐾 (

𝑋𝑖−𝑥

ℎ
)𝑛

𝑖=1 (4)

where h>0 in the equation, it is the bandwidth that

controls the amount of smoothing. Bandwidth h plays an

important role in the quality of KDE. When the

bandwidth h is very small, the density curve has a very

wavy and convoluted structure. On the other hand, when

h is very large, fusion of the bumps occurs. This excessive

smoothing causes important values to be hidden (Chen,

2018). Therefore, choosing the right bandwidth is

extremely important.

Kernel Density Estimation was used in the study to reveal

at what values the attributes in the data set concentrated

or differed on a class basis. KNIME’s 1D Kernel Density

Plot node was used for this. Gaussian was chosen as the

kernel estimation method. To select the appropriate

bandwidth, the configuration of the node was made to

use the Silverman Approach, which is the most practical

and easiest to calculate method, considering the size of

the data set. Kernel Density Estimation graphs of the

features drawn with KNIME’s 1D Kernel Density Plot

node are given in Figure 6, Figure 7 and Figure 8.

When the graphs in Figure 6 and Figure 7 are examined,

it is seen that some values of the attributes are effective

in determining the classes. When Figure 6(f), Figure 7(a)

and Figure 7(d) are examined, where the MJD, plate and

spec_obj_ID attributes are given in the KDE graph

according to classes, respectively, it is seen that the

attributes have values that clearly distinguish all three

classes. It has been observed that the attributes g and i in

Figure 6(d) and Figure 6(e) and the r and u attributes in

Figure 7(b) and Figure 7(e) clearly stand out in

determining the QSO class.

The alpha features in Figure 6(a) and delta in Figure 6(b)

are not as prominent as other features in reflecting the

characteristics of the classes. However, for some values

of the attributes, it has values that slightly distinguish the

GALAXY and QSO classes.

Black Sea Journal of Engineering and Science

BSJ Eng Sci / Maide Feyza ER and Turgay Tugay BİLGİN 965

Figure 6. Kernel Density Estimation graphs of alpha (a),

delta (b), fiber_ID (c), g (d), i (e) and MJD (f) attributes.

Figure 7. Kernel Density Estimation graphs of plate (a), r

(b), redshift (c), spec_obj_ID (d), u (e) and z(f) attributes.

On the other hand, when the KDE graphs in Figure 8 are

examined, it is seen that the attributes do not contain

values that distinguish the classes. For almost all values,

the distribution showed approximately the same

characteristic. Therefore, since these features will not

contribute to determining classes, they are removed from

the data set before model training.

Figure 8. Kernel Density Estimation graphs of cam_col

(a), field_ID (b), obj_ID (c) and run_ID (d) attributes.

2.4. Classifier Selection and Model Training

In the study, three different machine learning methods

were used for model training. These; Decision Trees,

Random Forest and Naive Bayes.

When the characteristics of the data set are taken into

account, Random Forest, Decision Trees and Naive Bayes

appear to be good machine learning methods. Naive

Bayes works under the assumption that the

characteristics of the data set are independent and

generally performs well on small or medium-sized data

sets. When there are independent features in your data

set, Naive Bayes will evaluate this situation better and

perform well. Random Forest and Decision Trees can

work better on large data sets. Because these algorithms

can capture the variations and relationships in the data

set more effectively.

However, Naive Bayes is quite advantageous in terms of

the transparency and simplicity of the model. In Decision

Trees, it is quite interpretable because it clearly shows

which feature makes which decision at each step.

Finally, in terms of the complexity of the algorithm, Naive

Bayes is a relatively simpler algorithm and requires less

computational power, which is advantageous especially

when fast results are needed. Random Forest and

Decision Trees require hyperparameter adjustment,

which can increase the performance of the model.

2.4.1. Decision trees

Decision trees are an effective method used in the field of

machine learning and data mining to solve classification

and regression problems. Decision trees are basically a

tree-structured classifier consisting of a root node,

branches, internal nodes and leaf nodes in a hierarchical

manner. It is a structure where internal nodes represent

features of a dataset, branches represent decision rules,

and each leaf node represents the outcome (Thomas et

al., 2020). This hierarchical structure of decision trees is

given in Figure 9.

Decision trees divide the data set into smaller subsets

and determine a decision rule in each split. Each rule is

based on a specific feature of the data set. With these

rules, data points are classified or predicted by following

Black Sea Journal of Engineering and Science

BSJ Eng Sci / Maide Feyza ER and Turgay Tugay BİLGİN 966

different paths in the branches of the tree. It uses the

divide and conquer strategy by performing greedy search

to determine the most suitable split points within a tree

(Thomas et al., 2020). It provides a graphical

representation of all possible solutions to a problem

based on given conditions. It stands out as a simple,

understandable and high-performance model. Decision

trees have a wide range of usage as they provide

successful results in large data sets and complex

problems.

Figure 9. Hierarchical tree structure of decision trees.

2.4.2. Random Forest

Random forests are an ensemble learning method formed

by combining multiple decision trees (Mouchel‐Vallon

and Hodzic, 2023). Each tree is trained using random

samples of the dataset and runs independently on

different subsets. This way, each tree makes its own

prediction and combines its results to get majority votes

for the average. This reduces overlearning and increases

overall reliability (Mouchel‐Vallon and Hodzic, 2023). An

example random forest representation is given in Figure

10.

Figure 10. An example representation of the random

forest structure consisting of a combination of decision

trees.

The building blocks of the random forest algorithm are

decision trees. The main difference between decision tree

and random forest algorithm is that in random forest, the

creation of root nodes and the separation of nodes are

done randomly. While decision trees are trained using

the entire dataset, random forests use random samples of

the dataset in training each tree. This sampling process

allows each tree to operate independently on different

subsets.

Random forests can produce more stable and

generalizing results because they consist of multiple

trees. They also reduce overlearning and are better able

to handle noise in the dataset. Random forests can

operate at high speed on large data sets and provide high

performance in classification and regression problems.

Therefore, random forests have a wide range of

applications.

2.4.3. Naive Bayes

Naive Bayes is a probability-based algorithm used to

solve classification problems in the field of machine

learning. Basically, it is based on the principle of Bayes

theorem (Ramana, 2022). Naive Bayes is called “naive”

because it assumes that the features observed in the

classification process are independent of each other. This

assumption means that each feature is evaluated

independently without affecting the class.

Naive Bayes enables the classification of a new sample

based on a predetermined class label. The classification

process is based on calculating the probability of each

class. After determining the relationship of the attributes

in the data set with the class label, classification is made

using Bayes' theorem. This theorem uses the probability

of the class and the probabilities of the properties being

observed in the given class to calculate the probability

that the data point at which the properties are observed

belongs to a class. Bayes’ theorem is given in equation 5.

𝑝(𝐴|𝐵) =
𝑝(𝐴).𝑝(𝐵|𝐴)

𝑝(𝐵)
 (5)

In the equation, P(A) represents the probability of event

A occurring and P(B) represents the probability of event

B occurring. P(A|B) represents the probability of event A

occurring if event B occurs, and P(B|A) represents the

probability of event B occurring if event A occurs.

Naive Bayes is an algorithm that is often used

successfully in areas such as spam filtering and text

classification. Because it can provide effective results in

large data sets with its simple structure and fast

calculation ability (Ramana, 2022). However, the

assumption that all features are independent is usually

not valid in real life. Therefore, it may achieve low

accuracy in cases where there are strong dependencies

between features.

2.4.4. Building models with KNIME

80% of the data set was used for training and 20% for

testing. KNIME's Partitioning node was used to divide the

data set. This node divides the input table into two row-

wise sections. The two sections it separates are delivered

to two output ports. Learner nodes are connected to the

output where 80% of the data is transmitted, and

Predictor nodes are connected to the output where 20%

of the data is transmitted. The classifiers used for model

training in the study and the KNIME workflow diagram

are given in Figure 11.

Black Sea Journal of Engineering and Science

BSJ Eng Sci / Maide Feyza ER and Turgay Tugay BİLGİN 967

Figure 11. Classifiers used in model training and KNIME

workflow diagram.

KNIME’s Decision Tree Learner and Decision Tree

Predictor nodes were used to build the Decision Trees

model. The Decision Tree Learner node creates a

decision tree in main memory for classification. The

target attribute must be nominal. Other attributes used to

make decisions can be nominal or numerical. Numerical

splits are always binary, dividing the domain into two

parts at a given split point. The algorithm provides two

quality measures for the division calculation; Gini index

and earnings rate. Additionally, a post pruning method is

available to reduce tree size and increase prediction

accuracy. The Decision Tree Predictor node was used to

predict the class value of the model.

KNIME’s Random Forest Learner and Random Forest

Predictor nodes were used to build the Random Forest

model. The Random Forest model created with Random

Forest Learner consists of a selected number of decision

trees. Each decision tree model is built with a different

set of records, and a randomly chosen set of columns is

used for each split within a tree. Rowsets for each

decision tree are created by bootstrapping and have the

same size as the original input table. The feature set for

an individual split in a decision tree is determined by

randomly selecting sqrt(m) features from the available

features, where m is the total number of learning

columns. The output model identifies a random forest

and passes it to the Random Forest Predictor node for

prediction.

KNIME’s Naive Bayes Learner and Naive Bayes Predictor

nodes were used to establish the Naive Bayes model. The

Naive Bayes Learner node creates a Bayesian model from

the given training data. Calculates the number of rows

per attribute value per class for nominal attributes and

the Gaussian distribution for numeric attributes. The

created model can be used as the Naive Bayes Predictor

node to predict the class membership of unclassified

data.

Models were trained with the three different classifiers

described above. Performance outputs were obtained

with KNIME’s Scorer node, which was connected to the

output of the Predictor node of the models. The Scorer

node uses performance metrics such as accuracy, error,

sensitivity, precision, specificity and F-measure to

measure the performance of models and presents the

results in an interactive table. The values obtained with

the Scorer node are given in the Findings section and the

results are discussed.

2.5. Performance Evaluation of Models

Machine learning performance metrics are measures

used to evaluate how well a machine learning model

works. These metrics help evaluate how accurate the

model's predictions are, misclassification rates, the

model's ability to generalize, and other performance

characteristics. In the study, accuracy, error, sensitivity,

precision, specificity and F1-measure metrics were used

to evaluate the performance of the models along with the

complexity matrix.

2.5.1. Complexity Matrix

A complexity matrix is a table used to evaluate the

classification performance of a machine learning model.

The complexity matrix helps analyze the model's

accuracy and error types by comparing predicted class

labels with actual class labels.

The complexity matrix consists of four main components:

true positive, false positive, false negative and true

negative. True Positive (TP) is the number of samples

that are actually positive that are correctly predicted as

positive. False Positive (FP) is the number of samples in

which samples that are actually negative are wrongly

predicted as positive. False alarm situations are examples

of FP. False Negative (FN) is the number of samples in

which samples that were actually positive were

incorrectly predicted as negative, while true negative

(TN) is the number of samples that were actually

negative were correctly predicted as negative. The

complexity matrix contains the numerical values of these

four components and allows to analyze the performance

of the model in detail. This matrix can be used to

calculate various performance metrics.

Black Sea Journal of Engineering and Science

BSJ Eng Sci / Maide Feyza ER and Turgay Tugay BİLGİN 968

2.5.2. Performance Metrics

Table 2. Performance metrics, descriptions and formula

used to measure the performance of the model (Erickson

and Kitamura, 2021)

Metric Description Formula

Accuracy

It represents the
proportion of
samples that the
model predicted
correctly.

(𝑇𝑃 + 𝑇𝑁)

(𝑇𝑃 + 𝐹𝑃 + 𝐹𝑁 + 𝑇𝑁)

Sensitivity

It indicates how
many of the truly
positive samples
were correctly
detected.

𝑇𝑃

(𝑇𝑃 + 𝐹𝑁)

Precision

It refers to the ratio
of samples predicted
to be positive to
samples that are
actually positive.

𝑇𝑃

(𝑇𝑃 + 𝐹𝑃)

Specificity

It is a performance
metric that
measures a model's
ability to correctly
predict negative
examples that are
actually negative in
classification
problems

𝑇𝑁

(𝑇𝑁 + 𝐹𝑃)

F1-Score

It is the harmonic
average of
sensitivity and
sensitivity metrics. It
is used to achieve a
balance between
precision and
sensitivity in
unbalanced data
sets.

2𝑇𝑃

(2𝑇𝑃 + 𝐹𝑃 + 𝐹𝑁)

3. Results and Discussion
Results from performance metrics were obtained by

connecting the Scorer node to the output of the Predictor

nodes of the models. Therefore, model performances

were compared only on test data.

Complexity matrices obtained from Decision Tree,

Random Forest and Naive Bayes models are given in

Table 3, Table 4 and Table 5, respectively.

Table 3. Complexity matrix of the Decision Tree model

Actual

Predicted

 GALAXY QSO STAR

GALAXY 11464 404 21

QSO 499 11389 1

STAR 24 0 11865

Table 4. Complexity matrix of the Random Forest model

Actual

Predicted

 GALAXY QSO STAR

GALAXY 11536 232 121

QSO 406 11482 1

STAR 3 0 11886

Table 5. Complexity matrix of the Naive Bayes model

Actual

Predicted

 GALAXY QSO STAR

GALAXY 8740 2975 174

QSO 1233 10654 2

STAR 0 0 11889

When the complexity matrices given in Table 3, Table 4

and Table 5 are examined, it is seen that the number of

False Positives and False Negatives for GALAXY and QSO

classes is high in all three models. The models show the

same tendency to misclassify and repeat certain errors.

This indicates that the GALAXY and QSO classes are more

difficult to recognize accurately and the characteristics of

these classes may be more ambiguous than the STAR

class.

Performance values of the models are given in Table 6.

Accuracy values for Decision Trees, Random Forest and

Naive Bayes models were obtained as 97.34%, 97.86%

and 87.71%, respectively, while loss values were found

to be 2.66%, 2.14% and 12.29%, respectively. These

results show that the Random Forest method has the

highest accuracy rate. Although Decision Trees and Naive

Bayes algorithms have also achieved high accuracy

values, it is clear that Random Forest provides superior

performance.

When the sensitivity, precision and specificity values of

the GALAXY and QSO classes, which are most similar to

each other, are examined, it is seen that the Random

Forest model obtains higher values than Decision Trees.

However, the Naive Bayes model, which is weaker than

other classifiers, achieved the highest sensitivity value by

correctly predicting all true positive examples in the

STAR class.

It is seen that the STAR class has the highest sensitivity,

sharpness, specificity and f1-measure values in all three

classifiers. The fact that the star class has the highest

values in all four metrics shows that the model is more

successful than other classes in correctly classifying

stars. Additionally, this shows that the features of the star

class are more distinct and distinctive than other classes,

so the classifiers learn the star class better.

In terms of F1-measure, very high values for all class

labels are seen especially in the Random Forest model

and Decision Trees. This shows that the models generally

exhibit a balanced performance. These findings show that

the Random Forest model can perform effective

classification on this data set and performs well.

Black Sea Journal of Engineering and Science

BSJ Eng Sci / Maide Feyza ER and Turgay Tugay BİLGİN 969

Table 6. Results obtained from the performance metrics of the models

Classification
Method

Accuracy Loss Classes Sensitivity Precision Specificity F1-measure

Decision Trees 97.34% 2.66%

GALAXY 96.43% 95.64% 97.80% 96.03%

QSO 95.79% 96.57% 98.30% 96.18%

STAR 99.80% 99.81% 99.91% 99.81%

Random Forest 97.86% 2.14%

GALAXY 97.03% 96.58% 98.28% 96.80%

QSO 96.58% 98.02% 99.02% 97.29%

STAR 99.97% 98.98% 99.49% 99.48%

Naive Bayes 87.71% 12.29%

GALAXY 73.51% 87.64% 94.81% 79.96%

QSO 89.61% 78.17% 87.49% 83.50%

STAR 100% 98.54% 99.26% 99.27%

4. Conclusion
Within the scope of this study, we evaluated the

performance of three different machine learning

algorithms: Decision Trees, Random Forest and Naive

Bayes to classify GALAXY, QSO and STAR classes. Our

study was carried out on the K-NIME platform. The

results obtained show that all three algorithms exhibit

superior performance in classifying the STAR class.

Decision Trees and Random Forest models attracted

attention with their high accuracy (97.34% and 97.86%)

and low error rates (2.66% and 2.14%). Similarly, in the

study of Omat et al. (2022) Random Forest showed the

best performance with an accuracy rate of 98%.

Especially for the STAR class, the sensitivity, precision,

specificity and F1-measure values of these models were

found to be almost perfect. Haghighi (2023), who tested

various classifiers, showed that Decision Trees provided

the best accuracy and F1 score.

Although the Naive Bayes algorithm had lower overall

accuracy than the other two models (87.71%), it still

showed high performance in the STAR class. However,

one of the interesting results of the study is that the Naive

Bayes classifier can distinguish the STAR class in the best

way. As a result, it has been observed that the STAR class

can be successfully classified by all algorithms thanks to

its distinct and distinctive features, but more advanced

and complex models (such as Random Forest) give better

results in separating the GALAXY and QSO classes. While

the study helps us understand which algorithm will

perform better on a given data set, the findings highlight

the importance of choosing the right algorithm in

classification problems. At the same time, these findings

provide important clues in the selection of machine

learning algorithms used in classifying astronomical

objects.

In future studies, it is aimed to increase classification

performance by using larger data sets and more complex

models. Improvements can be added to make the model

better recognize and distinguish GALAXY and QSO classes.

Different analysis techniques can be applied to reveal the

superior ability of the Naive Bayes classifier in

determining the STAR class. A more comprehensive

comparison can be made using different data sets and

algorithm parameters, and more detailed results can be

obtained by examining different metrics.

Author Contributions

The percentage of the authors contributions is presented

below. All authors reviewed and approved the final

version of the manuscript.

 M.F.E. T.T.B.

C 70 30

D 70 30

S 40 60

DCP 40 60

DAI 50 50

L 50 50

W 70 30

CR 40 60

SR 80 20

C=Concept, D= design, S= supervision, DCP= data collection

and/or processing, DAI= data analysis and/or interpretation, L=

literature search, W= writing, CR= critical review, SR=

submission and revision.

Conflict of Interest

The authors declared that there is no conflict of interest.

Ethical Consideration

Ethics committee approval was not required for this

study because of there was no study on animals or

humans.

References
Brice MJ. 2019. Classification of stars from redshifted stellar

spectra utilizing machine learning. MSc Thesis, Central

Washington University, Computational Science, Washington,

Black Sea Journal of Engineering and Science

BSJ Eng Sci / Maide Feyza ER and Turgay Tugay BİLGİN 970

US, pp: 73.

Chen YC. 2018. Lecture 6: Density Estimation: Histogram and

Kernel Density Estimator. URL=

http://faculty.washington.edu/yenchic/18W_425/Lec6_hist_K

DE.pdf (accessed date: May 10, 2024).

Clarke AO, Scaife AMM, Greenhalgh R, Griguta V. 2020.

Identifying galaxies, quasars, and stars with machine learning:

A new catalogue of classifications for 111 million SDSS sources

without spectra. Astronomy Astrophys, 639: A84.

Erickson BJ, Kitamura F. 2021. Magician’s corner: 9. Performance

metrics for machine learning models. Radiol Artif Intel, 3(3):

e200126.

Fedesoriano. 2022. Stellar Classification Dataset-SDSS17. URL=

https://www.kaggle.com/fedesoriano/stellar-classification-

dataset-sdss17 (accessed date: May 15, 2024).

Fillbrunn A, Dietz C, Pfeuffer J, Rahn R, Landrum GA, Berthold

MR. 2017. KNIME for reproducible cross-domain analysis of

life science data. J Biotechnol, 261: 149-156.

Haghighi MHZ. 2023. Analyzing astronomical data with machine

learning techniques. arXiv Preprint, arXiv: 2302.11573.

Hughes AC, Bailer-Jones CA, Jamal S. 2022. Quasar and galaxy

classification using Gaia EDR3 and CatWise2020. Astronomy

Astrophys, 668: A99.

Huichaqueo MO, Orrego RM. 2022. Automatic spectral

classification of stars using machine learning: An approach

based on the use of unbalanced data. Machine Learn Appl, 9(4):

01-16.

Kumar A, Gharat S. 2023. Star cassification: A deep learning

approach for ıdentifying binary and exoplanet stars. arXiv

Preprint, arXiv: 2301.13115.

Li J, Zhu Q, Wu Q, Zhang Z, Gong Y, He Z, Zhu F. 2021. SMOTE-

NaN-DE: Addressing the noisy and borderline examples

problem in imbalanced classification by natural neighbors and

differential evolution. Know Based Syst, 223: 107056.

Mehta T, Bhuta N, Shinde S. 2022. Experimental analysis of

stellar classification by using different machine learning

algorithms. 2022 International Conference on Industry 4.0

Technology (I4Tech), September 23-24, Pune, India, pp: 1-8.

Mouchel‐Vallon C, Hodzic A. 2023. Toward emulating an explicit

organic chemistry mechanism with random forest models. J

Geophys Res Atmospheres, 128(10): e2022JD038227.

Omat D, Otey J, Al-Mousa A. 2022. Stellar objects classification

using supervised machine learning techniques. International

Arab Conference on Information Technology (ACIT), November

22-24, Abu Dhabi, United Arab Emirates, pp: 1-8.

Ramana PV. 2022. Naïve Bayes to machine learning approach for

structural dynamic complications. ASPS Conf Proc, 1(4): 1283-

1291.

Savyanavar AS, Mhala N, Sutar SH. 2023. Star-galaxy

classification using machine learning algorithms and deep

learning. Int J Info Technol Secur, 15(2): 87-96.

Thomas T, Vijayaraghavan P, Emmanuel A, Thomas S,

Vijayaraghavan TP, Emmanuel S. 2020. Applications of decision

trees. Machine Learn Appr Cyber Secur Analyt, 2020: 157-184.

