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Abstract - An interval neutrosophic set is an instance of a neutrosophic set, which  can be used in real 

scientific and engineering. In this paper, three new operations on interval neutrosophic sets  based on the 

arithmetic mean, geometrical mean, and respectively harmonic mean are defined on  interval neutrosophic 

set. 
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1. Introduction 

 
In recent decades, several types of sets, such as fuzzy sets [1], interval-valued fuzzy sets 

[2], intuitionistic fuzzy sets [3, 4], interval-valued intuitionistic fuzzy sets [5], type 2 fuzzy 

sets [6, 7], type n fuzzy sets [6], and hesitant fuzzy sets [8], neutrosophic set theory [9], 

interval valued neutrosophic set [11]  have been introduced and investigated widely. The 

concept of neutrosophic sets introduced by Smarandache [6, 9]  is interesting and useful in 

modeling several real life problems. 

 
The  neutrosophic set theory (NS for short) which is a generalization  of intuitionistic fuzzy 

set  has three associated defining functions, namely the membership function, the non-

membership function and the indeterminacy function which are completely independent. 

After the pioneering work of Smarandache [9], Wang et al.[11]  introduced the notion of  

interval neutrosophic sets theory (INS for short) which is a special set of neutrosophic sets. 

This concept  is characterized by a membership function, a non-membership function and 

indeterminacy function whose values are intervals rather than real number, INS is more 

powerful in dealing with vagueness and uncertainty than NS, also INS is regarded as a 

                                                           
**

Edited by Irfan Deli (Area Editor) and  Naim Çağman (Editor-in- Chief).  

*Corresponding Author. 

http://www.newtheory.org/
mailto:1broumisaid78@gmail.com
mailto:fsmarandache@gmail.com


Journal of New Theory 1 (2015) 24-37                                                                                                                      25 

 

useful and practical tool for dealing with indeterminate and inconsistent information in real 

world . 

 

The theories of both neutrosophic set (NS)  and interval neutrosophic set (INS) have 

achieved great success in various areas such as medical diagnosis [11], database [12,13], 

topology [14], image processing [15,16,17], and decision making problem [18]. 

 

Recently, Ye [19] defined the similarity measures between INSs on the basis of the 

hamming and Euclidean distances, and a multicriteria decision–making method based on 

the similarity  degree is proposed. Some set theoretic operations such as union, intersection 

and complement on interval neutrosophic  sets have also been proposed by Wang et al.  

[11]. Later on, Broumi and Smarandache [21] also defined correlation coefficient of 

interval neutrosophic set. In 2013, Peide Liu [21] have presented some new operational 

laws for interval neutrosophic sets (INSs) and studied their properties and proposed some 

aggregation operators, include interval neutrosophic power generalized weighted 

aggregation (INPGWA) operator and interval neutrosophic power generalized ordered 

weighted aggregation (INPGOWA) operator and gave  a decision making method based on 

these operators.  

 

In this paper, our aim is to propose three new operations on interval neutrosophic sets  

(INSs) and study their properties. 

 

Therefore, the rest of the paper is set out as follows: In Section 2, some basic definitions 

related to neutrosophic sets, and interval valued neutrosophic set are briefly discussed. In 

Section 3, three new operations on interval neutrosophic sets have been proposed and some 

properties of the proposed operations on interval neutrosophic sets  are proved. In section 4 

we concludes the paper. 

 

 

2. Preliminaries 

 
In this section, we mainly recall some notions related to neutrosophic sets, and interval 

neutrosophic sets relevant to the present work. See especially [9, 10, 21] for further details 

and background. 

 

Definition 2.1 ([9]). Let U be an universe of discourse;  then the neutrosophic set A is an 

object having the form A = {< x:      ,      ,      >, x ∈ U}, where the functions T, I, F 

: U→]
−
0,1

+
[  define respectively the degree of membership, the degree of indeterminacy, 

and the degree of non-membership of the element x ∈ U to the set A with the condition: 

 

                   
−
0 ≤      +      +      ≤ 3

+
.                        (1) 

 

From philosophical point of view, the neutrosophic set takes the value from real standard 

or non-standard subsets of ]
−
0,1

+
[.So instead of ]

−
0,1

+
[ we need to take the interval [0,1] for 

technical applications, because ]
−
0,1

+ 
[ will be difficult to apply in the real applications  

such as in scientific and engineering problems.  

 

Definition 2.2 [10]. Let X be a space of points (objects) with generic elements in X 

denoted by x. An interval neutrosophic set (for short INS) A in X is characterized by truth-
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membership function      , indeteminacy-membership function       and falsity-

membership function       . For each point x in X, we have that  

 

     ,      ,      ∈  [ 0 ,1] 

 

For convenience, we can use  x =( [    ,   ],  [   ,   ],  [    ,   ] ) to represent an element 

in INS. 

 

Remark 1. An INS is clearly a NS.  

 

Definition 2.3 [10]. Let A ={( [   
  ,   

 ] ,   [  
  ,   

 ] ,   [   
  ,   

 ] )} 

 

i. An INS A is empty if   
    

 = 0,   
    

 = 1,    
    

 = 1, for all x in A. 

ii. Let   = <0, 1 ,1>   and   = <1, 0 ,0> 

 

In the following, we introduce some basic concepts related to INSs. 

 

Definition  2.4 [21] Let      ={( [   
  ,   

 ] ,   [  
  ,   

 ] ,   [   
  ,   

 ] )} and      = {([   
  ,   

 ] ,   
[  

  ,   
 ] ,   [   

  ,   
 ])} be two INSs. 

 
i.          =[max(   

 ,   
 ), max(   

  ,  
 )  ], [       

    
  ,min(   

    
   ] , 

[       
    

  ,min(   
    

   ] } 

ii.          =[min(   
 ,   

 ), min(   
  ,  

 )  ], [       
    

  max(   
    

   ] , 
[       

    
  ,max(   

    
   ] } 

 

Definition 2.5.  Let      ={( [   
  ,   

 ] ,   [  
  ,   

 ] ,   [   
  ,   

 ] )} and      = {([   
  ,   

 ] ,   

[  
  ,   

 ] ,   [   
  ,   

 ])} be two INSs, then the operational laws are defined as follows. 

 

i.     = [    ,   ] ,   [     ,     ] ,   [    ,   ] 

ii.           = 

    
    

     
   

     
    

     
   

       
    

     
    

       
   

     
   

    
iii.           = [  

    
   ,    

    
 )],[   

    
     

   
  ,   

    
     

   
 ], [  

    
  

   
   

   ,   
    

     
   

  ] 

iv.      =                                                                 . 
 

 

3. Three New Operations on INSs 
 

Definition 3.1 Let     and     two interval neutrosophic set, we propose the following 

operations on INSs as follows: 

 

     @       = {( [ 
  
     

  

 
 , 

  
     

  

 
], [

  
     

  

 
 , 

  
     

  

 
]  ,[ 

  
     

  

 
 , 

  
     

  

 
],   

 

where 

 

 <   ,   ,     ∈     ,<   ,   ,    ∈      } 
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             = {( [   
    

 ,    
    

  ], [   
    

 ,     
    

  ] , [   
    

 ,     
    

  ] }  

 

where 

 

 <   ,   ,     ∈     ,<   ,   ,    ∈     } 

 

     #       = {( [ 
    

    
  

  
     

  , 
    

    
  

  
     

 ], [
    

    
  

  
     

  , 
    

    
  

  
     

 ] , [
    

    
  

  
     

  , 
    

    
  

  
     

 ]}  ,  

 

where  

 

<   ,   ,     ∈     ,<   ,   ,     ∈     } 

 

With 

 

   = [  
  ,   

 ] ,   = [  
  ,   

 ] ,   = [  
  ,   

 ] and    = [  
  ,   

 ] ,   = [  
  ,   

 ] ,   = [  
 ,  

 ]  

 

Obviously, for every two     and    ,(    @   ),  (       ) and (       ) are also INSs. 

 

Example 3.2 Let    (x)= {([0.2, 0.3], [0.5, 0.6] , [ 0.2 , 0.4  ]),([0.5, 0.8], [0.1, 0.2], [ 0.6 ,0.1 ])} 

and      (x)= {([0.4, 0.6],[0.3, 0.4], [   0.3 , 0.5]), ([0.3, 0.5], [0.1, 0.2], [ 0.5 ,0.1 ]) be two interval 

neutrosophic sets. Then we have 

 

      @     ) = {([0.3, 0.45], [0.4, 0.5],[  0.25 ,0.45 ] ),(b, [0.4, 0.65], [0.1, 0.2], [ 0.55 ,  0.1 ])} 

 

(         ) ={(a, [0.28, 0.42], [0.38, 0.48], [ 0.24  ,0.44 ]),(b, [0.38, 0.63], [0.1, 0.2], [0.55  ,0.1 ])} 

 

 (       ) = {(a, [0.26, 0.4], [0.37, 0.48] , [ 0.24  , 0.44] ),  (b, [0.37, 0.61], [0.1, 0.2], [ 0.54 , 0.1 ])} 

 

With these operations, several results follow. 

 

Theorem  3.4 For    ,     ∈ INSs(X), 

 

(i)     @     =     @   ; 

(ii)     $     =     $    ; 

(iii)     #    =    #    ; 

 

Proof. These also follow from definitions. 

 

Theorem 3.5  For    ,     ∈ INSs(X),      
       

      =    @   .                                                                

 

Proof.      @       = {( [ 
  
     

  

 
 , 

  
     

  

 
], [

  
     

  

 
 , 

  
     

  

 
]  ,[ 

  
     

  

 
 , 

  
     

  

 
]   

 
where  
 
<   ,   ,     ∈     ,<   ,   ,    ∈      } 
 
      

  ={( [   
  ,   

 ] ,   [1-   
  ,     

 ] ,   [   
  ,   

 ] )} 
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  = {([   

  ,   
 ] ,   [1-   

  ,     
 ] ,   [   

  ,   
 ])} 

 

   
       

  ={ [ 
  
     

  

 
 , 

  
     

  

 
], [

     
         

   

 
 , 

     
         

   

 
]  ,[ 

  
     

  

 
 , 

  
     

  

 
]  } 

 

     
       

       =   
  
     

  

 
  
  
     

  

 
   

     
         

   

 
  
     

         
   

 
      

  
     

  

 
  
  
     

  

 
  

 

 

 

                                     

=    
  
     

  

 
  
  
     

  

 
     

     
         

   

 
     

     
         

   

 
     

  
     

  

 
  
  
     

  

 
     

 

=     
  
     

  

 
  
  
     

  

 
   

        
     

    

 
  
        

     
     

 
     

  
     

  

 
  
  
     

  

 
     

 

=   
  
     

  

 
  
  
     

  

 
   

   
     

   

 
  
   

     
    

 
     

  
     

  

 
  
  
     

  

 
     

 

Then        
       

        =     @      

 

This proves the theorem. 

 

Note 1:  One can easily verify that 

 

(i)      
       

           $      

(ii)      
       

        #     

 

Theorem 3.6  For    ,      and      ∈ INSs(X), we have the following identities: 

 

(i)  (        ) @     = (    @    )   (    @    ); 

(ii)  (         ) @     =(     @    )   (   @    ) 

(iii)  (        ) $    = (   $    )  (    $    ); 

(iv)  (         ) $    = (   $    )   (    $    ); 

(v)  ((         )) #    = (   #    )  (     #    ); 

(vi)  (         ) #    = (   #    )   (    #    ); 

 (vii)  (   @    )       = (         ) @(          ); 

(viii)  (   @   )      =(        )@ (         ) 

 

Proof . We prove (i), (iii), (v), (vii) and (ix), results (ii), (iv), (vi), (viii) and (x) can be 

proved analogously 

 

(i) Using definitions in 2.4, 2.5 and 3.1, we have 

 

      ={( [   
  ,   

 ] ,   [  
  ,   

 ] ,   [   
  ,   

 ] )} 
 
      = {([   

  ,   
 ] ,   [  

  ,   
 ] ,   [   

  ,   
 ])} 

 
(        ) @     =  {( [max(   

    
   ,max(   

    
  ] ,   [min (  

    
    ,min(   

    
  ] ,   

 
 [min(   

  ,   
 ),min(   

    
  ] )}  @ {([   

  ,   
 ] ,   [  

  ,   
 ] ,   [   

  ,   
 ])} 
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={[
       

    
     

   

 
  , 

       
    

       
 

 
 ] , [ 

       
    

     
   

 
 , 

       
    

     
   

 
 ],  

[ 
       

     
     

  

 
 , 

       
    

     
   

 
 ]} 

 

={[max(   
  
    

  

 
,  

  
    

 

 
  ) , max(   

  
    

  

 
,  

  
    

 

 
  ) ], [ min ( 

  
    

  

 
  
  
    

  

 
 ) ,  

min (
  
    

  

 
  
  
    

  

 
 )], [min ( 

  
    

  

 
  
  
    

  

 
 ) , min (

  
    

  

 
  
  
    

  

 
 ] } 

 
= (    @    )   (    @    )  

 

This proves (i) 

 

(iii) From definitions in 2.4, 2.5 and 3.1, we have 

 

(        ) $     = {( [max(   
    

   ,max(   
    

  ] ,   [min (  
    

    ,min(   
    

  ] ,    
[min(   

  ,   
 ),min(   

    
  ] )} $ {([   

  ,   
 ] ,   [  

  ,   
 ] ,   [   

  ,   
 ])} 

 

=    {  [        
    

     
   ,         

    
     

     ] , [        
    

     
   , 

        
    

     
 ], [        

     
     

   ,         
    

     
  ]}. 

 

={ [ max(   
    

     ,    
    

    ) , max(   
    

     ,    
    

    ) ] , [min(   
    

     ,    
    

  ) , 

min(   
    

     ,    
    

    )], [min(   
   

     ,    
    

    ) , min(   
    

     ,    
    

   )]} 

 

=(   $   )   (    $   ) 

 

This proves (iii). 

 

(v) Using definitions in 2.4, 2.5 and 3.1, we have 

 

 ((        )) #     = {( [max(   
    

   ,max(   
    

  ] ,   [min (  
    

    ,min(   
    

  ] ,    
[min(   

  ,   
 ),min(   

    
  ] )} # {([   

  ,   
 ] ,   [  

  ,   
 ] ,   [   

  ,   
 ])} 

 

   = { [ 
         

    
     

  

       
    

      
  , 

         
     

     
 

       
     

        
 ], [

         
    

     
  

       
    

      
  , 

         
    

      
 

       
    

       
 ],  

[
         

    
     

  

       
    

      
  , 

         
    

      
 

       
    

       
 ]  } 

 

 ={[ max (
     

     
  

  
     

  , 
     

     
  

  
     

 ) , max (
     

     
  

  
     

  , 
     

     
  

  
     

  )],  

[ min (
     

    
  

  
     

  ,  
     

    
  

   
     

 ) , min (
     

    
  

  
     

 ,  
     

    
  

   
     

  )], [min (
     

    
  

  
     

   , 
     

    
  

   
     

 ),   

min (
     

    
  

  
     

   , 
     

    
  

   
     

  )]} 

 

=(    #   )   (    #   )    

    

This proves (v) 
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(vii) Using definitions in 2.4, 2.5 and 3.1, we have 

 

 (   @    )       = (         ) @(          ); 

 

      ={( [   
  ,   

 ] ,   [  
  ,   

 ] ,   [   
  ,   

 ] )} 
 

      = {([   
  ,   

 ] ,   [  
  ,   

 ] ,   [   
  ,   

 ])} 
 

   = {( [   
  ,   

 ] ,   [  
  ,   

 ] ,   [   
  ,   

 ] )} 
 

= {( [ 
  
     

  

 
 , 

  
     

  

 
], [

  
     

  

 
 , 

  
     

  

 
]  ,[ 

  
     

  

 
 , 

  
     

  

 
])} 

   {( [   
  ,   

 ] ,   [  
  ,   

 ] ,   [   
  ,   

 ] )} 
 

={[
  
     

  

 
 +  

  - 
  
     

  

 
    

 ,   
  
     

  

 
 +  

  - 
  
     

  

 
     

  ] , [
  
     

  

 
   
 ,   

  
     

  

 
   

 ] , 

 [
  
     

  

 
   

 ,   
  
     

  

 
   

 ] } 

 

={ [
   

    
     

   
      

    
    

   
  

 
 ,  

   
    

     
   

      
    

    
   

  

 
 ], [

  
     

  

 
   
 ,   

  
     

  

 
   

 ] , 

[
  
     

  

 
   

 ,   
  
     

  

 
   

 ] } 

 
= (        ) @ (         ) 

 

This proves (vi)  

 

Theorem 3.7. For    and    ∈ INSs(X), we have the following identities: 

 

(i)  (        )    (        ) =        ; 

(ii)  (        )   (        ) =         ; 

(iii)  (        )    (    @    ) =    @    ; 

(iv)  (        )   (    @    )=         ; 

(v)  (       )    (    @    )=        ; 

(vi)  (       )   (    @   )=    @    ; 

(vii)  (       )    (    $    )=     $    ; 

(viii)  (       )   (    $    )=         ; 

(ix)  (       )    (    $    )=        ; 

(x)  (       )   (    $   )=    $    ; 

(xi) (        )   (    #    )=    #    ; 

(xii)  (        )   (    #   )=        ; 

(xiii)  (       )∩ (    #   )=        ; 

(xiv)  (       ) (    #   )=    #    

 

Proof  .We prove (i), (iii), (v), (vii), (ix), (xi) and (xii), other results can be proved 

analogously. 

 

(i) From definitions in 2.4, 2.5 and 3.1, we have 

 



Journal of New Theory 1 (2015) 24-37                                                                                                                      31 

 
(       )    (        )  
 

      ={( [   
  ,   

 ] ,   [  
  ,   

 ] ,   [   
  ,   

 ] )} 
 

      = {([   
  ,   

 ] ,   [  
  ,   

 ] ,   [   
  ,   

 ])} 
 
=    

    
     

   
     

    
     

   
       

    
     

    
       

   
     

   
     {    

    
     

    
   

   
    

     
   

    
    

     
   

      [    
    

     
   

  ,   
    

     
   

  ] } 

 

={[ min (  
    

     
   

  ,   
    

   ) , min (  
    

     
   

   ,   
    

 )] , 

  [ max (  
    

   ,   
    

     
   

  ) , max (  
    

 ,   
    

     
   

 )],   

[ max (  
   

   ,   
    

     
   

 ) , max (  
   

 ,   
    

     
   

 )]} 

 

=[  
    

   ,    
    

 )],[   
    

     
   

  ,   
    

     
   

 ], [  
    

     
   

   ,   
    

     
   

  ] 

 

=        

 

This proves (i) 

 

(iii) Using definitions in 2.4, 2.5 and 3.1, we have 

 

(       )   (    @   ) =    @    ; 

 

={     
    

     
   

     
    

     
   

       
    

     
    

       
   

     
   

     ( [ 
  
     

  

 
 , 
  
     

  

 
], 

[
  
     

  

 
 , 
  
     

  

 
]  ,[ 

  
     

  

 
 , 
  
     

  

 
])  

 

= {[ min  (  
    

     
   

  , 
  
     

  

 
 ) , min (  

    
     

   
  , 

  
     

  

 
] ) ], 

[ max (  
    

  , 
  
     

  

 
) , max (  

    
 , 

  
     

  

 
)] , [ max (  

   
  , 

  
     

  

 
) , max (  

   
 , 

  
     

  

 
)]}.  

 

={ [
  
     

  

 
 ,
  
     

  

 
 ] , [ 

  
     

  

 
  ,  

  
     

  

 
], [  

  
     

  

 
  , 

  
     

  

 
   ]  

 

=     @     

 

This proves (iii). 

 

(v) From definitions in 2.4, 2.5 and 3.1, we have 

 

(       )   (    @   ) =        ; 

 

{[  
    

   ,    
    

 )],[   
    

     
   

  ,   
    

     
   

 ],  

[  
    

     
   

   ,   
    

     
   

  ]}  { [
  
     

  

 
 ,
  
     

  

 
 ] , [ 

  
     

  

 
  ,  

  
     

  

 
],  

[  
  
     

  

 
  , 

  
     

  

 
 ]}. 

 

={[ min  (  
    

   , 
  
     

  

 
) , min (  

    
  ,  

  
     

  

 
) ],[ max (  

    
     

   
  ,

  
     

  

 
) ,  

max (  
    

     
   

 , 
  
     

  

 
) ], [max (  

    
     

   
    ,

  
     

  

 
) ,  

max (  
    

     
   

  , 
  
     

  

 
)]}. 
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= {[   
    

   ,    
    

   ], [  
    

     
   

  ,     
    

     
   

 ],  

[   
    

     
   

  ,    
    

     
   

  ] } 

 

=           
 
This proves (v). 
 
(vii) Using definitions in 2.4, 2.5 and 3.1, we have 
 
(       )   (    $    )=     $     

 

=      
    

     
   

     
    

     
   

       
    

     
    

       
   

     
   

      

  {( [   
    

 ,    
    

  ], [   
    

 ,     
    

  ] , [   
    

 ,     
    

  ]} 
 

= { [ min (  
    

     
   

  ,    
    

  ) , min (  
    

     
   

  ,    
    

   )],   

[max (   
    

 ,    
    

  ) , max (  
    

  ,    
    

  ) ], [max (   
    

 ,    
    

  ) ,  

max (  
    

  ,    
    

  ) ]} 
 

={[   
    

          
    

    ] , [     
    

   ,    
    

    ] , [    
    

   ,    
    

    ] }  
 
=     $     

 

This proves (vii) 

 

(ix) From definitions in 2.4, 2.5 and 3.1, we have 
 
(       )   (    $    )=        ; 

 

={[  
    

   ,    
    

 )], [   
    

     
   

  ,   
    

     
   

 ], [  
    

     
   

   ,   
    

     
   

  ]}   

 {[    
    

        
    

    ] , [     
    

   ,    
    

    ] , [    
    

   ,    
    

    ]} 
 

= {[ min (  
    

   ,   
    

 ) , min (   
    

 ,    
    

   )], [max (  
    

     
   

   ,    
    

 ) ,  

max (  
    

     
   

 ,    
    

  )], [max (  
    

     
   

   ,    
    

 ) ,  

max (  
    

     
   

 ,    
    

  )]} 

 

={[   
    

   ,   
    

    , [   
    

     
   

   ,   
    

     
   

  ],  

[    
    

     
   

   ,   
    

     
   

   ]}  

 

=        

 
This proves (ix) 

 

(xiii) From definitions in 2.3, 2.5 and  3.1, we have 

 

 (       )   (    #    ) =        ; 

 

={[  
    

   ,    
    

 )], [   
    

     
   

  ,   
    

     
   

 ],  
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[  
    

     
   

   ,   
    

     
   

  ]}    {( [ 
    

    
  

  
     

  , 
    

    
  

  
     

 ], [
    

    
  

  
     

  , 
    

    
  

  
     

 ] ,  

[
    

    
  

  
     

  , 
    

    
  

  
     

 ]}   

 

={ [ min (  
    

  ,
    

    
  

  
     

 ) , min (  
    

  , 
    

    
  

  
     

  ) ] , [ max (  
    

     
   

  , 
    

    
  

  
     

 ) ,  

max(  
    

     
   

  ,
    

    
  

  
     

  ], [ max (  
    

     
   

    , 
    

    
  

  
     

 ) ,  

max(  
    

     
   

   , 
    

    
  

  
     

  ]}  

 

={ [  
    

 ,   
    

 ], [   
    

     
   

  ,   
    

     
   

      
[    

    
     

   
   ,   

    
     

   
 ]}    

 

=        

 

This proves (xiii). This proves the theorem. 

 

Theorem 3.8 . For     and     ∈ INSs(X), then following relations are valid: 

 

(i)  (   #   ) $ (    #   ) =    #    ; 

(ii)  (       ) $ (        ) =        ; 

(iii)  (       ) $ (        ) =        ; 

(iv)  (   @    ) $ (    @    ) =    @    ; 

(v)  (   #    ) @ (     #    ) =     #    ; 

(vi) (        ) @ (        ) =    @    ; 

(vii)  (        ) @ (        ) =    @   ; 

(viii)  (        ) $ (        ) =    $    ; 

(ix)  (        ) # (        ) =    #    ; 

 

Proof. The proofs of these results are the same as in the above proof 

 

Theorem 3.9 For every two     and      ∈ INSs(X), we have: 

 

(i)  ((       )   (        )) @ ((        )   (        )) =    @   ;  

(ii) ((       )#(    ∩   )) $ ((       ) @ (         )) =    $     

(iii)  ((       )   (        )) @ ((        )   (        ))=    @   ; 

(iv)  ((       )   (    @   )) @ ((        )   (    @   ))=    @   ; 

(v)  ((       )   (    #   )) @ ((        )   (    #   )) =    @   ; 

(vi)  ((        )   (    $   )) @ ((        )   (    $   )) =    @   ; 

(vii)  ((       )   (    @   )) @ ((        )   (    #   )) =    $   . 

 

Proof . In the following, we prove (i) and (iii), other results can be proved analogously. 

 

(i) From definitions in 2.4, 2.5 and 3.1, we have 

 

((       )   (        ))  @  ((        )   (        )) 
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  ,   

 ] ,   [  
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 ] ,   [   
  ,   

 ] )} 
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This proves (i). 

 

(iii) From definitions in 2.4, 2.5 and 3.1, we have 
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Hence , 
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This proves (iii). 
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4. Conclusion  

 
In this paper we have defined three new operations on interval neutrosophic sets  based on 

the arithmetic mean, geometrical mean, and respectively harmonic mean, which involve 

different defining functions. Some related results have been proved and bring out the 

characteristics of the interval neutrosophic sets.  
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