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Abstract 

In face recognition, the distance criterion significantly influences the recognition 

rate. Misclassified test signals can be accurately reassigned to the correct class 

using various distance measures and the nearest neighbor algorithm. This study 

uniquely explores the recognition performance of DCVA, Fisherface subspace 

classifiers, and Convolutional Neural Network (CNN) in face recognition, an 

aspect not thoroughly explored in the literature. Accordingly, this study introduces 

a Discriminative Common Vector-based (DCVA) algorithm utilizing various 

distance measures for face recognition for the first time. Additionally, the 

Fisherface-based algorithm uses different distance measures and nearest 

neighbors. Experiments were conducted on three different face databases. The 

images were downsampled to simulate both sufficient and insufficient data 

conditions. Experimental results indicate that the Correlation distance measure 

generally outperforms the Euclidean distance for the DCVA and Fisherface-KNN 

algorithms under both data conditions. The Fisherface-KNN algorithm surpasses 

the classical Fisherface in performance for various distance measures and nearest 

neighbor numbers and yields better recognition rates than the DCVA algorithm in 

sufficient data conditions. Moreover, while DCVA and Fisherface-KNN achieved 

superior results for two smaller face databases, CNN demonstrated better 

performance for larger databases. 
 
 

1. Introduction 

 

The application of speech, face, and object 

recognition systems is rapidly expanding across 

various fields. The primary objectives of these 

systems are to perform the recognition process with 

minimal delay while ensuring robustness, user 

security, scalability, and high recognition rates. It is 

crucial for these systems to provide accurate results 

under various environmental conditions and noise 

levels to maintain robustness. Additionally, they need 

to be scalable, meaning they should handle increasing 

data volumes or a larger number of users without 

significant performance degradation. Moreover, 

facial recognition systems must securely store 

personal data. A crucial condition for achieving high 

recognition rates is the appropriate classifier 
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selection. Numerous classifiers such as CNN, ANN, 

KNN, SVM, Fisherface, and CVA are utilized for 

face recognition [1-7]. Among these, CVA is 

prominent as a subspace classifier with a high 

recognition rate and low computational complexity. It 

has been applied in various fields, including voice 

recognition, face recognition, image denoising, 

speaker recognition, and feature selection [8-13]. The 

number of samples and sample sizes in the training set 

classes are critical for CVA. If the size of a sample in 

the training set exceeds the total number of samples 

in all classes, an insufficient data case occurs; 

otherwise, a sufficient data case occurs. In the 

sufficient data case, the difference and indifference 

subspaces are intermixed and therefore the 

recognition rates may decrease. DCVA, a classifier 

mainly used in face recognition applications, is based 
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on the effective subspace classifier CVA [7]. The 

principal characteristic of DCVA is its ability to find 

a vector representing common properties for each 

class during training, termed the common vector. 

During the testing phase, the feature vectors of the test 

signal are acquired by projecting the test signal into 

the indifference subspace. Subsequently, the test 

signal is assigned to the class with the smallest 

Euclidean distance between the common vectors from 

the training phase and the feature vectors of the test 

signal. Fisherface is another effective subspace 

method employed in face recognition [9]. In the 

Fisherface method, training signals are initially 

projected using optimal basis vectors that maximize 

class separation during training. Then, the test vector 

is projected using these basis vectors, and this 

projected test vector is assigned to the class with the 

smallest Euclidean distance between the projected 

test vector and the projected training vectors across all 

classes [9]. A primary disadvantage of the DCVA and 

Fisherface methods is their reliance solely on 

Euclidean distance criteria. Conversely, a test signal 

misclassified according to Euclidean distance can be 

correctly classified using different distance measures 

or varying the number of nearest neighbors. Thus, 

more advantageous distance measures than Euclidean 

can be identified in the recognition process by 

employing different distance measures. Similarly, the 

literature includes studies comparing recognition 

performances based on different distance measures 

[14-19,42]. In [42], it was demonstrated that cosine 

and correlation distance outperformed the Euclidean 

distance of the original SIFT for the ORL face 

database. This paper also shows that the correlation 

distance measure provides better results than the 

Euclidean distance. The primary reason for this 

superior performance is the correlation distance's 

robustness to variations in lighting conditions, face 

positions, and facial expressions, contributing to 

improved accuracy in face recognition algorithms. 

This study proposes the DCVA algorithm, 

which utilizes different distance measures, and the 

Fisherface-KNN algorithm, which classifies based on 

various numbers of nearest neighbors and distance 

measures. Each image in the face database is 

downsampled to evaluate scenarios with both 

sufficient and insufficient data. The focus of the study 

is an in-depth performance comparison of DCVA, 

Fisherface-KNN, and CNN, using three different face 

databases. An examination of the average recognition 

results obtained by the proposed DCVA and 

Fisherface-KNN algorithms reveals that the 

correlation distance generally outperforms the 

Euclidean distance. Additionally, the Fisherface-

KNN algorithm typically delivers better results than 

the classical Fisherface across various distance 

measures and numbers of nearest neighbors. In cases 

with sufficient data, Fisherface-KNN achieves higher 

recognition rates than DCVA. 

A deep learning method, previously used as 

an expressive classifier in literature, was also 

employed through CNN [31-34]. The author in [37] 

introduced a face recognition method based on 

principal component analysis (PCA). However, PCA 

has limitations when handling variations in lighting 

conditions and facial expressions, which results in 

lower recognition rates. Another widely used 

approach is the application of support vector 

machines (SVMs) for face recognition [38]. SVMs 

effectively capture complex patterns in face images, 

though their computation time increases significantly 

with large datasets. Recent advances in deep learning, 

especially with CNNs, have achieved considerable 

success in face recognition. In [39], the well-known 

pre-trained AlexNet architecture was proposed. 

Following AlexNet, many CNN-based approaches for 

face recognition, such as FaceNet [40] and VGGFace 

[41], were developed. 

Thus, the recognition performances of face 

databases of three different sizes were examined 

using DCVA, Fisherface-KNN, and CNN. The rest of 

the paper is structured as follows: Section 2 

introduces the classifiers DCVA, Fisherface-KNN, 

and CNN, as well as the cases of sufficient and 

insufficient data. In Section 3, the face databases are 

presented, and the experimental results are discussed. 

Finally, Section 4 provides the conclusions. 
 

2. Proposed methods 
 

2.1. Proposed Subspace Methods 
 

This study conducted tests using different distance 

measures for DCVA and Fisherface-KNN. For 

DCVA, the nearest neighbor algorithm cannot be 

applied because it identifies a common vector for each 

class. In contrast, an algorithm using KNN decision 

criteria is proposed for Fisherface. The proposed 

Fisherface algorithm is based on the KNN structure 

and incorporates different distance measures, such as 

Cityblock, Correlation, Euclidean, and Spearman. 

The KNN algorithm predicts the class of a test vector 

based on the number of nearest neighbors, where the 

value of K, representing the number of nearest 

neighbors, directly influences the classification 

outcome and must be determined experimentally [14]. 

Table 1 presents the computational 

complexity of the classifiers along with a description 

of their parameters. As shown in Table 1, DCVA has 

low, Fisherface+KNN medium, and CNN high 

memory and computational complexity values. 
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Table 1. Comparison of computational complexity and resource usage of the DCVA, Fisherface+KNN, and CNN. 

Classifier 
Computational 

Complexity 

Resource Usage 

(Memory and 

CPU) 

Explanation 

DCVA O(T · K · n2) Low 

T: Number of classes 

K: Number of samples per class 

n: Data dimension 

 

Fisherface+KNN O(n3) + O(K · n) Medium 

n3: Complexity of PCA and LDA 

operations 

K: Number of nearest neighbors 

 

CNN O(l · m · f2 · c) High 

l: Number of layers 

m: Number of filters 

f: Filter size 

c: Input channels (e.g., 3 for RGB images) 

 

2.1.1. The Proposed DCVA Algorithm 

 

DCVA is superior to other subspace classifiers, 

especially in terms of low computational complexity. 

This advantage comes from using a discriminative 

common vector belonging to a class. [7]. If there are 

T different classes in the training set, where each class 

contains K samples, there will be a total of M=KT 

samples. If we denote the sample of the rth signal with 

class i as  𝒙𝒓
𝒊  in n-dimensional space, the within-class 

scatter matrix 𝑺𝒘 is found as follows: 

 

𝑺𝒘 = ∑ ∑ ((𝐱𝒓
𝒊 − 𝝁𝒊)(𝒙𝒓

𝒊 − 𝝁𝒊)
𝑇

)

𝐾

𝑟=1

𝑇

𝑖=1

 (1) 

where 𝝁𝒊 denotes the mean vector of the ith class. The 

projection matrix is found by the eigenvectors 

corresponding to Sw's smallest eigenvalues, spanning 

the indifference subspace [7]. 

 

P = VVT (2) 

The common vectors of the classes are 

obtained as follows: 

𝒙𝒄𝒐𝒎
𝒊 = 𝑷𝒙𝒓

𝒊 ,  r=1, 2, …, K, i=1, 2,.., T (3) 

The 𝐒𝒄𝒐𝒎 is found using the following 

equation: 

𝑺𝒄𝒐𝒎 = ∑(𝒙𝒄𝒐𝒎
𝒊 − 𝝁𝒄𝒐𝒎)

𝑻

𝒊=𝟏

(𝒙𝒄𝒐𝒎
𝒊

− 𝝁𝒄𝒐𝒎)
𝑻

, 𝒊 = 𝟏, … , 𝑻 

(4) 

The eigenvectors associated with the 

nonzero eigenvalues of the Scom matrix provide 

the projection vectors for the DCVA: 

𝑱(𝐖𝒐𝒑𝒕) = 𝒂𝒓𝒈𝒎𝒂𝒙|𝐖𝑻𝐒𝒄𝒐𝒎𝐖|. (5) 

The feature vectors can be written as follows: 

𝜴𝒊 = [< 𝒙𝒓
𝒊 , 𝒘𝟏 > ⋯ < 𝒙𝒓

𝒊 , 𝒘𝑪−𝟏 >] (6) 

where 𝜴𝒊 are the discriminative common vectors. 

Then, the feature vectors of test images are found by: 

𝜴𝒕𝒆𝒔𝒕 = 𝑾𝒐𝒑𝒕
𝑻 𝒙𝒕𝒆𝒔𝒕 (7) 

where 𝑾𝒐𝒑𝒕
𝑻 = [𝒘𝟏, 𝒘𝟐, … , 𝒘𝑻−𝟏]𝑻 and 𝜴test ∈

ℝ(𝑻−𝟏)×𝟏. The operations described above were 

performed for the insufficient data case (𝑴 <
𝒏). In the case of sufficient data (𝑴 > 𝒏), the 

common vector of the ith class is obtained from 

the projection of the mean feature vector (𝝁𝒊) of 

that class onto the indifference subspace: 

𝒙𝒄𝒐𝒎
𝒊 = 𝐏𝝁𝒊 (8) 

In case of sufficient data, the smallest k 

eigenvalues are selected to correspond to a certain z 

percentage of the sum of the eigenvalues [23],  

𝒛 =
∑ 𝝀𝒊

𝒌
𝒊=𝟏

∑ 𝝀𝒊
𝒏
𝒊=𝟏

 (9) 

where n represents the total number of eigenvalues 

and k indicates the count of the smallest selected 

eigenvalues. The DCVA algorithm's block diagram is 

illustrated in Figure 1. The abbreviation DCV stands 

for Discriminative Common Vectors. 
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Figure 1. Block diagram of the proposed DCVA algorithm. 

 

 

2.1.2. The Proposed Fisherface -KNN Algorithm 

 

Fisherface is one of the important algorithms based on 

Linear Discriminant Analysis for face recognition due 

to its effort to maximize the discrimination between 

classes in the training process [9, 20]. The 𝑺𝑾 is found 

using Eq. 1 mentioned above, and the between-class 

scatter matrix 𝑺𝑩 is calculated by: 

𝑺𝑩 = ∑ 𝑵(𝝁𝒊 − 𝝁)(𝝁𝒊 − 𝝁)𝑻

𝑻

𝒊=𝟏

 (10) 

where 𝑵 represents the number of samples in a class, 

𝝁𝒊 is the mean of the ith class, and 𝝁 is the mean of 

all classes. The optimal basis vectors (Uopt ) are 

determined as follows [9]: 

Uopt=
𝒂𝒓𝒈𝒎𝒂𝒙

𝑼

|𝑼𝑻𝑺𝑩𝑼|

|𝑼𝑻𝑺𝑾𝑼|
 ,   (11) 

In the Fisherface method, the above equations 

are valid for the sufficient data case (𝑴 > 𝒏). In the 

face recognition problem, in the case of insufficient 

data ( 𝑴 < 𝒏 ), the within-class scatter matrix 𝑺𝑾 is 

usually singular. To overcome this problem, the 

Fisherface method projects the feature space 

dimension onto a lower-dimensional space using 

Principal Component Analysis (PCA). Using 𝑼𝒐𝒑𝒕, 

feature vectors are found for each class as follows: 

 

𝜴𝒊 = 𝑼𝒐𝒑𝒕
𝑻  𝑿𝒊,   𝒊 = 𝟏, 𝟐, … , 𝑻 (12) 

 

where 𝜴𝒊 ∈ ℝ(𝑻−𝟏)×𝑲 and 𝑲 is the number of samples 

in the ith class. For classification, the test signal is first 

projected using 𝑼opt , and then 𝜴test (𝜴test ∈ 

ℝ(𝑻−𝟏)×𝟏) is found by: 

 

𝜴𝒕𝒆𝒔𝒕 = 𝐔𝐨𝐩𝐭
𝑻  𝒙𝒕𝒆𝒔𝒕 (13) 

 

The block diagram of the Fisherface-KNN 

algorithm is given in Figure 2 below. The 𝑺𝑾 and 𝑺𝑩 

scatter matrices are first found for the face images in 

the training set. The training process is performed 

using the KNN algorithm for the feature vectors (𝜴𝒊). 

Then, the test signal (𝜴test ) is found and assigned to 

the most appropriate class using the KNN algorithm. 

 

 

 

𝑺𝑾 

Projection matrix (P) 

𝑺𝒄𝒐𝒎 

Common vectors 

(𝒙𝒄𝒐𝒎
𝟏 , 𝒙𝒄𝒐𝒎

𝟐 , … , 𝒙𝒄𝒐𝒎
𝑻 ) 

𝑿𝟏, 𝑿𝟐, . . 𝑿𝑻 

𝑾𝒐𝒑𝒕
𝑻 =(a𝐫𝐠𝐦𝐚𝐱|𝑾𝑻𝑺𝒄𝒐𝒎𝑾|) 

           DCV 
𝜴𝒊, {𝜴

𝟏
, 𝜴𝟐, . . 𝜴𝑻} 

(𝜴𝑖ϵ𝑹(𝑪−𝟏)×1) 

  

Selected class i 

𝒙𝒕𝒆𝒔𝒕 

𝜴𝒕𝒆𝒔𝒕=𝑾𝒐𝒑𝒕
𝑻 𝒙𝒕𝒆𝒔𝒕 

Select distance 

measure 
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Figure 2. Block diagram of the proposed Fisherface-KNN algorithm. 

 

2.1.3. Proposed CNN Model 
 

In deep learning, a Convolutional Neural Network 

(CNN) is a class of artificial neural network, most 

commonly used for applications such as image and 

video recognition [26, 27], image classification, 

image segmentation [28, 29], and brain-computer 

interfaces [30]. The CNN model in Figure 3 was used 

in the study. 

 
Figure 3. The proposed CNN method. 

 

The layers of the proposed CNN model are listed in 

Table 2. 

Table 2. The layers of the proposed CNN model 

Layer level Layers 

1 Image Input (NxMx1 images)    

2 Convolution (3x3 convolutions, 8 filters) 

3 Batch Normalization    

4 ReLU 

5 Max Pooling (2x2 max pooling) 

6 Convolution (3x3 convolutions,16 filters) 

7 Batch Normalization    

8 ReLU 

9 Max Pooling (2x2 max pooling) 

10 Convolution (3x3 convolutions,32 filters) 

11 Batch Normalization    

12 ReLU 

13 Fully Connected  

14 Softmax       

15 Classification Output    

The proposed CNN architecture includes 

three convolutional layers, two max-pooling layers, 

and three regularization layers. The training was 

conducted over 12 epochs with eight iterations, using 

a learning rate of 0.01. The network training 

employed the stochastic gradient descent with 

momentum (SGDM) optimizer. 

 

2.2. The Cases of Sufficient and Insufficient Data  
 

For DCVA and Fisherface, the difference and 

indifference spaces can be completely separated in the 

insufficient data case, while these spaces cannot be 

distinguished in the sufficient data case. To 

investigate the effect of the sufficient data case for 

DCVA and Fisherface-KNN, the sizes of the images 

were reduced using the downsampling method. The 

image is downsampled using the mathematical 

expressions below, resulting in sub-images. 

𝑰𝒔 = 𝑰(𝒌𝒊, 𝒌𝒋)             i=1, 2 and j=1,2, (14) 

where 𝑰 represents test images, 𝐤𝟏 (𝒌𝟏 =
𝟏, 𝟑, 𝟓, … , 𝑵 − 𝟏) and 𝒌𝟐 (𝒌𝟐 = 𝟐, 𝟒, 𝟔, … , 𝑵) 

represent the pixel indices of the rows and columns of 

images and 𝑰𝒔 represents the sub-images. Four sub-

images are found as follows for the pth level, 

𝑰𝒑𝟏 = 𝑰(𝒌𝒊, 𝒌𝒋) ,          i=1 and  j=1,  

𝑰𝒑𝟐 = 𝑰(𝒌𝒊, 𝒌𝒋) ,          i=1 and  j=2,  

𝑰𝒑𝟑 = 𝑰(𝒌𝒊, 𝒌𝒋) ,          i=2 and  j=1,  

𝑰𝒑𝟒 = 𝑰(𝒌𝒊, 𝒌𝒋) ,          i=2 and  j=2,  

𝑿𝟏, 𝑿𝟐, . . 𝑿𝑻 

𝑼𝒐𝒑𝒕
𝑻

=(𝒂𝒓𝒈𝒎𝒂𝒙
𝑼

ቚ𝑼𝑻𝑺𝑩𝑼ቚ

ቚ𝑼𝑻𝑺𝑾𝑼ቚ
) 

𝒙𝒕𝒆𝒔𝒕 

 

𝜴𝒊 = 𝑼𝑻𝑿𝒊, {𝜴
𝟏

, 𝜴𝟐, . . 𝜴𝑻} 

(𝜴𝒊𝝐𝑹(𝑻−𝟏)×𝒎
) 

KNN algorithm 

(Training) 

Selected class i 

KNN algorithm 

(Test) 

𝑺𝑾 & 𝑺𝑩 

𝜴𝒕𝒆𝒔𝒕=𝑼𝒐𝒑𝒕
𝑻 𝒙𝒕𝒆𝒔𝒕 
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The average of sub-images is found, and an 

N/(2p) ×N/(2p)-dimensional matrix is obtained for the 

pth level. Figure 4 below shows how the 

downsampling process is done, and DS indicates the 

downsampling process.

 

Figure 4. The downsampling process of an image for p level. 

 

3. Experimental Studies 

The experiments were conducted on a desktop PC 

with a 3 GHz (i5-7400) processor and 8 GB RAM 

under Windows 10. The ORL, YALE, and Cropped 

YALE (C-YALE) face databases were used in the 

studies. The ORL face database includes 400 images 

of size 112 × 92, with face records of 40 individuals 

taken at ten different poses. Each face image was 

manually reduced to 64 × 64 size. The YALE face 

database contains face images of 15 individuals, with  

ten different images per person. The C-YALE 

database consists of 2280 images for 38 individuals, 

aligned, cropped, and resized to 168 × 192. In this 

database, 40 images were used for training and 20 for 

testing, with 3-fold cross-validation. In the test phase, 

test signals were classified using different distances 

such as Correlation, Cityblock, Euclidean, and 

Spearman. The recognition process was performed 

according to the numbers of nearest neighbors (K=1, 

K=3, K=5). In the experimental studies, 10-fold 

cross-validation was used to evaluate the performance 

of the proposed algorithms for the ORL and YALE 

face databases. Some image sizes obtained for 

different p-values are shown in Figure 5 below.

 

Figure 5. Some images of the C-YALE database for p=0, p=1, p=2 and p=3. 

 

All experimental results are given in the 

tables below. The symbol * indicates the sufficient 

data case, and the letter “p” shows the downsampling 

levels. CB, COR, EUC, and SP represent Cityblock, 

Correlation, Euclidean, and Spearman distances, 

respectively. As shown in Table 3, the best results for 

the proposed DCVA algorithm were generally 

obtained using the Correlation distance for sufficient 

and insufficient data cases across the three databases. 
 

I11 

I
12

 

I
13

 

I
14

 

DS 

N/2×N/2 
Subimages 

Level-1 Level-2 

I
21

 

I
22

 

I
23

 

I
24

 

DS 

N/4×N/4 
Subimages 

DS 

Level-p 

N/4×N/4 

I
p1

 

I
p2

 

I
p3

 

I
p4

 

DS 

N/(2p)×N/(2p) 

N/(2p)×N/(2p) 
Subimages 

N/2×N/2 N×N 
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Table 3. Mean accuracy rates of the proposed DCVA algorithm for the ORL and YALE 

Mean accuracy rates (%) 

Measures p=0 p=1 p=2 p=3 p=4* 

 

YALE 

CB 97.67 97.34 97.34 98 92 

COR 99.34 99.34 99.34 99.34 92 

EUC 98.34 98.34 98.34 98 93.34 

SP 96.34 96 96 96 86 

  p=0 p=1 p=2* p=3*  

 

ORL 

CB 99.25 99.25 97.5 88.75  

COR 100 100 98.25 90.25  

EUC 99.75 99.75 97.5 90.5  

SP 97.25 95.75 95.5 68.25  

  p=0 p=1 p=2* p=3*  

C-YALE 

CB 91.11 90.87 89.61 87.42  

COR 91.81 91.42 90.25 88.22  

EUC 91.62 91.38 90.13 87.91  

SP 89.21 88.82 87.53 86.21  

Recognition rates for DCVA decreased 

significantly for face databases in the case of 

sufficient data. The average recognition rates of the 

Fisherface-KNN algorithm were found according to 

the number of nearest neighbors (K=1, K=3, K=5) 

and different distance measures. For insufficient data, 

the Correlation distance gave the best results for K=1, 

K=3, and K=5. In the case of sufficient data, 

Euclidean and correlation distance measures gave 

similar results for the YALE database. However, the 

best results were obtained using the Correlation 

distance for the C-YALE database. Regarding 

sufficient data, Euclidean and correlation distances 

gave similar results for the YALE database in Table 

4. However, the best results were obtained using the 

correlation distance for the C-YALE database, as 

shown in Table 5. 

Table 4. Mean accuracy rates of the proposed Fisherface-KNN (K=1, K=3, K=5) algorithm for the YALE database 

 Mean accuracy rates (%)  

Measures p=0 p=1 p=2 p=3 p=4* 

 

K=1 

CB 97.33 97.33 98.00 98.67 98.00 

COR 99.34 99.34 98.67 98.67 98.34 

EUC 99.00 98.67 98.67 98.67 98.34 

SP 96.00 96.00 97.34 92.67 92.67 

 

K=3 

CB 98.67 98.67 98.00 98.67 98.34 

COR 99.67 99.67 99.34 99.34 98.67 

EUC 99.34 99.34 98.67 99.34 98.67 

SP 98.67 98.67 98.00 93.34 94.67 

 

K=5 

CB 98.34 99.67 99.34 98.67 98.67 

COR 99.67 99.34 98.67 98.00 99.34 

EUC 98.67 97.67 98.67 99.34 99.34 

SP 98.34 98.00 98.67 98.67 94.67 
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Table 5. Mean accuracy rates of the proposed Fisherface-

KNN algorithm for the C-YALE database 

 
Mean accuracy rates (%) 

Measures p=0 p=1 p=2 p=3* 

 

K=1 

CB 89.32 88.82 88.02 86.97 

COR 90.21 89.84 89.24 88.96 

EUC 90.06 89.76 88.72 88.62 

SP 86.89 86.65 86.13 85.95 

 

K=3 

CB 90.08 89.62 88.81 87.77 

COR 90.96 90.53 90.18 90.01 

EUC 90.87 90.26 89.75 89.07 

SP 87.52 87.21 87.02 86.73 

 

K=5 

CB 89.93 89.52 88.74 87.58 

COR 90.68 90.23 89.93 89.65 

EUC 90.66 90.12 89.21 88.95 

SP 87.50 87.20 86.92 86.65 

 

Table 6 provides the average recognition 

rates of the Fisherface-KNN algorithm for the ORL 

database. The Correlation distance generally gave the 

best results for insufficient data. while Euclidean 

performed better in the sufficient data case. 
 

Table 6. Mean accuracy rates of the proposed Fisherface-

KNN (K=1, K=3, K=5) algorithm for the ORL 
 Mean accuracy rates (%)  

Measures p=0 p=1 p=2* p=3* 

 

K=1 

CB 98.50 98.50 99.25 98.50 

COR 99.00 99.25 99.25 98.75 

EUC 99.00 99.00 99.25 98.75 

SP 96.25 97.75 98.25 93.25 

 

K=3 

CB 99.00 98.50 98.50 98.50 

COR 99.00 99.25 99.00 99.00 

EUC 99.25 99.00 99.25 99.25 

SP 97.50 98.75 95.75 92.00 

 

K=5 

CB 98.25 98.00 98.00 98.00 

COR 98.50 99.00 98.50 98.25 

EUC 98.75 98.50 98.50 98.75 

SP 96.75 98.50 92.50 90.25 

Table 7 presents the average recognition rates 

for the CNN model under both sufficient and 

insufficient data cases for the three face databases. 

 
Table 7. Mean accuracy rates of the CNN for the three 

databases 

Databases Mean accuracy rates (%) 

 p=0 p=1 p=2 p=3 p=4* 

YALE 93.34 92 88.67 88.67 87.34 

 p=0  p=1  p=2* p=3*   

ORL  95.25 92.5 86.25 85 - 

 p=0  p=1  p=2 p=3*   

C-YALE 93.97 93.48 92.89 91.62 - 

 

Table 8 compares the highest recognition 

rates of the DCVA, Fisherface-KNN, and CNN 

algorithms. The best results were generally achieved 

using the Correlation distance for subspace 

algorithms. The DCVA algorithm yielded higher 

average recognition rates than Fisherface-KNN for 

the ORL database, but Fisherface-KNN outperformed 

DCVA for the YALE database. Additionally, for 

ORL and YALE databases, the average recognition 

rates of CNN were lower than those of DCVA and 

Fisherface-KNN. However, CNN achieved higher 

recognition rates for the C-YALE database than 

DCVA and Fisherface-KNN. The reason for CNN's 

lower recognition rates on small databases is that 

CNN requires a large amount of data to learn the 

features of faces, and when working with a small 

dataset, there is not enough variety of examples to 

learn these features. Due to insufficient data, the 

model cannot fully learn the necessary features to 

distinguish between different faces, leading to low 

recognition rates. 

 

 

 

 

Table 8. The highest accuracy rates of the DCVA and Fisherface-KNN algorithms 

Mean accuracy rates (%)  

DCVA Fisherface-KNN CNN 

ORL YALE C-YALE ORL YALE C-YALE ORL YALE C-YALE 

100 99.34 91.81 99.25 99.67 90.96 95.25 93.34 93.97 

(COR) (COR) (COR) (COR&EUC) (COR) (COR)    
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4. Conclusion 
 

This study developed DCVA and Fisherface-based 

algorithms and explored the effects of different 

distance measures and the number of nearest 

neighbors on recognition rates. Additionally, a 

Convolutional Neural Network (CNN) was 

employed. The performances of the two subspace 

classifiers and CNN were examined under both 

sufficient and insufficient data cases. For the 

subspace classifiers, the Correlation distance 

generally provided higher recognition rates compared 

to Euclidean distance. In the sufficient data case, 

Fisherface-KNN outperformed DCVA, suggesting 

that Fisherface-KNN delivers better results when 

difference and indifference subspaces cannot be 

easily distinguished. 

The findings show that the choice of distance 

measures in subspace algorithms and the number of 

nearest neighbors in Fisherface-KNN can lead to 

better results than Euclidean distance. For the ORL 

and YALE databases, CNN produced lower average 

recognition rates compared to DCVA and Fisherface-

KNN. However, for the C-YALE database, CNN 

achieved higher recognition rates, highlighting that 

subspace methods are more effective for smaller 

databases, while CNN excels with larger datasets. The 

lower recognition rates of CNN for small databases 

are attributed to insufficient data, which prevents the 

model from fully learning the distinguishing features 

between different faces. 

The Correlation distance, which measures the 

direction and correlation between two vectors, is 

particularly robust to changes in lighting and 

brightness in face images. While brightness variations 

negatively affect other distance measures, such as 

Euclidean distance, Correlation distance remains 

stable against these variations. Consequently, the 

experiments demonstrated higher accuracy rates 

when using Correlation distance. 

This study focuses on three classifiers and 

small databases. However, future research will aim to 

include more classifiers and larger databases, as well 

as investigate recognition performance using hybrid 

classifiers. 
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