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ABSTRACT. In this paper, we introduce a unified method for generating ideals of Möbius-invariant Banach-valued
Bloch mappings on the complex open unit disc D, through the composition with the members of a Banach operator
ideal I. Using the linearization of derivatives of Banach-valued normalized Bloch mappings on D, this composition
method yields the so-called ideals of I-factorizable normalized Bloch mappings I ◦ B̂, where B̂ denotes the class of
normalized Bloch mappings on D. We present new examples of them as ideals of separable (Rosenthal, Asplund)
normalized Bloch mappings and p-integral (strictly p-integral, p-nuclear) normalized Bloch mappings for any p ∈
[1,∞). Moreover, the Bloch dual ideal IB̂-dual of an operator ideal I is introduced and shown that it coincides with
the composition ideal Idual ◦ B̂.
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1. INTRODUCTION

Let D be the complex open unit disc, let X be a complex Banach space and let H(D, X) be
the space of all holomorphic mappings from D into X . The Bloch space B(D, X) is the linear
space of all mappings f ∈ H(D, X) such that

ρB(f) := sup{(1− |z|2)∥f ′(z)∥ : z ∈ D} < ∞,

under the Bloch seminorm ρB, and the normalized Bloch space B̂(D, X) is the closed subspace
of B(D, X) formed by all those maps f for which f(0) = 0, under the Bloch norm ρB. For
simplicity, it is usual to write B (D) := B(D,C) and B̂ (D) := B̂(D,C). These spaces of Bloch
mappings have been studied by some authors and we know a lot of their properties (see, e.g.,
[2]).

A useful procedure for constructing new X-valued Bloch mappings on D consists of com-
posing the X-valued Bloch mappings on D with operators of some distinguished Banach oper-
ator ideal I. This process was used in [13] to characterize X-valued Bloch mappings on D that
have a Bloch range which is relatively (weakly) compact in X or such that the linear hull of its
Bloch range is a finite-dimensional subspace of X . Furthermore, these latter function spaces
enjoy the property of being invariant under the action of Möbius transformations of the unit
disc.

Motivated by these results, our main purpose here is to present a unified method of com-
position for generating ideals of Möbius-invariant I-factorizable Bloch mappings I ◦ B, where
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I is a Banach operator ideal and B is the class of Bloch mappings on D. For a first study of
Möbius invariant function spaces, we refer the reader to [3].

In the literature, we can find some interesting papers where this composition method has
been applied for constructing new classes of functions in different contexts as, for example,
the Lipschitz setting in [1] by Achour, Rueda, Sánchez-Pérez and Yahi and [18] by Saadi; the
polynomial and holomorphic contexts in [4] by Aron, Botelho, Pellegrino and Rueda; the poly-
nomial and multilinear settings in [5] by Belaada, Saadi and Tiaiba and [7] by Botelho, Pelle-
grino and Rueda; and the bounded holomorphic setting in [8] by Cabrera-Padilla and the same
authors of this paper.

This note is organized as follows: Section 2 presents the composition method for generating
Banach (normalized) Bloch ideals for a given Banach operator ideal I. In the normalized case,
our approach is based on the characterization of normalized I-factorizable Bloch mappings in
terms of their linearizations on a suitable Banach predual space of B̂(D) and, towards this end,
we will first recall some definitions and results of the theory of Bloch maps.

Section 3 contains a complete study on some new ideals of Banach (normalized) Bloch ideals
which can be generated by composition with a Banach operator ideal. This is the case of sepa-
rable (Rosenthal, Asplund) Bloch mappings and p-integral (strictly p-integral, p-nuclear) Bloch
mappings where p ∈ [1,∞).

Section 4 deals the notion of Bloch dual ideal IB̂-dual of an operator ideal I with the aid of
the transpose of a Bloch mapping. To this end, let us recall that the dual Idual of an operator
ideal I is an operator ideal, and it consists for any normed spaces X,Y of those T ∈ L(X,Y )

such that T ∗ ∈ I(Y ∗, X∗). Thus, we will be able to prove that IB̂-dual is justly the composition
ideal generated by Idual. Analogous studies have been done in some other nonlinear contexts
such as the Lipschitz setting in [1, 18], or the polynomial and multilinear settings in [6, 11, 16].

Notation. Throughout this paper, X and Y will denote complex Banach spaces. As usual,
BX and X∗ stand for the closed unit ball and the dual space of X , respectively. κX denotes
the canonical isometric linear embedding from X into X∗∗. T represents the set of all complex
numbers with modulus 1. For a set A ⊆ X , lin(A), lin(A) and aco(A) denote the linear hull, the
norm-closed linear hull and the norm-closed absolutely convex hull of A in X , respectively. We
denote by L(X,Y ) the Banach space of all continuous linear operators from X to Y endowed
with the operator canonical norm, and by F(X,Y ) the linear space of all finite-rank bounded
linear operators from X to Y . We denote by B(D,D) the set of all Bloch functions h : D → D,
and by B̂(D,D) its subset formed by all those h so that h(0) = 0.

2. I-FACTORIZABLE BLOCH MAPPINGS

We begin by introducing these types of Bloch mappings. A complete information on opera-
tor ideals may be seen in the monograph [15] by Pietsch.

Definition 2.1. Let X be a complex Banach space and let I be an operator ideal. A mapping f ∈
H(D, X) is said to be I-factorizable Bloch if there exist a complex Banach space Y , an operator T ∈
I(Y,X) and a mapping g ∈ B(D, Y ) such that f = T ◦ g, that is, the following diagram commutes
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D X

Y

f

g
T

The set of all I-factorizable Bloch mappings from D into X is denoted by I ◦B(D, X). If in the preceding
factorization of f , the mapping g satisfies in addition that g(0) = 0, then the set of all such mappings f
is denoted by I ◦ B̂(D, X).

If [I, ∥·∥I ] is a normed operator ideal and f ∈ I ◦ B(D, X), we set

γI◦B(f) = inf {∥T∥I ρB(g)} ,

where the infimum extends over all possible factorizations of f as above. In particular, we will write
∥f∥I◦B instead of γI◦B whenever f ∈ I ◦ B̂(D, X).

An easy argument will show that the functions introduced are in fact Bloch and by the way
we will see that they are invariant by Möbius transformations of D.

The Möbius group of D is formed by all one-to-one holomorphic maps ϕ that send D onto D.
This set is denoted by Aut(D), and each ϕ ∈ Aut(D) has the form ϕ = ηϕa for some η ∈ T and
a ∈ D, where ϕa(z) = (a− z)/(1− az) for all z ∈ D.

Let us recall that a seminormed space (A(D, X), ρA) of holomorphic maps from D into X is
said to be Möbius-invariant if the following two conditions are satisfied:

(1) A(D, X) ⊆ B(D, X) and there exists k > 0 such that ρB(f) ≤ kρA(f) for all f ∈ A(D, X),
(2) f ◦ ϕ ∈ A(D, X) with ρA(f ◦ ϕ) = ρA(f) for every f ∈ A(D, X) and ϕ ∈ Aut(D).

Proposition 2.1. Let X be a complex Banach space and let [I, ∥ · ∥I ] be a normed operator ideal. Then
(I ◦ B(D, X), γI◦B) is a Möbius-invariant space.

Proof. Let f ∈ I ◦ B(D, X) and assume that f = T ◦ g for some complex Banach space Y , an
operator T ∈ I(Y,X) and a mapping g ∈ B(D, Y ).

(1) Then f ′ = T ◦ g′. Therefore

(1− |z|2) ∥f ′(z)∥ = (1− |z|2) ∥T (g′(z))∥ ≤ (1− |z|2) ∥T∥ ∥g′(z)∥ ≤ ∥T∥ ρB(g)

for all z ∈ D, and so f ∈ B(D, X) with ρB(f) ≤ ∥T∥ ρB(g). Taking the infimum
over all such factorizations of f , we conclude that ρB(f) ≤ γI◦B(f). If λ ∈ C, then
λf = λT ◦ g, hence λf ∈ I ◦ B(D, X) with γI◦B(λf) ≤ ∥λT∥ ρB(g) = |λ| ∥T∥ ρB(g) and
taking the infimum over all the factorizations of f yields γI◦B(λf) ≤ |λ| γI◦B(f). Con-
versely, if λ ̸= 0, this implies that γI◦B(f) = γI◦B(λ

−1(λf)) ≤ |λ|−1
γI◦B(λf) and thus

|λ| γI◦B(f) ≤ γI◦B(λf), while if λ = 0, it is clear that γI◦B(λf) = 0 = |λ| γI◦B(f).
If f1, f2 ∈ I ◦ B(D, X), given ε > 0, for each i = 1, 2, we can find a complex Banach

space Yi, an operator Ti ∈ I(Yi, X) and a mapping gi ∈ B(D, Yi) with ρB(gi) = 1 and
∥Ti∥I ≤ γI◦B(fi) + ε/2 such that fi = Ti ◦ gi. Consider the Banach space Y = Y1 ⊕∞ Y2

and define the mappings T : Y → X and g : D → Y by T (y1, y2) = T1(y1) + T2(y2) for
all (y1, y2) ∈ Y and g(z) = (g1(z), g2(z)) for all z ∈ D, respectively. An easy calculation
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shows that T ∈ I(Y,X) with ∥T∥I ≤ ∥T1∥I + ∥T2∥I and g ∈ B(D, Y ) with ρB(g) ≤ 1.
Clearly, T ◦ g = f1 + f2, and so f1 + f2 ∈ I ◦ B(D, X) with

γI◦B(f1 + f2) ≤ ∥T∥I ρB(g) ≤ ∥T1∥I + ∥T2∥I ≤ γI◦B(f1) + γI◦B(f2) + ε.

The arbitrariness of ε > 0 ensures that γI◦B(f1 + f2) ≤ γI◦B(f1)+ γI◦B(f2). So we have
proved that (I ◦ B(D, X), γI◦B) is a seminormed space.

(2) Let ϕ ∈ Aut(D). Then f ◦ ϕ = T ◦ g ◦ ϕ, where g ◦ ϕ ∈ B(D, Y ) with ρB(g ◦ ϕ) = ρB(g).
Hence f ◦ ϕ ∈ I ◦ B(D, X) and γI◦B(f ◦ ϕ) ≤ ∥T∥ ρB(g). Passing to the infimum over
all the factorizations of f yields γI◦B(f ◦ϕ) ≤ γI◦B(f). The converse inequality follows
from what we have proved.

□

Motivated by [13, Definition 5.11] (see the definition that follows Theorem 2.2), we say that
a seminormed ideal of Bloch mappings (or simply, a seminormed Bloch ideal) is a subclass IB

of the class of all Bloch mappings B, equipped with a function ρIB : IB → R, such that for each
complex Banach space X , the components

IB(D, X) := IB ∩ B(D, X)

satisfy the properties:
(P1) (IB(D, X), ρIB) is a seminormed space with pB(f) ≤ ρIB(f) for all f ∈ IB(D, X),
(P2) for any g ∈ B(D) and x ∈ X , the mapping g · x : z 7→ g(z)x from D to X is in IB(D, X)

with ρIB(g · x) = pB(g) ∥x∥,
(P3) the ideal property: if f ∈ IB(D, X), h ∈ B(D,D) and T ∈ L(X,Y ) where Y is a complex

Banach space, then T ◦ f ◦ h is in IB(D, Y ) with ρIB(T ◦ f ◦ h) ≤ ∥T∥ ρIB(f).

Proposition 2.2. Let [I, ∥ · ∥I ] be a normed operator ideal. Then [I ◦ B, γI◦B] is a seminormed Bloch
ideal.

Proof. (P1): It has been proved in Proposition 2.1.
(P2): Take g and x as in (P2), note that g · x = Mx ◦ g, where Mx ∈ F(C, X) ⊆ I(C, X) is the

operator defined by Mx(λ) = λx for all λ ∈ C, and so g · x ∈ I ◦ B(D, X) with γI◦B(g · x) ≤
∥Mx∥I ρB(g) = ∥Mx∥ ρB(g) = ∥x∥ ρB(g) and, conversely, ρB(g) ∥x∥ = ρB(g · x) ≤ γI◦B(g · x) by
the inequality in (P1).

(P3): Take f ∈ I ◦ B(D, X), and h and T as in (P3). We can write f = S ◦ g for some complex
Banach space Z, an operator S ∈ I(Z,X) and a mapping g ∈ B(D, Z). Hence T ◦f◦h = T ◦S◦g◦
h. Therefore T ◦ f ◦h ∈ I ◦B(D, Y ) with γI◦B(T ◦ f ◦h) ≤ ∥T ◦ S∥I ρB(g ◦h) ≤ ∥T∥ ∥S∥I ρB(g).
Note that ρB(g ◦ h) ≤ ρB(g) since (1 − |z|2)|h′(z)| ≤ 1 − |h(z)|2 for all z ∈ D by the Pick–
Schwarz Lemma. Taking the infimum over all the factorizations of f gives γI◦B(T ◦ f ◦ h) ≤
∥T∥ γI◦B(f). □

Our next goal is to characterize I-factorizable normalized Bloch mappings by means of their
linearizations on a strongly unique predual of B̂(D), called Bloch-free Banach space over D.
With this purpose, we now recall some basic concepts of the theory initiated in [13] on this
predual. A similar technique of linearization of Bloch mappings has been applied in the recent
paper [17] by Quang.

For each z ∈ D, a Bloch atom of D is the functional γz ∈ B̂(D)∗ defined by γz(f) = f ′(z) for
all f ∈ B̂(D). The elements of lin({γz : z ∈ D}) ⊆ B̂(D)∗ are referred to as Bloch molecules of D,
and the Bloch-free Banach space over D is the space G(D) := lin({γz : z ∈ D}) ⊆ B̂(D)∗.

We collect some basic properties of G(D) in the following result.
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Theorem 2.1 ([13]).
(i) The mapping Γ: D → G(D), defined by Γ(z) = γz for all z ∈ D, is holomorphic with ∥γz∥ =

1/(1− |z|2).
(ii) The space B̂(D) is isometrically isomorphic to G(D)∗, via Λ: B̂(D) → G(D)∗ given by

Λ(f)(γ) =

n∑
k=1

λkf
′(zk)

(
f ∈ B̂(D), γ =

n∑
k=1

λkγzk ∈ lin(Γ(D))

)
.

(iii) The closed unit ball of G(D) coincides with aco(M(D)), where M(D) =
{
(1− |z|2)γz : z ∈ D

}
.

(iv) For each function h ∈ B̂(D,D), the composition operator Ch : B̂(D) → B̂(D), defined by
Ch(f) = f ◦ h for all f ∈ B̂(D), is linear and continuous with ||Ch|| ≤ 1.

(v) For each function h ∈ B̂(D,D), there exists a unique operator ĥ ∈ L(G(D),G(D)) such that
ĥ ◦ Γ = h′ · (Γ ◦ h). Furthermore, ||ĥ|| = ||Ch||.

(vi) For every complex Banach space X and every mapping f ∈ B̂(D, X), there exists a unique
operator Sf ∈ L(G(D), X) such that Sf ◦ Γ = f ′. Furthermore, ∥Sf∥ = ρB(f).

(vii) The mapping f 7→ Sf is an isometric isomorphism from B̂(D, X) onto L(G(D), X).
(viii) Given f ∈ B̂(D, X), the mapping f t : X∗ → B̂(D), defined by f t(x∗) = x∗ ◦f for all x∗ ∈ X∗

and called Bloch transpose of f , is linear and continuous with ∥f t∥ = ρB(f). Furthermore,
f t = Λ−1 ◦ (Sf )

∗, where (Sf )
∗ : X∗ → G(D)∗ is the adjoint operator of Sf . □

We are now prepared to establish the announced result.

Theorem 2.2. Let X be a complex Banach space and f ∈ B̂(D, X). Given an operator ideal I, the
following conditions are equivalent:

(1) f belongs to I ◦ B̂(D, X),
(2) Sf belongs to I(G(D), X).

If, in addition, [I, ∥·∥I ] is a normed operator ideal, we have ∥f∥I◦B = ||Sf ||I , where the infimum
∥f∥I◦B is attained at Sf ◦ Γ. Furthermore, the mapping f 7→ Sf is an isometric isomorphism from
(I ◦ B̂(D, X), ∥·∥I◦B) onto (I(G(D), X), ∥·∥I).

Proof. (1) ⇒ (2): If f ∈ I ◦ B̂(D, X), then we can find a complex Banach space Y , an operator
T ∈ I(Y,X) and a mapping g ∈ B̂(D, Y ) such that f = T ◦ g. Since g′ = Sg ◦ Γ by Theorem
2.1, it follows that f ′ = T ◦ g′ = (T ◦ Sg) ◦ Γ, and since T ◦ Sg ∈ L(G(D), X), we have that
Sf = T ◦ Sg by Theorem 2.1, and thus Sf ∈ I(G(D), X) by the ideal property of I. Further, if
the ideal [I, ∥·∥I ] is normed, we have

∥Sf∥I = ∥T ◦ Sg∥I ≤ ∥T∥I ∥Sg∥ = ∥T∥I ρB(g),

and taking the infimum over all factorizations of f as above, we deduce that ||Sf ||I ≤ ∥f∥I◦B.
(2) ⇒ (1): Assume that Sf ∈ I(G(D), X). We can write f ′ = Sf ◦ Γ by Theorem 2.1. Since

Γ ∈ H(D,G(D)) by Theorem 2.1, an application of [13, Lemma 2.9] provides a mapping Υ ∈
H(D,G(D)) with Υ(0) = 0 such that Υ′ = Γ. Furthermore, (1−|z|2)∥Υ′(z)∥ = (1−|z|2)∥Γ(z)∥ =

1 for all z ∈ D, and thus Υ ∈ B̂(D,G(D)) with ρB(Υ) = 1. Hence f ′ = Sf ◦ Υ′. We claim that
f = Sf ◦Υ. Indeed, since f ′ = (Sf ◦Υ)′, we have (x∗◦f)′ = x∗◦f ′ = x∗◦(Sf ◦Υ)′ = (x∗◦Sf ◦Υ)′

for all x∗ ∈ X∗, this implies that x∗◦f = x∗◦Sf ◦Υ for all x∗ ∈ X∗ since x∗◦f, x∗◦Sf ◦Υ ∈ H(D)
and x∗ ◦ f(0) = x∗ ◦ Sf ◦Υ(0) = 0, and our claim follows because X∗ separates the point of X .
Hence f ∈ I ◦ B̂(D, X). If now [I, ∥·∥I ] is normed, we have

∥f∥I◦B ≤ ∥Sf∥I ρB(Υ) = ∥Sf∥I .

The last assertion of the statement follows readily from Theorem 2.1 and the proof above. □
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We will now show that the ideal property of I is inherited by I ◦ B̂. Towards this end, we
first recall the concept of normalized Bloch ideal introduced in [13] and some of its properties.

A normed (Banach) normalized Bloch ideal is a subclass IB̂ of the class of all normalized
Bloch mappings B̂, endowed with a function ∥·∥IB̂ : IB̂ → R, such that for every complex
Banach space X , the components

IB̂(D, X) := IB̂ ∩ B̂(D, X),

satisfy the following properties:

(Q1) (IB̂(D, X), ∥ ·∥IB̂) is a normed (Banach) space with ρB(f) ≤ ∥f∥IB̂ for all f ∈ IB̂(D, X).
(Q2) g · x ∈ IB̂(D, X) with ∥g · x∥IB̂ = ρB(g) ∥x∥ for every g ∈ B̂(D) and x ∈ X .
(Q3) The ideal property: T ◦ f ◦ h ∈ IB̂(D, Y ) with ∥T ◦ f ◦ h∥IB̂ ≤ ∥T∥ ∥f∥IB̂ whenever

f ∈ IB̂(D, X), h ∈ B̂(D,D) and T ∈ L(X,Y ) where Y is a complex Banach space.
Let us recall (see [15, Chapter B.3]) that if X and Y are Banach spaces and T ∈ L(X,Y ), then

T is called a metric injection if ∥T (x)∥ = ∥x∥ for all x ∈ X , and T is called a metric surjection if
T is surjective and ∥T (x)∥ = inf {∥y∥ : T (y) = T (x)} for all x ∈ X .

A normed normalized Bloch ideal (IB̂, ∥ · ∥IB̂) is said to be:

(I) Injective if for any f ∈ B̂(D, X), any complex Banach space Y and any metric in-
jection ι : X → Y , one has that f ∈ IB̂(D,X) with ∥f∥IB̂ = ∥ι ◦ f∥IB̂ whenever
ι ◦ f ∈ IB̂(D, Y ).

(S) Surjective if for any complex Banach space X , any f ∈ B̂(D, X) and any π ∈ B̂(D,D)
such that π̂ is a metric surjection, it holds that f ∈ IB̂(D, X) with ∥f∥IB̂ = ∥f ◦ π∥IB̂ if
f ◦ π ∈ IB̂(D, X).

(R) Regular if for any f ∈ B̂(D, X), we have that f ∈ IB̂(D,X) with ∥f∥IB̂ = ∥κX ◦ f∥IB̂

whenever κX ◦ f ∈ IB̂(D, X∗∗).

Corollary 2.1. We have:

(1) If [I, ∥·∥I ] is a normed (Banach) operator ideal, then [I ◦ B̂, ∥·∥I◦B] is a normed (Banach)
normalized Bloch ideal.

(2) If [I, ∥·∥I ] is an injective (surjective, regular) normed operator ideal, then [I ◦ B̂, ∥·∥I◦B] is an
injective (surjective, regular) normed normalized Bloch ideal.

Proof.

(1) Let [I, ∥·∥I ] be a normed operator ideal. Then [I ◦ B̂, ∥·∥I◦B] is a seminormed Bloch
ideal by Proposition 2.2. Furthermore, if f ∈ I ◦B̂(D, X) and ∥f∥I◦B = 0, the inequality
ρB(f) ≤ ∥f∥I◦B implies that f = 0, and thus ∥·∥I◦B is a norm on I ◦ B̂(D, X).

Since (I ◦ B̂(D, X), ∥·∥I◦B) is isometrically isomorphic to (I(G(D), X), ∥·∥I) by The-
orem 2.2, then [I ◦ B̂, ∥·∥I◦B] is a Banach space whenever [I, ∥·∥I ] is so.

(2) Suppose that the normed operator ideal [I, ∥·∥I ] is injective (surjective, regular). We
have:

(I) Assume that ι◦f ∈ I ◦ B̂(D, Y ), where Y is a complex Banach space and ι : X → Y
is a metric injection. Since ι ◦Sf = Sι◦f ∈ I(G(D), Y ) by Theorems 2.1 and 2.2, and
the operator ideal I is injective, we deduce that Sf ∈ I(G(D), X) with ||Sf ||I =

||ι ◦ Sf ||I , thus f ∈ I ◦ B̂(D, X) by Theorem 2.2 with

∥f∥I◦B = ∥Sf∥I = ∥ι ◦ Sf∥I = ∥Sι◦f∥I = ∥ι ◦ f∥I◦B ,
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and this proves that [I ◦ B̂, ∥·∥I◦B] is injective.
(S) Suppose that f ◦ π ∈ I ◦ B̂(D, X), where π ∈ B̂(D,D) such that π̂ is a metric

surjection. Since Sf ◦ π̂ = Sf◦π ∈ I(G(D), X) by Theorems 2.1 and 2.2, and the
operator ideal I is surjective, we have that Sf ∈ I(G(D), X) with ||Sf ||I = ||Sf ◦
π̂||I , hence f ∈ I ◦ B̂(D, X) by Theorem 2.2 with

∥f∥I◦B = ∥Sf∥I = ∥Sf ◦ π̂∥I = ∥Sf◦π∥I = ∥f ◦ π∥I◦B ,

and thus [I ◦ B̂, ∥·∥I◦B] is surjective.
(R) It follows with a proof similar to that of (I).

□

3. NEW EXAMPLES OF IDEALS OF I-FACTORIZABLE BLOCH MAPPINGS

In this section, we will present some notable subclasses of Bloch mappings: separable (Rosen-
thal, Asplund) Bloch mappings and p-integral (strictly p-integral, p-nuclear) Bloch mappings
for any p ∈ [1,∞). We will show their most important properties and demonstrate that they
correspond to I-factorizable Bloch mappings when I is the corresponding operator ideal.

Given two normed normalized Bloch ideals [IB̂, ∥·∥IB̂ ] and [J , ∥·∥J B̂ ], we will write

[IB̂, ∥·∥IB̂ ] ≤ [J , ∥·∥J B̂ ]

to indicate that for any Banach space X , we have IB̂(D, X) ⊆ J B̂(D, X) and ∥f∥J B̂ ≤ ∥f∥IB̂

for all f ∈ IB̂(D, X).

3.1. Mappings whose Bloch range is separable, Rosenthal or Asplund. Given a Banach space
X , let us recall that a set A ⊆ X is called:

• Rosenthal if every sequence in A admits a weak Cauchy subsequence,
• Asplund if A is bounded and for any countable set D ⊆ A, the seminormed space
(X∗, ∥ · ∥D) is separable, where ||x∗||D = supx∈D |x∗(x)|.

Let us recall that an operator T ∈ L(X,Y ) is said to be compact (resp., weakly compact, sep-
arable, Rosenthal, Asplund) if T (BX) is a relatively compact (resp., relatively weakly compact,
separable, Rosenthal, Asplund) subset of Y .

For I = F ,F ,K,W,S,R,AS, we will denote by I(X,Y ) the linear space of all finite-rank
(approximable, compact, weakly compact, separable, Rosenthal, Asplund) bounded linear op-
erators from X to Y , respectively. We refer to the monograph [15] for a complete study of the
ideal structure of such operators. The following inclusions are known:

F(X,Y ) ⊆ F(X,Y ) ⊆ K(X,Y ) ⊆ W(X,Y ) ⊆ R(X,Y ) ∩ AS(X,Y ),

K(X,Y ) ⊆ S(X,Y ).

Our aim is to study some Bloch variants of these classes of operators introduced with the
aid of the following set. Given a complex Banach space X and a mapping f ∈ H(D, X), the
Bloch range of f is defined as

rangB(f) :=
{
(1− |z|2)f ′(z) : z ∈ D

}
⊆ X.

Note that f ∈ H(D, X) is Bloch if and only if rangB(f) is a norm-bounded subset of X . Some
of the following concepts were introduced in [13, Definitions 5.1 and 5.2].
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Definition 3.2. Let X be a complex Banach space. A mapping f ∈ H(D, X) is said to be compact (resp.,
weakly compact, separable, Rosenthal, Asplund) if rangB(f) is a relatively compact (resp., relatively
weakly compact, separable, Rosenthal, Asplund) subset of X .

A mapping f ∈ H(D, X) is said to have finite dimensional Bloch rank if lin(rangB(f)) is a finite
dimensional subspace of X , and f is said to be approximable Bloch if it is the limit in the Bloch seminorm
ρB of a sequence of finite-rank Bloch mappings of B(D, X).

For I = F ,F ,K,W,S,R,AS, we denote by BI(D, X) the linear space of all finite-rank (resp.,
approximable, compact, weakly compact, separable, Rosenthal, Asplund) Bloch mappings from D into
X . We write B̂I(D, X) to represent the subspace consisting of all functions f ∈ BI(D, X) so that
f(0) = 0.

The following two results were established in [13] for the cases I = F ,F ,K,W . We now
complete it here for I = S,R,AS with similar proofs.

Proposition 3.3. Let X be a complex Banach space. For I = S,R,AS, the space (BI(D, X), ρB) is
Möbius-invariant.

Proof. Given f ∈ H(D, X) and ϕ ∈ Aut(D), for all z ∈ D we have

(1− |z|2)(f ◦ ϕ)′(z) = (1− |z|2)f ′(ϕ(z))ϕ′(z) = (1− |ϕ(z)|2)f ′(ϕ(z))
ϕ′(z)

|ϕ′(z)|
.

Hence rangB(f ◦ ϕ) ⊆ T rangB(f), and thus if rangB(f) has the I-property (the terminology
should be self-explanatory), it is readily seen that f ◦ ϕ has the I-property with pB(f ◦ ϕ) =
pB(f). □

We next analyse the relationship of a mapping f in B̂I(D, X) with its linearization Sf in
L(G(D), X).

Theorem 3.3. Let X be a complex Banach space and f ∈ B̂(D, X). For the operator ideal I =
S,R,AS, the following conditions are equivalent:

(1) f belongs to B̂I(D, X),
(2) Sf belongs to I(G(D), X).

Furthermore, f 7→ Sf is an isometric isomorphism from (B̂I(D, X), ρB) onto (I(G(D), X), ∥·∥).

Proof. First, using Theorem 2.1, we obtain the relations:

rangB(f) = Sf (MB(D)) ⊆ Sf (BG(D)) = Sf (aco(MB(D)))
⊆ aco(Sf (MB(D))) = aco(rangB(f)).

(1) ⇒ (2): Assume I = S,R,AS. If f ∈ B̂I(D, X), then rangB(f) has the I-property. It is
known that aco(rangB(f)) has the I-property and since the I-property is hereditary,
the second inclusion above tells us that Sf (BG(D)) has the I-property. This means that
Sf ∈ I(G(D), X).

(2) ⇒ (1): If Sf ∈ I(G(D), X), then Sf (BG(D)) has the I-property, hence rangB(f) has the I-
property by the first inclusion above, and this means that f ∈ B̂I(D, X).

The last assertion of the statement follows using Theorem 2.1 and what was proved above.
□

It is known that the Banach operator ideals S,R,AS are injective and surjective (see [15] or
a list of such examples in [12]). In view of Theorem 3.3, the combination of Theorem 2.2 and
Corollary 2.1 yield the following.
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Proposition 3.4. For I = S,R,AS, we have [B̂I , ρB] = [I ◦ B̂, ∥·∥I◦B] and, in particular, [B̂I , ρB] is
a surjective and injective Banach normalized Bloch ideal. □

3.2. p-Integral Bloch mappings. Following [15, Section 19.2], given two Banach spaces X,Y
and p ∈ [1,∞), an operator T ∈ L(X,Y ) is said to be p-integral if there exist a probability
measure µ and two operators R ∈ L(Lp(µ), Y

∗∗) and S ∈ L(X,L∞(µ)) such that

κY ◦ T = R ◦ Iµ∞,p ◦ S,

being Iµ∞,p : L∞(µ) → Lp(µ) the formal identity. The set of all p-integral operators from X into
Y is denoted by Ip(X,Y ), and the p-integral norm of T ∈ Ip(X,Y ) is

ιp(T ) = inf{∥R∥ ∥S∥},

where the infimum is taken over all such factorizations of κY ◦ T as above. It is well known
that [Ip, ιp] is a Banach operator ideal.

We now introduce a Bloch variant of this concept.

Definition 3.3. Let X be a complex Banach space and p ∈ [1,∞). A mapping f ∈ H(D, X) is said to
be p-integral Bloch if there exists a probability measure µ, an operator T ∈ L(Lp(µ), X

∗∗) and a Bloch
mapping g ∈ B(D, L∞(µ)) such that the following diagram commutes

D X X∗∗

L∞(µ) Lp(µ)

f κX

g

Iµ∞,p

T

The triple (T, Iµ∞,p, g) is termed a p-integral Bloch representation of f . We define

ιBp (f) = inf{∥T∥ρB(g)},

where the infimum is taken over all p-integral Bloch representations of f . The set of all p-integral Bloch
mappings from D into X is denoted by IB

p (D, X). If in the factorization of κX ◦ f , g verifies also that
g(0) = 0, then the set of such mappings f is denoted by IB̂

p (D, X).

A proof similar to that of Proposition 2.1 shows the following fact.

Proposition 3.5. Let X be a complex Banach space and p ∈ [1,∞). Then (IB
p (D, X), ιBp ) is Möbius-

invariant. □

Proof. Let f ∈ IB
p (D, X) and (T, Iµ∞,p, g) be a p-integral Bloch representation of f . Hence κX ◦

f = T ◦ Iµ∞,p ◦ g.
(1) Then κX ◦ f ′ = T ◦ Iµ∞,p ◦ g′. Therefore, for all z ∈ D, we have

(1− |z|2) ∥f ′(z)∥ = (1− |z|2) ∥κX(f ′(z))∥ = (1− |z|2)
∥∥T (Iµ∞,p(g

′(z)))
∥∥

≤ (1− |z|2) ∥T∥ ∥g′(z)∥ ≤ ∥T∥ ρB(g),

and so f ∈ B(D, X) with ρB(f) ≤ ∥T∥ ρB(g). Taking the infimum over all such (T, Iµ∞,p, g),
we have ρB(f) ≤ ιBp (f).
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(2) Let ϕ ∈ Aut(D). Then κX ◦ f ◦ ϕ = T ◦ Iµ∞,p ◦ g ◦ ϕ, where g ◦ ϕ ∈ B(D, Y ) with
ρB(g ◦ ϕ) = ρB(g). Hence f ◦ ϕ ∈ IB

p (D, X) and ιBp (f ◦ ϕ) ≤ ∥T∥ ρB(g). Taking the
infimum over all p-integral Bloch representations of f , we obtain ιBp (f ◦ϕ) ≤ ιBp (f). The
converse inequality follows from what we have proved.

□

We now study the linearization of p-integral normalized Bloch mappings.

Theorem 3.4. Let X be a complex Banach space, p ∈ [1,∞) and f ∈ B̂(D, X). Then f ∈ IB̂
p (D, X)

if and only if Sf ∈ Ip(G(D), X). In this case, ιBp (f) = ιp(Sf ). Moreover, (IB̂
p (D, X), ιBp ) and

(Ip(G(D), X), ιp) are isometrically isomorphic through the map f 7→ Sf .

Proof. Assume that f ∈ IB̂
p (D, X) and let ε > 0. Then there exist a probability measure µ, a

mapping g ∈ B̂(D, L∞(µ)) and an operator T ∈ L(Lp(µ), X
∗∗) such that

κX ◦ f = T ◦ Iµ∞,p ◦ g : D
g−→ L∞(µ)

Iµ
∞,p−−−→ Lp(µ)

T−→ X∗∗,

with ∥T∥ρB(g) ≤ ιBp (f) + ε. By Theorem 2.1, from the equality

κX ◦ Sf ◦ Γ = κX ◦ f ′ = T ◦ Iµ∞,p ◦ g′ = T ◦ Iµ∞,p ◦ Sg ◦ Γ,

we infer that κX ◦ Sf = T ◦ Iµ∞,p ◦ Sg , where Sg ∈ L(G(D), L∞(µ)). Hence Sf ∈ Ip(G(D), X)
with

ιp(Sf ) ≤ ∥T∥∥Sg∥ = ∥T∥ρB(g) ≤ ιBp (f) + ε.

Letting ε → 0 yields ιp(Sf ) ≤ ιBp (f).
Conversely, suppose that Sf ∈ Ip(G(D), X). Then, for each ε > 0 there exist a probability

measure µ and two operators T ∈ L(Lp(µ), X
∗∗) and S ∈ L(G(D), L∞(µ)) such that

κX ◦ Sf = T ◦ Iµ∞,p ◦ S : G(D) S−→ L∞(µ)
Iµ
∞,p−−−→ Lp(µ)

T−→ X∗∗,

with ∥T∥∥S∥ ≤ ιp(Sf ) + ε. As S ◦ Γ ∈ H(D, L∞(µ)), [13, Lemma 2.9] provides a mapping
g ∈ H(D, L∞(µ)) with g(0) = 0 such that g′ = S ◦ Γ, and hence

(1− |z|2)∥g′(z)∥ = (1− |z|2)∥(S ◦ Γ)(z)∥ ≤ ∥S∥ (z ∈ D).

Thus, g ∈ B̂(D, L∞(µ)) with ρB(g) ≤ ∥S∥. Moreover

(κX ◦ f)′ = κX ◦ f ′ = κX ◦ Sf ◦ Γ = T ◦ Iµ∞,p ◦ S ◦ Γ = T ◦ Iµ∞,p ◦ g′ = (T ◦ Iµ∞,p ◦ g)′,

which implies that κX ◦ f = T ◦ Iµ∞,p ◦ g, and then f ∈ IB̂
p (D, X) with

ιBp (f) ≤ ∥T∥ρB(g) ≤ ∥T∥ ∥S∥ ≤ ιp(Sf ) + ε.

Just letting ε → 0, the proof can be concluded. □

Since [Ip, ιp] is a Banach operator ideal, Theorems 2.2 and 3.4 and Corollary 2.1 yield the
following result.

Corollary 3.2. Let p ∈ [1,∞). Then [IB̂
p , ι

B
p ] = [Ip ◦ B̂, ∥·∥Ip◦B̂]. In particular, [IB̂

p , ι
B
p ] is a Banach

ideal of normalized Bloch mappings. □

Applying Theorem 3.4 and [15, Proposition 19.2.10], we deduce immediately the following.

Corollary 3.3. If 1 ≤ p ≤ q < ∞, then [IB̂
p , ι

B
p ] ≤ [IB̂

q , ι
B
q ]. □
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Let us recall from [9] that a mapping f ∈ H(D, X) is said to be p-summing Bloch for p ∈
[1,∞) if there is a constant C ≥ 0 such that for any n ∈ N, λ1, . . . , λn ∈ C and z1, . . . , zn ∈ D,
we have (

n∑
i=1

|λi|p∥f ′(zi)∥p
) 1

p

≤ C sup
g∈BB̂(D)

(
n∑

i=1

|λi|p|g′(zi)|p
) 1

p

.

The least of all the constants C for which such an inequality holds, denoted πB
p (f), defines a

norm on the linear space of all p-summing Bloch map f : D → X so that f(0) = 0, denoted
ΠB̂

p (D, X).
We can connect p-integral Bloch mappings with this class of Bloch maps. Compare the fol-

lowing result with [10, Proposition 5.5] and [15, Proposition 19.2.12].

Corollary 3.4. Let p ∈ [1,∞). Then:

(1) [IB̂
p , ι

B
p ] ≤ [ΠB̂

p , π
B
p ].

(2) [IB̂
p , ι

B
p ] ≤ [B̂W , ρB].

Proof. Let f ∈ IB̂
p (D, X). Then Sf ∈ Ip(G(D), X) with ιp(Sf ) = ιBp (f) by Theorem 3.4:

(1) Then Sf ∈ Πp(G(D), X) with πp(Sf ) ≤ ιp(Sf ) by [10, Proposition 5.5]. It is immediate
to prove that f ∈ ΠB̂

p (D, X) and πB
p (f) ≤ πp(Sf ), and this completes the proof.

(2) Now, Sf ∈ W(G(D), X) with ∥Sf∥ ≤ ιp(Sf ) by [15, Proposition 19.2.12]. Hence f ∈
B̂W(D, X) with ρB(f) = ∥Sf∥ by [13, Theorem 5.6], and we have finished.

□

3.3. Strictly p-integral Bloch mappings. In the linear context, an important subclass of p-
integral operators appears in [14] when the passage to the bidual in their definition is super-
fluous. Given two Banach spaces X,Y and p ∈ [1,∞), an operator T ∈ L(X,Y ) is said to be
strictly p-integral (or Pietsch p-integral) if there exist a probability measure µ and two operators
R ∈ L(Lp(µ), Y ) and S ∈ L(X,L∞(µ)) such that T = R ◦ Iµ∞,p ◦ S. We set

υp(T ) = inf{∥R∥ ∥S∥},

where the infimum is taken over all such factorizations of T as above. The set of all strictly
p-integral operators from X into Y is denoted by PIp(X,Y ), and it is known that [PIp, υp] is a
Banach operator ideal.

The corresponding Bloch version of this concept introduces a new class of Bloch mappings.

Definition 3.4. Given p ∈ [1,∞), a mapping f ∈ H(D, X) is said to be strictly p-integral Bloch or
Pietsch p-integral Bloch if there exist a probability measure µ, an operator T ∈ L(Lp(µ), X) and a Bloch
mapping g ∈ B(D, L∞(µ)) giving rise the commutative diagram

D X

L∞(µ) Lp(µ)

g

Iµ∞,p

T

f
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The triple (T, Iµ∞,p, g) is called a strictly p-integral Bloch representation of f . We denote by PIB̂
p (D, X)

the set of all strictly p-integral Bloch maps from D to X . If in the factorization of f , we also demand that
g(0) = 0, then the set of such maps f is represented by PIB̂

p (D, X). We set

υB
p (f) = inf{∥T∥ρB(g)},

where the infimum is taken over all strictly p-integral Bloch representations of f .

From Definitions 3.3 and 3.4, it is clear that PIB̂
p (D, X) ⊆ IB̂

p (D, X) and ιBp (f) ≤ υB
p (f) for

all f ∈ PIB̂
p (D, X).

With proofs similar to those of Subsection 3.2, we establish the following results.

Proposition 3.6. Let X be a complex Banach space and p ∈ [1,∞). Then (PIB
p (D, X), υB

p ) is Möbius-
invariant. □

Theorem 3.5. Let X be a complex Banach space, p ∈ [1,∞) and f ∈ B̂(D, X). Then f ∈ PIB̂
p (D, X)

if and only if Sf ∈ PIp(G(D), X), in whose case υB
p (f) = υp(Sf ). As a consequence,

(1) f 7→ Sf is an isometric isomorphism from (PIB̂
p (D, X), υB

p ) onto (PIp(G(D), X), υp),

(2) [PIB̂
p , υ

B
p ] = [PI ◦ B̂, ∥·∥PI◦B̂], and thus [PIB̂

p , υ
B
p ] is a Banach normalized Bloch ideal. □

3.4. p-Nuclear Bloch mappings. Let us recall from [15, Definition 18.1.1] that an operator T ∈
L(X,Y ) is said to be p-nuclear for p ∈ [1,∞) if T = R◦Mλ◦S, where S ∈ L(X, ℓ∞), R ∈ L(ℓp, Y )
and Mλ denotes the diagonal operator from ℓ∞ to ℓp defined by Mλ((xn)) = (λnxn) for all
(xn) ∈ ℓ∞, being λ = (λn) ∈ ℓp. We denote Np(X,Y ) to the set of all p-nuclear operators from
X into Y . It is known that Np is a Banach operator ideal under the norm

νp(T ) = inf{∥R∥ ∥λ∥p ∥S∥},

where the infimum is taken over all representations of T as above.
Next, we introduce the analogue to the concept of p-nuclear operator in the Bloch setting.

Definition 3.5. Let p ∈ [1,∞), let X be a complex Banach space and f ∈ H(D, X). We say that f is
p-nuclear Bloch if the following diagram commutes

D X

ℓ∞ ℓp

g

Mλ

T

f

where g ∈ B(D, ℓ∞), T ∈ L(ℓp, X) and λ = (λn) ∈ ℓp. We say that the triple (T,Mλ, g) is a p-
nuclear Bloch representation of f . The set of all p-nuclear Bloch mappings from D to X is denoted by
NB

p (D, X). If in the factorization of f , we also require that g(0) = 0, then N B̂
p (D, X) stands the set of

all such mappings f . Define
νBp (f) = inf{∥T∥ ∥λ∥p ρB(g)},

where the infimum is taken over all the above factorizations.

As in the preceding sections, we can prove the following.
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Proposition 3.7. Let X be a complex Banach space and p ∈ [1,∞). Then (NB
p (D, X), νBp ) is Möbius-

invariant. □

We first study the relationship between a p-nuclear Bloch mapping and its linearization.

Theorem 3.6. Let p ∈ [1,∞), let X be a complex Banach space and f ∈ B̂(D, X). Then f ∈ N B̂
p (D, X)

if and only if Sf ∈ Np(G(D), X). In this case, νBp (f) = νp(Sf ). Furthermore, (N B̂
p (D, X), νBp ) and

(Np(G(D), X), νp) are isometrically isomorphic via the mapping f 7→ Sf .

Proof. Let f ∈ N B̂
p (D, X). We can write f = T ◦ Mλ ◦ g, where T ∈ L(ℓp, X), λ ∈ ℓp and g ∈

B̂(D, ℓ∞). An application of Theorem 2.1 shows that Sf = T ◦Mλ ◦Sg where Sg ∈ L(G(D), ℓ∞).
Hence Sf ∈ Np(G(D), X) with

νp(Sf ) ≤ ∥T∥∥Mλ∥p ∥Sg∥ = ∥T∥∥Mλ∥p ρB(g).
Taking the infimum over all p-nuclear Bloch representations of f , we conclude that νp(Sf ) ≤
νBp (f).

Conversely, suppose that Sf ∈ Np(G(D), X) and let ε > 0. Hence we can assure the existence
of λ ∈ ℓp, R ∈ L(G(D), ℓ∞) and S ∈ L(ℓp, X) such that Sf = S ◦ Mλ ◦ R and ∥S∥∥λ∥p ∥R∥ ≤
(1 + ε)νp(Sf ). Thus f ′ = Sf ◦ Γ = S ◦Mλ ◦R ◦ Γ.

Since R ◦ Γ ∈ H(D, ℓ∞), by [13, Lemma 2.9], we can find h ∈ H(D, ℓ∞) with h(0) = 0 such
that h′ = R ◦ Γ, and in fact h ∈ B̂(D, ℓ∞) with ρB(h) ≤ ∥R∥. Hence we have

f ′ = S ◦Mλ ◦R ◦ Γ = S ◦Mλ ◦ h′ = (S ◦Mλ ◦ h)′.

It follows that f = S ◦Mλ ◦ h, and therefore f ∈ N B̂
p (D, X) with

νBp (f) ≤ ∥S∥∥λ∥p ρB(h) ≤ ∥S∥∥λ∥p ∥R∥ ≤ (1 + ε)νp(Sf ).

Just letting ε → 0, we obtain νBp (f) ≤ νp(Sf ). □

In view of Theorem 3.6, both Theorems 2.2 and Corollary 2.1 yield the following.

Corollary 3.5. Let p ∈ [1,∞). Then [N B̂
p , νBp ] = [Np ◦ B̂, ∥·∥Np◦B̂]. In particular, [N B̂

p , νBp ] is a
Banach ideal of normalized Bloch mappings. □

Applying Theorem 3.6, [10, Corollary 5.24] and [13, Theorem 5.9] gives some relations.

Corollary 3.6. (1) [N B̂
p , νBp ] ≤ [N B̂

q , νBq ] whenever 1 ≤ p ≤ q < ∞,

(2) [N B̂
p , νBp ] ≤ [PIB̂

p , υ
B
p ] and [N B̂

p , νBp ] ≤ [B̂F , ρB] whenever 1 ≤ p < ∞.
□

With Theorems 5.27 and 5.28 of [10] in mind, it is natural to expect some composition results.

Corollary 3.7. Let p ∈ [1,∞), let X be a complex Banach space and f ∈ B̂(D, X). The following are
equivalent:

(1) f ∈ N B̂
p (D, X).

(2) There exist a complex Banach space Y , T ∈ K(Y,X) and g ∈ IB̂
p (D, Y ) such that f = T ◦ g.

(3) There is a complex Banach space Y , T ∈ PIp(Y,X) and g ∈ B̂K(D, Y ) such that f = T ◦ g.
In this case, taking the infimum extended over all such factorizations yields

νBp (f) = inf
{
∥T∥ ιBp (g)

}
= inf {υp(T )ρB(g)} .

Proof.
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(1) ⇒ (2): If f ∈ N B̂
p (D, X), then Sf ∈ Np(G(D), X) with νBp (f) = νp(Sf ) by Theorem 3.6. Given

ε > 0, by [10, Theorem 5.27], we can take a complex Banach space Y , T ∈ K(Y,X)
and S ∈ Ip(G(D), Y ) such that Sf = T ◦ S and ∥T∥ ιp(S) ≤ νp(Sf ) + ε. By Theorem
3.4, there is a g ∈ IB̂

p (D, Y ) such that Sg = S and ιBp (g) = ιp(S). Hence Sf = T ◦ Sg ,
therefore f ′ = Sf ◦ Γ = T ◦ Sg ◦ Γ = T ◦ g′ = (T ◦ g)′ and this implies that f = T ◦ g.
Further, ∥T∥ ιBp (g) = ∥T∥ ιp(S) ≤ νp(Sf )+ε = νBp (f)+ε, and the arbitrariness of ε gives
∥T∥ ιBp (g) ≤ νBp (f).

(2) ⇒ (1): Assume that f = T ◦ g with T ∈ K(Y,X) and g ∈ IB̂
p (D, Y ) for some complex Banach

space Y . Hence Sf = T ◦ Sg with Sg ∈ Ip(G(D), Y ) and ιp(Sg) = ιBp (g) by Theorem 3.4.
Then Sf ∈ Np(G(D), X) with νp(Sf ) ≤ ∥T∥ ιp(Sg) by [10, Theorem 5.27]. We conclude
that f ∈ N B̂

p (D, X) with νBp (f) = νp(Sf ) by Theorem 3.6. Moreover, νBp (f) ≤ ∥T∥ ιBp (g)
and since we are working with an arbitrary factorization T ◦g for f , we get that νBp (f) ≤
inf
{
∥T∥ ιBp (g)

}
.

(1) ⇔ (3): This can be proved as the preceding implications by using now [10, Theorem 5.28] and
[13, Theorem 5.4] instead of [10, Theorem 5.27] and Theorem 3.4, respectively.

□

4. BLOCH DUAL IDEAL OF AN OPERATOR IDEAL

Following [15, Section 4.4], given a normed operator ideal [I, ∥·∥I ], recall that for any normed
spaces X and Y , the components

Idual(X,Y ) := {T ∈ L(X,Y ) : T ∗ ∈ I(Y ∗, X∗)} ,
endowed with the norm

∥T∥Idual = ∥T ∗∥I (T ∈ Idual(X,Y )),

define a normed operator ideal [Idual, ∥·∥Id ] called dual ideal of I. Moreover, [I, ∥·∥I ] is called
symmetric if [I, ∥·∥I ] ≤ [Idual, ∥·∥Idual ]. In the case [I, ∥·∥I ] = [Idual, ∥·∥Idual ], the operator ideal
is said to be completely symmetric.

With the aid of the notion of transpose of a Bloch mapping, we now introduce the next
concept.

Definition 4.6. Let I be an operator ideal. For any complex Banach space X , we define

IB̂-dual(D, X) = {f ∈ B̂(D, X) : f t ∈ I(X∗, B̂(D))}.
If [I, ∥·∥I ] is a normed operator ideal, we set

∥f∥IB̂-dual = ∥f t∥I (f ∈ IB̂-dual(D, X)).

We now show that [IB̂-dual, ∥ · ∥IB̂-dual ] is really an ideal of normalized Bloch mappings.

Theorem 4.7. Let X be a complex Banach space and f ∈ B̂(D, X). If I is an operator ideal, then
f ∈ IB̂-dual(D, X) if and only if f ∈ Idual ◦ B̂(D, X). Moreover, if (I, ∥·∥I) is a normed operator ideal,
then ∥f∥IB̂-dual = ∥f∥Idual◦B̂ for all f ∈ IB̂-dual(D, X).

Proof. Let us assume that f ∈ IB̂-dual(D, X). Then f t ∈ I(X∗, B̂(D)). By Theorem 2.1, there ex-
ists Sf ∈ L(G(D), X) such that Sf ◦Γ = f ′ and also (Sf )

∗ = Λ◦f t. Hence (Sf )
∗ ∈ I(X∗,G(D)∗)

and therefore Sf ∈ Idual(G(D), X). Thus, by Theorem 2.2, we have f ∈ Idual ◦ B̂(D, X) with
∥f∥Idual◦B̂ = ∥Sf∥Idual . Further,

∥f∥Idual◦B̂ = ∥Sf∥Idual = ∥(Sf )
∗∥I = ∥Λ ◦ f t∥I ≤ ∥Λ∥∥f t∥I = ∥f∥IB̂-dual .



112 A. Jiménez-Vargas and D. Ruiz-Casternado

Conversely, let f ∈ Idual ◦ B̂(D, X). Then there are a complex Banach space Y , a mapping
g ∈ B̂(D, Y ) and an operator T ∈ Idual(Y,X) such that f = T ◦ g. Given x∗ ∈ X∗, we have

f t(x∗) = (T ◦ g)t(x∗) = x∗ ◦ (T ◦ g) = (x∗ ◦ T ) ◦ g = T ∗(x∗) ◦ g = gt(T ∗(x∗)) = (gt ◦ T ∗)(x∗),

and thus f t = gt ◦ T ∗. Since T ∗ ∈ I(X∗, Y ∗) and gt ∈ L(Y ∗, B̂(D)), we obtain that f t ∈
I(X∗, B̂(D)). Hence f ∈ IB̂-dual(D, X) and moreover, we have

∥f∥IB̂-dual =
∥∥f t
∥∥
I =

∥∥gt ◦ T ∗∥∥
I ≤

∥∥gt∥∥ ∥T ∗∥I = ρB(g) ∥T∥Idual ,

and taking the infimum over all representations T ◦ g of f , we conclude that ∥f∥IB̂-dual ≤
∥f∥Idual◦B̂. □

An immediate consequence of Theorem 4.7 is the following.

Corollary 4.8. [IB̂-dual, ∥ · ∥IB̂-dual ] = [I ◦ B̂, ∥·∥I◦B] whenever [I, ∥·∥I ] is a completely symmetric
normed operator ideal. □

Since the ideal I = F ,F ,K,W is completely symmetric by [15, Proposition 4.4.7], Corollary
4.8 combined with Theorem 2.2 and [13, Theorems 5.4, 5.6, 5.7 and 5.9] yield the following
identifications.

Corollary 4.9. [IB̂-dual, ∥ · ∥IB̂-dual ] = [B̂I , ρB] for I = F ,F ,K,W . □

Since the normed operator ideal [I1, ι1] is completely symmetric by [10, Theorem 5.15],
Corollaries 4.8 and 3.2 give the following result.

Corollary 4.10. [(I1)B̂-dual, ∥ · ∥(I1)B̂-dual ] = [IB̂
1 , ι

B
1 ]. □

5. CONCLUSIONS

This study has presented a unified method for generating ideals of Möbius-invariant Bloch
mappings by composition of a member of a distinguished Banach operator ideal and a Bloch
mapping on the complex unit open disc. Our approach is based on the application of a known
technique of linearization of Bloch mappings. The aforementioned method permits an ex-
tensive exploration into new classes of Bloch mappings in connection with known Banach
operator ideals. This highlights the close interconnection between the linear setting and the
holomorphic setting. Notably, the study has drawn meaningful results which contributes to
understanding of richness of Bloch mappings.
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