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Öz 

Yaygın olarak kullanılan üç boyutlu (3B) baskı şeklinde 
adlandırılan eklemeli üretim, işleme, dövme, kaynak ve toz 
sinterleme gibi geleneksel üretim tekniklerinin aksine, karmaşık 
nesneleri hızla üretme kabiliyeti ile öne çıkmaktadır. 
Günümüzde eklemeli üretim, işlevsel ve hafif son ürünler 
oluşturmak için sıklıkla kullanılmaktadır. Bu nedenle, bu tür 
malzemelerden oluşan yapıların tasarım sürecinde serbest 
titreşim analizi büyük önem taşımaktadır. Bu çalışmanın amacı, 
kelepçeli-kenetlenmiş sınır koşullarına sahip PET-G, PLA ve ABS 
malzemelerinden yapılmış 3B yazıcı kullanılarak üretilmiş eğrisel 
kirişlerin açılma açısı, eğrilik yarıçapı ve kalınlık gibi 
parametrelerdeki değişikliklerin yapının düzlem içi titreşim 
karakteristikleri üzerindeki etkilerini araştırmaktır. ANSYS sonlu 
elemanlar programı kullanılarak modellenen eğrisel kiriş 
yapısının titreşim parametreleri belirlenmiştir. Önerilen modelin 
doğruluğunu ve uygulanabilirliğini doğrulamak için sayısal 
sonuçlar literatürdeki bulgularla karşılaştırılmıştır. Sonuç olarak, 
3B yazıcı ile üretilmiş eğrisel kirişlerin malzeme ve geometrik 
özelliklerindeki değişikliklerin yapının doğal frekanslarını önemli 
ölçüde etkilediği bulunmuştur. 
 
Anahtar Kelimeler: Serbest titreşim; Eğri kirişler; Eklemeli imalat; Sonlu 
elemanlar yöntemi.   

Abstract 
Additive manufacturing, commonly referred to as 3D printing, 
stands out for its ability to rapidly produce complex objects, 
contrasting with conventional manufacturing techniques such 
as machining, forging, welding, and powder sintering. Today, 
additive manufacturing is often used to create functional and 
lightweight final products. Therefore, free vibration analysis is 
crucial in the design process of structures composed of such 
materials. The objective of this study is to investigate the effects 
of variations in parameters such as opening angle, curvature 
radius, and thickness of 3D-printed curved beams made of PET-
G, PLA, and ABS materials, which have clamped-clamped 
boundary conditions, on the in-plane vibration characteristics of 
the structure. The vibration parameters of the curved beam 
structure have been determined to use modeled the ANSYS 
finite element program. Numerical results have been compared 
with findings from the literature to validate the accuracy and 
applicability of the proposed model. Consequently, it has been 
found that changes in the material and geometric properties of 
3D-printed curved beams significantly influence the natural 
frequencies of the structure. 
 
Keywords: Free vibration; Curved beams; Additive manufacturing; Finite 
element method. 

  

 

1. Introduction 

Unlike straight beams and plates, the vibration 

characteristics of composite curved beams, which are 

used in fields such as aerospace, automotive, and defense 

industries, are more complex to analyze. Therefore, 

studying the dynamic analysis of these structures is 

crucial.  Numerous studies have been conducted to 

explore the complexities of curved beam vibrations. Some 

researchers focused on finite element mesh refinement 

for in-plane and out-of-plane vibrations of variable 

geometrical Timoshenko beams, emphasizing 

superconvergent vibration modes (Wang 2023). Another 

project team investigated the out-of-plane free vibration 

and forced harmonic response of curved beams with 

different boundary conditions (Mao et al. 2020). Also, the 

effect of porosity distribution on the vibration and 

damping behavior of inhomogeneous curved sandwich 

beams was studied (Taşkın and Demir 2023). In addition, 

the out-of-plane vibrations of curved uniform and 

tapered beams with additional mass was also analyzed in 

the scholarly archives (Özyiğit et al. 2017).  

Additive manufacturing, also known as 3D printing, was 

initially preferred for prototyping, but nowadays it is 

generally used to create functional and lightweight final 

products (Stano and Percoco 2021, Mishra and Das 2021, 

Ergene et al. 2023). Additive manufacturing facilitates the 

layer-by-layer production of industrial components using 

raw materials and energy sources (Layani et al. 2018, Ma 

*Makale Bilgisi / Article Info 
Alındı/Received: 19.07.2024 
Kabul/Accepted: 14.09.2024 

Yayımlandı/Published: xx.xx.xxxx 

https://dergipark.org.tr/tr/pub/akufemubid
https://creativecommons.org/licenses/by-nc/4.0/
https://orcid.org/0000-0002-2651-374X
https://orcid.org/0000-0002-4356-4696
https://creativecommons.org/licenses/by-nc/4.0/


 Free Vibration Analysis of 3D-printed ABS, PET-G and PLA Curved Beam: …, MARAŞ and BOLAT. 

207 

et al. 2021, De Agostinis et al. 2021). Vibration analysis of 

3D printing materials is a crucial area of study that focuses 

on understanding the vibrational behavior of structures 

fabricated using additive manufacturing technologies. 

Several research studies have been investigated different 

aspects of vibration analysis in the context of 3D printing 

materials such as PET-G, PLA, and ABS. For example, many 

researchers examined how varying printing parameters 

affect the thermal and mechanical characteristics of 3D-

printed PLA and PETG through fused deposition modelling 

(Hsueh et al. 2021). These studies provide valuable data 

on material behavior under different loading conditions, 

offering essential insights into how printing parameters 

affect the mechanical response of 3D-printed structures, 

which is crucial for vibration analysis. Additionally, in 

these studies, it has been demonstrated that the modal 

testing of 3D-printed samples, in conjunction with finite 

element analysis (FEA), effectively predicts the natural 

frequencies of intricate thin-walled structures. These 

approaches provide valuable insights into how additive 

manufacturing processes influence the vibrational 

behavior of printed components. (Grammatikopoulos et 

al. 2021). Similarly, experimental and finite element 

investigations were done on tapered beams made from 

3D-printed PET-G. They compared the natural frequency 

values of PET-G beams with those reinforced with carbon 

fiber (Ergene et al. 2023). The findings revealed that 

carbon fiber reinforcement led to higher natural 

frequency values compared to PET-G beams, emphasizing 

the influence of material composition on vibrational 

characteristics. Furthermore, the vibration and deflection 

responses of 3D-printed composites reinforced with 

carbon fiber and polylactic acid were investigated, 

highlighting how different material compositions can 

influence natural frequencies and damping properties 

(Kannan et al. 2023).  

Moreover, some researchers conducted experiments to 

establish a connection between material properties 

investigations, field experiments, shaking table tests, and 

FEM modeling to accurately determine the natural 

frequencies of 3D-printed models (Boron et al. 2023). This 

integrated approach provides a comprehensive 

understanding of how material properties impact the 

vibrational behavior of printed structures. Furthermore, 

how infill parameters affect the natural frequencies of 

ABS specimens fabricated using extrusion-based 3D 

printing was also scrutinized (Parpala et al. 2021). The 

study emphasized the significance of infill patterns in 

controlling structural vibrations. Additionally, the 

mechanical properties of recycled ABS printed with an 

open-source FDM printer integrated with ultrasound 

vibration were examined, showing significant 

improvements in flexural, compression, and tensile 

strength (Maidin et al. 2022).  

In exploring the mechanical properties of curved lattice 

structures, it is essential to consider the diverse research 

findings and insights available in the field. Lattice 

structures, known for their lightweight nature and high 

strength, offer unique mechanical characteristics that can 

be further enhanced through curvature and innovative 

design approaches. In another work, a nonlinear 

mechanics model of bio-inspired hierarchical lattice 

materials consisting of horseshoe microstructures was 

explored (Ma et al. 2016). The study emphasizes the 

hierarchical triangular lattice material's sharp transition in 

the stress-strain curve and high stretchability, highlighting 

the influence of lattice topology and microstructure 

geometry on mechanical behavior. The mechanical 

response of TiAl6V4 lattice structures manufactured by 

selective laser melting was also explored, providing 

insights into the mechanical properties of lattice 

structures under quasistatic and dynamic compression 

tests (Merkt et al. 2015). Understanding the mechanical 

behavior of lattice structures fabricated through 

advanced manufacturing techniques is essential for 

optimizing their performance in various applications. the 

additive manufacturing and mechanical properties of 

lattice-curved structures was analyzed, mapping the 

response of these structures under tensile loads to 

different stages and deformation mechanisms (Cuan-

Urquizo et al. 2019). This research sheds light on the 

deformation behavior of curved lattice structures, 

including stages such as straightening, stretching, and 

fracture, offering valuable insights into their mechanical 

responses. the manufacturing and characterization of 3D 

miniature polymer lattice structures using fused filament 

fabrication was evaluated, highlighting the control of cell 

geometry and the absence of additional post-processing 

requirements (Guerra Silva et al. 2021). Understanding 

the mechanical properties of lattice structures fabricated 

through specific additive manufacturing processes is 

essential for optimizing their performance and 

functionality. To gain a comprehensive understanding of 

the mechanical behaviors of 3D printing curved beams, it 

is crucial to consider various factors that influence their 

performance. The orientation of the print, as highlighted 

by some researchers (Süsler and Kazancı 2023), indeed 

plays a significant role in determining the mechanical 

properties of 3D-printed parts, especially in complex 

structures like curved beams. Additionally, the selection 

of the build configuration is paramount before adjusting 

other process parameters to ensure optimal 
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performance. In the realm of 3D printing, the use of 

continuous fibers for reinforcement has shown promising 

results in enhancing the mechanical properties of printed 

beams. Studies have demonstrated that the 

incorporation of continuous fibers, such as carbon fibers, 

can lead to a substantial increase in flexural properties, 

stiffness-to-mass ratio, and load-to-mass ratio of 3D-

printed beams (Zhang et al. 2024). In another effort, the 

importance of continuous fiber reinforced thermoplastic 

composites (CFRTPCs) in industrial applications was 

emphasized but note limitations such as high mold costs 

and constraints in manufacturing complex constructions, 

which can impact the mechanical behaviors of curved 

beams (Yang et al. 2017). Besides, the flexural properties 

of sandwich beams with auxetic cores was delved, 

highlighting the importance of evaluating the flexural 

behavior, energy absorption, and stiffness of 3D-printed 

polymeric sandwich beams (Najafi et al. 2022). 

Understanding how different core structures, such as 

square node anti-tetra chiral, arrowhead, and re-entrant 

auxetic cores, affect the mechanical properties is crucial 

in optimizing the design of curved beams. Similarly, the 

structural behavior of 3D printed concrete beams with 

various reinforcement strategies was evaluated, shedding 

light on how reinforcement techniques can impact the 

mechanical properties of beams (Gebhard et al. 2021). 

Understanding the interaction between the printing 

material and reinforcement is vital in ensuring the 

structural integrity of curved beams. Certain Project 

teams discuss the manufacturing and mechanical testing 

of curved sandwich beams with zero-Poisson's ratio 

honeycomb cores, highlighting the unique properties of 

curved corrugated sandwich beams and their mechanical 

behavior (Cao et al. 2023).  

When reviewing published studies on 3D-printed curved 

beams produced by Fused Filament Fabrication (FFF), it is 

noted that although there are few studies, these 

structures are generally experimentally investigated for 

their mechanical behavior. The free vibration analysis of 

3D-printed curved beams, including the determination of 

natural frequencies, mode shapes, and damping 

characteristics, is crucial in the design phase. Therefore, 

the free vibration analysis of these materials is essential 

for engineering design. This study aims to investigate the 

effects of curvature radius, curvature angles and 

thickness on the free vibration behavior of 3D-printed 

curved beams using the ANSYS finite element package by 

numerically. 
 

2. Material and Methods 

2.1 Verification of the numerical model 

To assess the accuracy and relevance of the proposed 

model, numerical results were compared with those from 

the study reported in the literature (Malekzadeh and 

Setoodeh 2009). The properties of the layered composite 

beam used in the comparison are: the ratios E1/E2 are 15 

and 40, G12 is 0.5E2, the density is 1500 kg/m³, the length-

to-thickness ratio (L/h) is 100, the width (b) is 0.025 m, the 

length (L) is 1 m, and the beam angles (θ) are 60° and 180°.  

Table 1 presents the natural frequency values obtained 

for a layered composite curved beam with a [0°/90°] 

stacking sequence under clamped-free boundary 

conditions. The non-dimensional natural frequency iω  is 

defined as ( )2

i i 1ω = ω L / h 12ρ / E . Comparison with 

the results of Malekzadeh and Setoodeh's (2009)  study 

shows that our findings demonstrate good agreement. 

As a second example, the natural frequency values of a 

laminated composite curved panel from a work 

(Hajianmaleki and Qatu 2012) were compared with those 

obtained using a finite element software package. The 

material and geometric properties of the laminated 

composite beam are as follows: E1=138 Gpa, E2=8.96 Gpa, 

ν12=0.3, G12=7.1 Gpa, ρ = 1580 kg/m³, L=1 m, b=0.025 m 

and h=0.05 m. Table 2 presents the natural frequency 

values for four-layer composite curved beam with a 

0°/90°/90°/0° stacking sequence under clamped-clamped 

boundary conditions. Non-dimensional natural frequency 

is presented as 2 2

1ω = ωa 12ρ / E h . Table 2 

demonstrates that the current results closely match those 

from Hajianmaleki and Qatu’s study.

Table 1. . Natural frequencies (Hz) of clamped-free curved beams made of laminated cross-ply [0°/90°] composites  

 𝐄𝟏/𝐄𝟐 = 𝟏𝟓 𝐄𝟏/𝐄𝟐 = 𝟒𝟎 

Method 

oθ=60  

1ω  2ω  3ω  1ω  2ω  3ω  

GDQ  24.171 115.726 313.280 32.984 148.176 384.031 
Ansys 24.820 117.620 311.820 33.783 143.460 356.570 

 o180=  

 1ω  2ω  3ω  1ω  2ω  3ω  

GDQ 28.241 78.294 237.939 38.161 99.246 289.980 
Ansys 31.467 83.668 247.720 43.391 101.260 282.940 
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Table 2. Natural frequencies of the laminated composite curved 
beam under clamped-clambed boundary condition (Hz) 
according to FEM (Hajianmaleki and Qatu 2012) and performed 
ANSYS in this work 

Modes 

0°/90°/90°/0° 

a/R=0.2 a/R=1 

3D FEM Ansys 3D FEM  Ansys 

1 421.00 413.25 938.19 963.75 

2 895.25 867.45 854.89 985.11 

3 1527.72 1414.90 1590.41 1868.60 

4 2211.30 2040.00 2166.21 2660.20 

5 2917.60 2725.50 2919.77 3576.70 

 

2.2 Parametric study 

Following the validation of the theoretical model, ANSYS 

software was used to conduct a free vibration analysis on 

a 3D-printed curved beam. This finite element 

methodology is a useful tool for engineers and 

researchers to improve their analyze capacity and is also 

tried for lots of other applications (Erdoğan et al. 2023; 

Depboylu et al. 2023).  

The beam was assumed to be made of ABS, PLA, and PET-

G materials. In Figure 1, the curved beam is characterized 

by a curvature radius R, width b, thickness t, and 

curvature angle θ. The x and z axes denote the primary 

axes of the beam's cross-section, while the y axis 

represents the tangent to the curve's axis. In this study, 

the mechanical properties of ABS, PLA, and PET-G 

materials are based on the data from the literature 

research (Bolat et al. 2023). Table 3 lists the material 

properties of the 3D-printed curved beam. Also, it is 

known that the printing orientation, load direction, and 

test speed are another critical factors affecting the 

mecjanical properties of the PLA, ABS, and PETG printed 

via additive manufacuring (Yılmaz et al. 2022; Bolat and 

Ergene 2023). In this study, the examined curved beam 

has clamped-clamped boundary conditions, and the 

beam width is b=0.025m. 

 

 

 
Figure 1. Geometric properties of the curved beam (Günyar et 
al. 2012). 

The numerical analysis was conducted using ANSYS 

software. The model was developed and evaluated with 

the SHELL 281 element, which features 8 nodes. Each 

node possesses 6 degrees of freedom, encompassing 

translations and rotations along the x, y, and z axes. This 

element's geometry is well-suited for analyzing thin shell 

structures (Russo et al. 2019). The modeled curved beam 

consists of 198 elements and 673 nodes. Figure 2 shows 

the ANSYS model of a 3D-printed curved beam with a 

radius length of 0.1 m and an opening angle of 30 degrees. 

In this study, the configurations considered for examining 

the effects of variations in geometric and material 

properties on the natural frequencies of 3D-printed 

curved beams are presented in Table 4. 

 
Table 3. Material properties of the 3D-printed curved beam 
(Bolat et al. 2023) 

Mat. ρ(kg/m3) σUTS(Mpa) E(Mpa) ν(-) 

PLA 1240 50 1500 0.36 

PETG 1290 46 2100 0.40 

ABS 1040 48 1250 0.35 

 

 
Figure 2. ANSYS model of 3D printed curved beam 

 

Table 4. The configurations of 3D-printed curved beam 

according to curvature angle (θ), curvature Radius (R), and 

thickness (t) 

Material θ R            t 

PLA 

PET-G 

ABS 

30o 0.10 m      0.002 m 

60 o 0.30 m 0.004 m 

90 o 0.50 m 0.006 m 

 
 

3. Results and Discussions 

Figure 3 shows the effect of opening angle variation on 

the natural frequencies of 3D-printed curved beams. As 

seen in Figure 3, as the opening angle increases, the 

rigidity of the curved beams decreases, leading to a 

reduction in the first, second, and third natural 

frequencies.  
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Figure 3. The effect of opening angle variation on the natural 
frequencies of 3D-printed curved beams: a) 1st frequency b) 2nd 
frequency c) 3rd  frequency 
 

Additionally, the natural frequency values are ranked 

from highest to lowest for PET-G, PLA, and ABS materials, 

respectively. It is observed that the natural frequency 

values of curved beams made of PLA and ABS materials 

are quite close to each other. This can be interpreted as 

the fact that the natural frequencies of materials with 

very similar mechanical properties are close to each 

other, as can be seen from the values given in Table 3. The 

variation of natural frequencies of 3D-printed curved 

beams with respect to radius length has been 

investigated. As seen in Figure 4, it is observed that as the 

radius length increases, the natural frequencies of the 

beams decrease. The natural frequencies in Figure 4 are 

ranked from highest to lowest for PET-G, PLA, and ABS 

materials. From the literature efforts (Bolat and Ergene 

2023; Yao et al., 2019) , it is seen that PLA is advantegeous 

for the tensile properties or ABS has lower density but 

when the usage purpose of the printed samples changes, 

other alternative filament materials can be selected as 

happened in this study. 

 
Figure 4. The effect of radius variation on the natural 
frequencies of  3D-printed curved beams: a) 1st frequency b) 
2nd frequency c) 3rd  frequency 

The effect of thickness variation on the first, second, and 

third natural frequencies of 3D printed curved beams is 

examined in Figure 5. Upon examining Figure 5, it can be 

observed that as the thickness of the curved beam 

increases, the structure's rigidity increases, resulting in a 

rise in natural frequencies. The highest natural 

frequencies are obtained from the curved beam made of 

PET-G material, while the lowest natural frequencies are 

obtained from the curved beam made of ABS material. 

This case can be explained by the warpage risk of the ABS 

materials (Ramian et al., 2021). Another point is that, as 

can be seen from Figure 3 to Figure 5, curved beams made 
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of PLA and ABS materials have similar natural frequency 

values. The mode shapes of a few curved beams with 

various geometric properties and materials are presented 

as examples in Figures 6, 7, and 8 to visualize the vibration 

modes.  

 
Figure 5. The effect of thickness variation on the natural 
frequencies of 3D-printed curved beams: a) 1st frequency b) 2nd 
frequency c) 3rd  frequency 

The mode shapes and natural frequencies of the curved 

beam consisting of PET-G material with geometric 

properties of R=0.1 m, θ=30o, and t=0.004 m are shown in 

Figure 6. Similarly, Figure 7 presents the mode shapes and 

natural frequencies of the curved beam made of ABS 

material with geometric properties R=0.7 m, θ=90o, and 

t=0.006 m. Likewise, the mode shapes and their 

corresponding frequencies of the curved beam made of 

PLA material with geometric properties R=0.1 m, θ=60o, 

and t=0.004 m are shown in Figure 8. 

 
Figure 6. Mode shapes with natural frequencies for PET-G beam 
(R=0.1m, θ=30o and t=0.004 m) 

 
Figure 7. Mode shapes with natural frequencies for ABS beam 
(R=0.7m, θ=90o and t=0.006 m) 

 
Figure 8. Mode shapes with natural frequencies for PLA beam 
(R=0.1m, θ=60o and t=0.004 m) 
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4. Conclusions 

In this study, the free vibration analysis of 3D-printed 

curved beams with clamped-clamped boundary 

conditions was numerically investigated. The effects of 

varying the opening angle, curvature radius, and thickness 

of curved beams made of PET-G, ABS, and PLA materials 

on the natural frequencies of the structure were 

examined. The accuracy of the presented method was 

validated by comparing the data obtained from previous 

studies. The most important findings from the numerical 

analyses can be summarized as follows: 
 

- The natural frequencies increase for 3D-printed 

curved beams with smaller opening angles. 

- As the radius of 3D-printed curved beams increase, 

the natural frequencies decrease. 

- The highest natural frequencies are observed in 

curved beams made of PET-G material, while the 

lowest natural frequencies are observed in curved 

beams made of ABS material. 

- The natural frequencies of curved beams made of 

ABS and PLA materials are very close to each other. 
 

In conclusion, the selection of material and geometric 

parameters for 3D-printed curved rods is of great 

importance, depending on their intended application. By 

choosing the appropriate material and geometric 

parameters, the natural frequencies can be kept away 

from the operating frequency, thus avoiding situations 

such as resonance, which can cause damage to structures. 
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