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Abstract 

      

     In this paper, we defined a new subclass of starlike 

and convex bi-univalent functions and examine some 

geometric properties this function class. For this 

definition class, we gave some coefficient estimates 

and solve Fekete-Sezöge problem. 
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1. Introduction 

 

    In this section, we give some basic information 

which we will use in our study. 

Let  H U  be the class of analytic functions on the 

open unit disk  : 1U z z    in the complex 

plane . By A , we will denote the class of the 

functions  f H U  given by the following series 

expansions   
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              (1.1) 

The subclass of univalent functions of A  is denoted 

by S  in the literature. This class was first introduced 

by Köebe (Köebe 1909) and has become the core 

ingredient of advanced research in this field. Many 

mathematicians were interested coefficient estimates 

for this class. Within a short period, Bieberbach 

published a (Bieberbach 1916) paper in which the 

famous coefficient hypothesis was proposed. This 
hypothesis states that if 
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f S  and has the series form (1.1), then na n  

for each 2n  . In 1985, it was de-Branges (de-

Branges 1985), who settled this long-lasting 

conjecture. There were a lot of papers devoted to this 

conjecture and its related coefficient problems 

(Brannan, Kirwan 1969, Janowski 1970, Sokol, 

Stankiewcz 1996, Sharmaet all 1996, Frasin, Aouf 

2011, Sharma et all 2016, Arif et all 2019, Cho et all 

2019, Kumar, Arora 2020, Mendiratta et all 2015, 

Bano, Raza 2020, Alotaibi et all 2020, Ullah et all 

2021, Mustafa, Nezir, Kankılıç 2023a)  

As is known that the function  f z  is called a bi-

univalent function, if itself and inverse is univalent in 

U  and  f U , respectively. The class of bi-

univalent functions is denoted by  .  

We will denote      1 ,  g w f w w f U  . In 

this case, if f    
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(1.2) 

where  
2 3

2 2 3 2 3 4 2 2 3 4,  2 ,  5

       ,... .

A a A a a A a a a a       
 

It is well known that the bi-starlike and bi-convex 

function classes defined on the open unit disk U are 

defined analytically as follows 
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2. Materials and Methods 

 

    It is well-known that an analytical function   

satisfying the conditions  0 0   and    1z   

is called Schwartz function. Let’s  ,f g H U , 

then it is said that f  is subordinate to g  and denoted 

by f g , if there exists a Schwartz function   , 

such that     .f z g z  

Ma and Minda using subordination terminology 

presented unified version of the classes  *S   and 

 C   as follows  

  

 
 

 

  
 

 

*

:  1 ,
,

S C

zf zzf z
f S z

f z f z

z U



  

 

     
 
 

  

  

 0,1  , 

where  z  is a univalent function with  0 1  , 

 0 0   and the region  U  is star-shaped 

about the point  0 1   and symmetric with respect 

to real axis. Such a function has a series expansion of 

the following form 
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In the past few years, numerous subclasses of the 

collection S  have been introduced as special choices 

of the classes  *S   and  C   (Brannan, Kirwan 

1969, Sokol, Stankiewcz 1996, Mendiratta et all 2015, 

Sharma et all 2016, Arif et all 2019, Shi et all 2019, 

Cho et all 2019, Kumar, Arora 2020, Alotaibi et all 

2020, Ullah et all 2021, Mustafa, Nezir, Kankılıç 

2023a, Frasin, Aouf 2011, Mustafa, Nezir, Kankılıç 

2023b, Mustaf, Nezir 2023, Mustafa , Demir 2023a, 

Mustafa, Demir, 2023b, Mustafa, Nezir, Kankılıç 

2023c, Mustafa, Nezir, Kankılıç 2023d, Mustafa, 

Demir 2023d).  

 

    Now, let's define some new subclass of bi-univalent 

functions in the open unit disk U . 

Definition 2.1. For  0,1  , 
1

2
   and 

 0    the function f   is said to be in the 

class  ,sinh , ,   
, if the following conditions are 

satisfied 
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From the Definition 2.1, in the special values of the 

parameters, we obtain the following function classes. 

 

Definition 2.2. For 
1

2
   and  0    the 

function f   is said to be in the class 

 *

,sinh ,S  
, if the following conditions are satisfied 
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Definition 2.2.1. For  0    the function 

f   is said to be in the class  *

,sinhS 
, if the 

following conditions are satisfied 
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Definition 2.2.2. For 
1

2
   the function f   is 

said to be in the class  *

,sinhS 
, if the following 

conditions are satisfied 
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Definition 2.2.3. For the function f   is said to be 

in the class 
*

,sinhS
, if the following conditions are 

satisfied 
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Definition 2.3. For 
1

2
   and  0    the 

function f   is said to be in the class 

 ,sinh ,C  
, if the following conditions are satisfied 
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Definition 2.3.1. For  0    the function 

f   is said to be in the class  ,sinhC 
, if the 

following conditions are satisfied 
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Definition 2.3.2. For 
1

2
   the function f   is 

said to be in the class  ,sinhC 
, if the following 

conditions are satisfied 
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Definition 2.3.3. For the function f   is said to be 

in the class ,sinhC , if the following conditions are 

satisfied 
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Definition 2.4. For  0,1  and   0  the

function f   is said to be in the class

,sinh  ,1,  , if the following conditions are

satisfied
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Definition 2.4.1. For  0,1   the function f   

is said to be in the class  ,sinh 
, if the following 

conditions are satisfied 
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Definition 2.5. For  0,1   and 
1

2
   the 

function f   is said to be in the class 

 ,sinh ,  
, if the following conditions are 

satisfied 
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Remark 2.1. Let's point out that the classes 

 *

,sinh ,S  
and  ,cosh ,C    was investigated  by 

Kankılıç and Mustafa (Kankılıç, Mustafa 2023a, 

Kankılıç, Mustafa 2023b).  

Let   be the class of analytic functions in U  satisfied 

the conditions  0 1p   and   Re 0p z  , 

z U , which from the subordination principle easily 

can written 
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where  p z  has the series expansion of the form 
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     (2.1)                     

The class   defined above is known as the class 

Caratheodory functions (Caratheodory 1907). 
Now, let us present some necessary lemmas known in 

the literature for the proof of our main results.   

 

Lemma 2.1 (Duren 1983). Let the function  p z  

belong in the class  . Then,  

2np   for each n  and 2n k n kp p p    

for  , ,   and 0,1n k n k    . 

The equalities hold for 
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Lemma 2.2 (Duren 1983) Let the an analytic function 

 p z  be of the form (2.1, then 

 2 2

2 1 12 4p p p x   , 

   

  

3

3 2 2 2

1 1 1 1 1

22

1

4

2 4 4

2 4 1

p

p p p x p p x

p x y

    

  

 

for ,x y  with 1 and 1x y  . 
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In this paper, we give some coefficient estimates and 

examine Fekete-Szegö problem for the class 

 ,sinh , ,   
. Additionally, the results obtained 

for specific values of the parameters in our study are 

compared with the results obtained in the literature. 

 

 

3. Results 

 

    In this section, we examine the coefficient estimates 

problem for the function class  ,sinh , ,   
. 

Theorem 3.1. If  ,sinh , ,f     , then are 

provided the following inequalities  
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Proof. Let  ,sinh , ,f     ,  0,1  , 
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          (3.2) 

Let’s the functions ,p q P  defined as follows: 
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From these equalities, we can write 
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Then, from the (3.1) and (3.4) can written the 

following equalities 
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     Comparing the coefficients of the same degree 

terms on the right and left sides of the equalities (3.5), 

we obtain the following equalities for the coefficients 

2a  and 3a  of the function f  
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(3.9) 

From the equalities (3.6) and (3.8), we can write 
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that is,  

1 1p q  .                                                          (3.11) 

Thus, according to the Lemma 1.1, we obtain the first 

result of the theorem. 

Using the equality (3.11), from the equalities (3.7) and 

(3.9) we obtain the following equality for 3a  
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From the Lemma 1.2, we can write 
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for ,x y  with 1 and 1x y  . Substitute 

this expression for the 2 2p q  difference in (3.12), 

we get 
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Applying triangle inequality to the last equality, we 

obtain 
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where x  , y   and 1t p . 

From the inequality (3.14), we can write 
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Then, maximizing the function 
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 we obtain the second result of theorem. 

With this the proof of theorem is completed. 

Taking 0   and 1   in the Theorem 3.1, we 

obtain the following results, respectively. 
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Corollary 3.2. If  ,sinh ,f C   , then   
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Note: 3.1. In the special values of the parameters   

and   from  Corollary 3.1 and Corollary 3.2, we 

obtain the results for the classes  *

,sinhS 
, 

 *

,sinhS 
, 

*

,sinhS
 and  ,sinhC  ,  ,sinh ,C 

,sinhC , respectively. 

4. The Fekete-Szegö problem 

In this section, we focused on the solution of the 

Fekete-Szegö problem for the class  ,sinh , ,   
. 

 Theorem 4.1. Let  ,sinh , ,f      and . 
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Obtained here result is sharp. 
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The result of the theorem is sharp in the case 

 1 ,l      for the function 
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Thus, the proof of theorem is completed. 

If we take 0   and 1   in Theorem 4.1, we 

obtain the following results, respectively.  

Corollary 4.1. If  *

,sinh ,f S   , then   



EAJS, Vol. 10 Issue 2                                   On the Pseudo Starlike Convex Bi-univalent Function Classes of Complex Order                          | 45

 

 

2

2

23 2

2

2 11
      if 1 ,

3 1 3 1

1 2 1
 if 1 .

3 12 1

a a


 

 
 

  
 



 
 

 
  

   
 

 

Corollary 4.2. If  ,sinh ,f C   , then 

 

 

 

 

 

 

2

2

3 2 2

2

4 2 11
  if 1 ,

3 3 1 3 3 1

1 4 2 1
if 1 .

3 3 14 2 1

a a


 

 
 

  
 



 
 

 
  

 
  

 

Note: 4.1. In the special values of the parameters   

and   from  Corollary 4.1 and Corollary 4.2, we 

obtain the results for the classes  *

,sinhS 
, 

 *

,sinhS 
, 

*

,sinhS
 and  ,sinhC  ,  ,sinh ,C 

,sinhC , respectively. 

 

5. Discussion 

 In this study, we defined a new subclass of 

starlike and convex bi-univalent functions, which we 

will call pseudo-starlike and pseudo-convex function 

class. For this definition class, we examine some 

geometric properties, like as coefficient and Fekete-

Szegö problem. 
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