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ABSTRACT. In the main body, first of all this work recommends an inequality of Jensen’s type involving
Green functions for a class of two times differentiable functions. This result enables further to obtain
some related interpolating inequalities for a function f such that |f’/|? is either concave or convex for
q > 1. Then manipulation of certain existing results in the corresponding interpolating inequalities gives
bounds for the differences of the Jensen-Steffensen and Jensen’s inequalities. In the similar fashion, they
provide some new variants for the reverse form of aforementioned inequalities. Further, the obtained
results about Jensen’s inequality yield different novel adaptations of Holder’s inequality, fresh insights
into the discrepancy of the well known Hermite-Hadamard inequality, and inequalities for geometric
mean, quasi-arithmetic mean, and power mean. As a resultant, this work also suggests graphical inter-
pretation of some results to verify the authenticity and sharpness of the obtained results about Jensen’s
inequality. Finally, this research work put forward some applications involving Zipf-Mandelbrot entropy
and various types of Csiszir divergence from information theory.
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1. INTRODUCTION AND PRELIMINARIES

Mathematical inequalities form a foundation of investigation in modern applied analysis, offering a
platform for exploring a wide array of phenomena and scenarios. The mutual relationship between
mathematical inequalities and convex functions has caught a profound pursuit among researchers, cul-
minating in the formulation of various inequalities revealed through the concepts of convex analy-
sis. |1h/2}/7,/0H15L17,[21)22, 24, [29,(30]. Jensen’s inequality stands out as the most dynamic and potent
inequality within this set of mathematical principles. The classical discrete form of Jensen’s inequality is
follows as:

Theorem 1. Let f : [01,02] — R be a convex function, s; € [01,02], u; > 0 fori = 1,2,...,n with
Up =i u; >0, then

1 & 1 &
f 7;“8 gUfn;uiﬂsi). (1)

If the function f becomes concave, the direction of inequality in reverses. Also, the integral form
of Jensen’s inequality in Riemann sense can be found in [19]. Esteemed as a crucial gateway to the
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classical inequalities including Minkowski’s, Levinson’s, Hoélder’s, Young’s, the arithmatic-geometric, Ky-
Fan’s, and the Hermite-Hadamard inequalities, this inequality serves as a cornerstone for their derivation.
A valuable and substantial body of work has been produced regarding converse results, extensions,
improvements, refinements, and generalizations of Jensen’s inequality and their applications in various
aspects [3}/6}/8},20}23}25},26].

Steffensen has relaxed the condition of non-negativity of u; by virtue of restricting s; fori =1,2,...,n
[28]:

Theorem 2. Let [ : [o1,02] = R be a convex function, s; € [o1,09], u; € R, i = 1,2,...,n. If
51 <89 < <8 0181 >89 >0 > 8, and

7 n n
0> ue <Y ue, i=12,...,n, Y u>0,
c=1 c=1 c=1

then holds.

Theorem |2| can be found in its integral form in [16].
A reverse of Jensen’s inequality is given as follows, which may also be found in |27, p. 83]:

Theorem 3. Let f : [01,03] = R be a convex function, s; € [o1,03], up >0, u; <0 fori=2,3,...,n
with Uy, = Y1 u; > 0. Also, let o= Y1, wis; € [01,02], then

1 ¢ 1 ¢
f (Un ; Ui5i> = 0. ; ui f(si)- (2)
A reverse of the Jensen-Steffensen inequality is follows as [27) p. 83]:

Theorem 4. Let f : [01,02] = R be a convex function, s; € [o1,02],u; € R fori =1,2,...,n. Let
U, = 23:1 uj fori=1,2,...,n with U, >0 and %Z?:l u;8; € [o1,02]. Also, let (s1,82,...,8,) be a
monotonic n-tuple, and p € {1,2,...n} be such that

U; <0 for i<p and U,—-U;_1 <0 for i>p,
then holds.

We use the following continuous and convex Green functions Gy for &k = 1,2, 3,4, 5, which are defined
on the rectangle [o1,02] X [01,02] [5]:

) o1 =, o1 <z <z,
Gl(z,z)—{ o1 — 2, z << o, (3)
) z— o9, o1 <z <2,
Gale) = { 2270 TETSS @)
_ Z—=01, 01 §$§Z7
Gg(Z,CC){ T — 01, z<x <o, (5)
) o2 —=m, o1 <z <2,
Ga(z,2) = { o9 — 2, z << o, (6)
(z=02)(z=01)
e — o1 <x <2,
Gs(z,x) = { ( 702)(01 )7 (7)
eEn) i<a<a

Lemma 1 ( [5]). The following integral identities hold for a function f € C?[o1,02] and the Green
functions Gy, for k=1,2,3,4,5 given in @7@ respectively.

£(2) = flon) + (2 = o) f'(02) + / " Gz ) £ (@), (8)

o2

£(2) = f(02) + (2 — 02)f'(00) + / Galz, 2) 1" (@)de, 9)

o1

f(z) = f(o2) + (z = 1) f'(01) = (02 = 01) f'(02) + /02 Gs(z,2)f" (x)dz, (10)
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f(z) = flo1) + (02 — 1) f'(01) — (02 — 2) f'(02) / Gy(z,z) f" (x)dz, (11)
flz) = 022:;1 flon) + (f;";l 02) / Gs(z, ) f" (z)dx (12)

Lemma 2 ( [5]) Let the function f : [01,02] = R be convex, then for a nonnegative weight function
w(x) wzthf w(z)dz > 0, the following inequality holds

1 oo 1 e
f (W /U1 xw(x)d:v) < W/al f(z)w(x)dx. (13)

The inequality takes on a reversed form when the function f exhibits concavity.

Lemma 3. Consider the scenario that for a nonnegative real valued weight function w : [o1,09] — R,
f;f w(x)dx is positive. Further with the condition that |g|?(q > 1) is concave for the function g €
L4([o1,02]). Henceforth, the subsequent inequality can be derived

o2 o2 72 pw(x)da \ |*
[ wwls@ide < [ wde (S (14
o1 o1 w(z)dzx
o1
Proof. Upon replacing |g|? as a concave function in , we get
1 g2 q 1 g2
——— d > Idzx.

Now multiplying f w(x)dx to the above inequality, we get (Il

A variant of the Lah-Ribari¢’s inequality is follows as [27]:

Lemma 4. Let w be a nonnegative real valued weight function defined on [01,03] and g € L([o1,02])
be a function with the condition that |g|? for ¢ > 1 is convex, under these conditions the following result
holds

| w@lgterds

1
g2 g2
<

< ((@lator) = gt |

o1

w(z)dz + (lg(02)|" - Ig(al)lq)/ xw(ﬂ«“ﬂﬂﬁ) : (15)

1
2. MAIN RESULTS
The aforementioned Green functions enable us to establish the first main result as follows:

Theorem 5. Let f € C?([o1,02]) be a function and s; € [01,02), ui € R for i = 1,2,...,n with
Up =31 u; #0 and U%l St usi € [o1,09]. Also, let Gy, for k =1,2,3,4,5 be as defined in @)—@
and ¢ > 1.

1. If for x € [01,02] and each k € {1,2,3,4,5} the following inequality holds

—Zule (si,x) — ( Zulsl,x> (16)
"i 1 ”z‘ 1
(i)
i=1 "z‘ 1
_1
) 1 1 n N 2 1 q
= 2177 Un Zuz m;uzsz

X (/C:Q <U%n izzluin<Si,$) — Gy ((}t;ulshx>> |f”(x)|qda?> _ (17)

then

=

\'Mz
IS
&H
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2. In case the inequality in @ is reversed, then

1 & 1 &
E ;uz‘f(si) —f (Un ;%&)

Proof. 1. Using — in U% S uif(si)— f (Ul S uisi) , we obtain
LSt - (S s,
Un 2 7 i Un £ =7

= /J12 ([}n ;Uiak(si,x) -Gy, <Ul.n ;UZS“x)) f”(ﬂf)dl‘ (19)

After applying the triangle inequality to the absolute value of , we arrive at

1 « 1 &
m;%f(%) —f (al;msz)

(Ul > wiGi(si,x) — Gy (Ul > wisi, x)) 1" (x)da
1 " i=1 =1

o2l 1 1 &
< /U1 U—n;uin(Si,x) — Gy, <Un ;Uisi,QT) ‘ " () |dw

— [712 <[}n ZZ:;’U,sz(Sz,ﬁ) — Gy, (U%n ;uﬁz,x>> |f”($)|d$ (20)

By employing the power mean inequality in , we arrive at

1 & 1 &
a;ulﬂsl) —f (Unlz_;uzsz>

1—1
oo 1 n 1 n q
< / i Zuin(si, x) — Gg i ZU,S“I dx
o1 i=1 =1
iZn:uG si, 1) — G LZn:us x |f" (z)]|%dx ' (21)
Un < 7 k iy L k Un v 191 .

We have f”(y) =1 for f(y) = %-. Now using for such functions, we get

o 1 n 1 n
/ (U Zuin(si, x) — Gg (U Zuisi,x>> dx
o1 " i=1 " i=1

1 & 1 & ’
_— 2 | o
i ;ulsz (Un ;u181> . (22)
Using in , we get .

2. Adopting the procedure of part 1, we get .

3

w\% L
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Theorem 6. Let |f”|? is convex for ¢ > 1, f € C?[oy,09]. Also, s; € [01,02], u; €ER fori=1,2,...,n
with Uy, := Y"1, u; # 0 and Ui Yo wis; € [o1,02). Further, assume that Gy for k =1,2,3,4,5 are as
defined in (@-@

1. If for x € [01,02] and each k € {1,2,3,4,5} the following inequality holds

1 « 1 «
i Zuin(si,x) — Gy, (U Zuisi,x> >0, (23)
™ oi=1 =1

then

1 <& 1<

1—1
1

1 n 2 q
< P T Zul D us;
2774 (0’2 — 0'1 q U, Uy =1

2
" q _ // 1 n
X[Uﬂf )= il o) Zul (Uzu>
"i=1

3
" q __ // 1 - !
+\f (02)] . /" (o1) Zu, <%;u757> ] . (24)

2. In case the inequality in is reversed, then

1 & 1 «

i(0y —01)8

2
ool (o1)|1 — o1] f"(2)]? 1« 1\,
" [ 2 0, 2t | - g e

L ;
+\f (02)|qg|f (01)[? <U1n2ulsz> fUinZulsf’ ] . (25)

Proof. 1. Using Lemma {| for w(xz) = Ui S wiGr(si,z) — Gy L P uisi,x> and [g]? = |f"|? in
inequality , we get the following inequality

1 n 1 n
UTl ;sz(sz) —f <Un ;m&)

2
T 1 (; ZUS> - Y

1—

Q=

1

2
1 n
L —F—7 u;is; 7 D UiSi
274 (0y — 0y)7 Z (Unz—zl )
o 1 n 1 n
(o2l f"(01)|? — 01| f"(02)]9) /al <Un ;uin(si,w) — Gy (Un ;ulsz,w)) dz

+ ([ (o) = 1f"(o1)]? / ( ZUsz (si,7) — Gy (Uln Zuisi,w>> mdm] q. (26)

X
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Let f(y) = %, then f”(y) = y. Using for these functions we obtain

3
R 1 < 11 & 1 «
Now using and in , we get .
1

2. Using Lemma (4| for w(x) = Gy, U%l S uisi, ) — i S u;Gr(si,x) and |g|? = |f”]? in inequality
and adopting the procedure of part 1, we obtain . (I

The Jensen gap is estimated from the right side in the following theorem as an application of Theorem
0l

Theorem 7. Suppose that the function |f"|9 for ¢ > 1 is convex for f € C*[oy, 03] and s; € |01, 03], u; >
0 fori=1,2,...,n with the condition that Z?Zl u; = U, > 0, then inequality holds.

Proof. Since Gy, are convex functions for all k and u; > 0 for all ¢ with U,, > 0. Therefore using the Jensen
inequality, result can be obtained. Thus inequality can be obtained easily by using Theorem |§|
for such facts. 0

A new result for the Jensen-Steffensen inequality is established as follows, which is an application of
Theorem [6t

Corollary 1. Let |f"|? is convex for ¢ > 1, f € C?[o1,02]. Also fori=1,2,...,n, assume that u; € R
and s; € [o1,02]. Now, if

n 7 n
Sue= ue >0, i=12....n, Y u. >0,
c=1 c=1 c=1

and s1 > 89> - > 8, or 51 < 89 < - < 8y, thenholds.

Proof. Since Gy, are convex functions for all k& and Jensen-Steffensen conditions also hold, therefore the
result can be acquired as direct consequence of the Jensen-Steffensen inequality. Thus we get
by using Theorem [6] O

A bound to the discrepancy of Jensen’s inequality is given in the following corollary by proposing the
assumptions of Theorem [3}

Corollary 2. Let |f"|? is convex for ¢ > 1, f € C%[o1,03]. Also, s; € [01,03], ur > 0 and u; < 0 for
i=2,3,...,n with U, =Y i u; > 0. Further assume that U%L St uisi € [o1,02], then the proposed
inequality in holds.

Proof. Tt may be noted that G, are convex functions for all k € {1,2,3,4, 5}, therefore Theoremenables
to prove that G(z) := U%L S uwiGr(si,z) — Gy (U%L > uisi,x) < 0. Thus, by using Theorem |§| one
may get easily. O

The Jensen-Steffensen gap is estimated from the right hand side in the following corollary by proposing
the assumptions of Theorem

Corollary 3. Let |f”|? is convex for q > 1 and f € C?|o1,02). Also, assume that s; € [o1,02],u; € R for
i =1,2,...,n. Further, suppose that U; = 375_, u; fori=1,2,...,n with U, >0 and Ui Yo uis; €
[01,02]. If p€{1,2,...,n} and (s1,$2,...,8n) @S a monotonic n-tuple with

Ui <0 for p>i and 0>U,—-U;_1 for p<i,
then the proposed inequality in (@ holds.

Proof. By following the steps of the proof of Corollary [2] We achieve the desired outcome through the
utilization of Theorem [l instead of Theorem [3 therein. O

Presented below are two novel variations of the Holder inequality, derived directly from Theorem [7}
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Corollary 4. Letps, > 1, p1 & (2, 2+ l) forq>1and L—FL = 1. Further if the interval [01, 03] and the

_r2
tuples (a1,as,...,a,) and (by,ba, ..., by,) are positive with Zibp;, ab; *' € [o1,09] fori=1,2,...,n,

i=1 "1 g
then
1

g—1

1 2 P1q
(pr(pr —1))#r —52
S =3 1 Zn [ Za A\ Z“?

2””(0‘2—0’1)‘1 le i=1 7,11 i=1

y [Ugaz(pl_Q) _ 0.10.<21(P1—2)
2

2
Zn p2za 1 2 (Zn pQZaZ z)

11111 lezl

o 101=2) _ almn=2) 272 ia n
+ . ST Za n S Zaz ; > bt (28)
i=1

71121 71111

_ P2

Proof. Using l} for f(y) = yP*, y € [01,02] and u; = b¥?, s; = a;b; ™, we derive

1
n n p1—1 n p1\ P1
(zafl) (zbfz) . (zb)
=1 =1 =1
g=1

1 2\ ridg
(p1(p1 —1))71 T
< Q;l( )) 1 Z’ﬂ pP2 Za’ - n pP2 Zaz i

27’1‘1(0270'1)5 112 i=1 217, i=1

q(p1—2) q(p1—2) P2 2
0207 — 010, -k
. > z Z“ s pziiau
=1 2

i=1 11111

3 ma n
bpz Zal Z) ‘| bfz' (29)

zlzll i=1

q(p1—2) q(p1—2) P2
o -0 —252
+ 6 n bp2 Za - <

zlzll

p
By utilizing the inequality a® — 8¢ < (a = 8)¢, 0 < 8 < a, e € [0,1] for 8 = (E?:l aibi) 1, a =

p1—1
(Z?Zlafl)<zz 1bf2) and e = p%mve obtain

1

o) () goe([£) 6 5))
i=1 i=1 i=1 i=1

Now using in 7 we get . (Il
Corollary 5. Let 1 > p; > 0, ps = pf’i with p1 & (2q+1’ 2) for g > 1. Also, let (a1, as,...,a,) and
(b1,ba,...,b,) be two positive n-tuples with i bp; , al'b;P? € [o1,00) CRYT fori=1,2,...,n, then

111

Zn:aibi - (Zn: afl> p (Z bp2> -
i=1 i=1

(11 —p1) . (Za2p1b p2 ((ZE:L 1‘?:2))2>

p1274(02—01q i=1"
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‘72‘7(11(572> _0103<H72> ia?mbm _ (i azin)Q
? 2 S

=1 "1

oy" -0 ) & 3p11—2p2 ( ?: a]igl)g ‘
L2 i (Za?pbi%)_ anpﬂ)] ' (31)
i=1 (> i1 b7%)

Proof. When considering the specified values of p; and ¢, the functions f(y) = yﬁ and |f"|? for y €
1
[01, 03], are convex. Therefore by using 1) for f(y) =y, u; = b and s; = al’'b; *?, we get 1) O

Definition 1. Taking u = (u1,uz,...,uy), s = (S1,82,...,8,) as positive tuples with U, =, u;, and
A € R, then the power mean of order X is declared by

1
1 A X
My (u,s) = (UTL i “isi) ; A#0,
’ 1
( lel SZM) on ) A=0.
Theorem [7| gives us an inequality for the power mean as follows:

Corollary 6. Let 0 < 01 < 02 and u = (uy,usz,...,upn), S = (1, 82,...,Sn) be two positive n-tuples with
Un =Y i ui. Also, suppose that v, X € R — {0} such that v < X and q > 1.
1. If \,v > 0, then

v(A — )
A2l g (02 — 01)%

a(3-2) a(5-2)

0201 — 0109

1—1

(Mgi (u’ S) - Mi)\ (11, S)) !

MK(LL S) - Mg(uv S) <

(Mgﬁ(lh S) - Mi’\(u, S))

[~}
—
(S
|
o
—
<
—~
>
|
N}
—
Q=

(Mgﬁ(u, s) — M?j\)‘(u, s)) . (32)

v(v—A [
M(u,5) — MY (u,8) < -2 (VB (,s) — M2 (u,)) T
A2 ‘1(0'2—0'1)‘1
0—20—(1(§_2) — 01(7;1(§_2

(M%f\\(u, S) - Mi)\(ua S))

—
(S
|
o
—
)
—~
>
|
N}
—
Q=

(MR (u,5) = M (u,s)) | (33)

3. If A >0 and v < 0, then inequality in holds .

Proof. 1. Taking f(y) = y* for y € [01,02]. For the proposed values of \,v, the function f becomes
concave while the function |f”|? becomes convex. Thus using (24) for f(y) = y> and letting s; — s, we
get .

2. For the proposed values of A and v the functions f(y) = yX and |f”|? become convex, thus by adhering
to the methodology outlined in part 1, one can acquire the result proposed in .

3. The functions f(y) = y* and |f”|? for y € [, 02] become convex in this case as well. Thus adhering
to the methodology outlined in part 2, one can obtain the inequality proposed in . O
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Comparison of Two Sides of the Inequality (32)

I L <ft Side
I Right Side
1000 —
500 —
O -
-500 >

FIGURE 1. [0’1,02] = [17250], (ul,ug) = (0.5,0.5), (81,82) = (2,3)7 q:1

Discussion 1. Figure [I| demonstrates that how sharp is the discrepancy of left and right hand sides
of inequality @ for the corresponding parameters, provided specifically. Consequently, it explores the
sharpness of the Jensen gap because this inequality is a direct consequence of the main result around
Jensen inequality, provided in inequality .

Two different types of mean are connected as follows, as direct applications of Theorem [7}

Corollary 7. Let 1 < ¢q, 0 < 01 < 09, and (u1,us,...,uy) = U, (1,82,...,8,) = S be some positive
tuples with U, = Y7 u;, then

o(ws
< 1 , R e :
<o | o (M)~ M) ( S (M(.s) — A (u.)
A ) - M) ) ] o
6(0102)%4
2.Mi(u,s) — Moy(u,s)
-

q

<—7—— | — zl i_l s
1 ( - iglu n”s; — In” My(u s))

2175(0'2 — 0'1)%

qo1 _ q02 1 &
% (U Z u; In® s; — In® Mo (u, S)>
noi=1

e192 — 491 q

1 ¢ o3 a3
+T (m;ulln s;i —In Mo(u,s)>] . (35)
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Proof. 1. Let f(y)

here, we get .
2. Let f(y) = eY for y € [01,02], then |f”|? becomes a convex function. Therefore using here and

—lny for y € [01, 02|, then the function |f”|? becomes convex. Therefore using

letting s; = In s;, we get . (]
Definition 2. Assume that ¢ is a strictly monotone and continuous function. Let (u1,usg,...,uy) = u
and ($1,82,...,8,) = S be positive tuples with Z _yu; = Uy,. The quasi arithmetic mean for these

assumptions is defined by

M (u,s) = ( Zul )

An estimate for quasi arithmetic mean can be acquired by using Theorem [7] as follows:

Corollary 8. Let the function |(8 o ¢=1)"|7 be conver on [o1,02], o1 > 0 for ¢ > 1 and Bop~ ! as
an arbitrary function provided that ¢ is a strictly monotone and continuous function. Also, assume that
(u1,u2, ..., up) =1, (81,82,...,8,) =S be some positive tuples with U, = >, u;. Then

Uin Zuiﬁ(si) -B (Mw(u,S))’

Q=

<211< Zuz ) <M¢<u7s>>>

(0'2 — 0'1 q
. [Uzlw PR B et (UIZUMQ(&) - (M s>>>
=1
o1} _ oy n %
Boe et — B0 o o) (Ul Suigt(s) ¢ (M(u, s>>) ] . (36)
=1
Proof. follows directly from by letting f — Bo ¢~ ! and s; — (s;). a

A generalization of Theorem [f] to its Reimann integral form can be followed as:

Theorem 8. Let |f"|9 is convex for ¢ > 1, f € C?[o1,02]. Also, let the functions Jy, Ja : [a1,a2] — R be
integrable such that J1(y) € |01, 03] for ally € [a1, as] with H := f;f Ja(y)dy # 0 and 4 f;f J1(y)Jo(y)dy €
[01,02]. Suppose that Gi(k =1,2,3,4,5) are defined as in (@)-@

1. Provided that for each and every k € {1,2,3,4,5} and x € |01, 02|, one has

7 [ Bwenw o6 (5 [ nwnedn) 2o (37)

1

then

i s [ )

e (21 [ Awnwar- (g [ J1<y>J2<y>dy>2>lé

R (é [, s~ (g [ nonwa) )

el — ( / T (y)a(y dy—< / T (0) Jo(y dy)ﬂ (38)

2. If the inverted inequality in (ﬂ/ is satisfied, then

‘;/{ljz(foJl)() > (y)dy — f( / Tiy) 2 ly dy)’
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Comparison of Two Sides of the Inequality (40)

500 — I L <t Side
I Right Side

400 —
300 —
200 —

100 —

O —]
-100 :

-200 —
-300 —

-400 —

-500 —

10

FIGURE 2. ¢ =1, f(y) = ¢?

< 2(01_0) (( il Jl(y)Jz(y)dy>2 -z J%@)h(y)dy)1_é

a2|f"(o1)|* - a1l (o2)] ((;{ /aaz Jl(y)Jz(y)dy> *% :2 Jf(y)Jz(y)dy)

1

X

")l — 11" (( !

a2 3 as %
6 H/a1 Jl(y)Jg(y)dy) —% 5 Jf(y)Jz(y)dy>‘| _ (39)

A generalization of Theorem [7] to its Reimann integral version can be established as follows:

Theorem 9. Let |f"|9 be a convex function for ¢ > 1 and f € C?[o1,02). Also, assuming two real valued
integrable functions Ja, JJ1 defined on [a1,as] with the constraints that J,(y) € [o1,02] and J2(y) > 0 for
ally € [a1,a2] and 0 < H := faaf Jo(y)dy, then the inequality given by holds.

Remark 1. The Corollaries: and[3 can be presented in their integral form as direct applications of
Theorem [8.

Remark 2. Ezploiting the implications of Theorem[9, we derive the integral expressions of the Corollar-
ies: [{H8
Applying Theorem [9 we can establish an inequality concerning the Hermite-Hadamard gap as follows:

Corollary 9. Let |f”|? be a convex function for ¢ > 1, f € C?[t1,ts]. Then

1
I t+to (ta = t)? (LS ()7 + [F" ()|
dy — < . 40
| - ()] < B ! (40)
Proof. Using for [0, 02] = [t1,t2], J2(y) =1 and Ji(y) =y for all y € [t1, t2], we get ([40). O

The second main result is follows as:



JENSEN’S TYPE INEQUALITIES FOR TWO TIMES DIFFERENTIABLE FUNCTIONS WITH APPLICATIONS 435

Theorem 10. Let |f"|9 is concave for ¢ > 1 and f € C?[o1,03]. Let 5; € [01,09], u; € R fori =
1,2,...,n with = Z:L Luis; € [o1,00] and Uy, == Y"1 u; # 0. Also, let Gy for k = 1,2,3,4,5 be as
deﬁned m @ @ There are two possibilities.

1. If for x € [01,02] and each k € {1,2,3,4,5}, holds

1 & 1 «
o Zuin(si,x) — Gy (U Zuisi,aﬁ> >0, (41)
™ oi=1 =1

then

1< 1<

1
<=
2

Y ( )
p ( g St = (o Sl

5 (42)
O Qi UiS] — (UL 2lie1 uisi) )
2. If the inverted inequality in (w is satisfied, then
LY sl -1 (3
—_ U J(S5) — — Ui S;
U, “ U, “
i=1 i=1
< 3 <Un§uzsz> - U, ;Uzsf
(Uiz =1 WS 1)3 o Zz 1“1
x| f" - (43)

2
1 n P R S e g2
3 ((UW die1 uisl) Un D iei u15i>

Proof. 1. Using Lemma [| for w(z) = g > uiGr(si, ) — G (U%L Dy uisi,x) and [g|? = |f"|? in
, we get

1 & 1 <

1—

IA
DN | =

n n 2
i=1 i=1

21 & 1 —
X [/Ul (Un ;uin(si,m) -Gy <Un ;ulsl,x>> dz
q

g n n 1
faf (Uln > imq wiGr(si, x) — G (U%L 2 i1 ulsz,x>) rdx ] !
f:lz (U%L Z?:l u;G(si, ) — Gi (U%z Z?:l U; S, x)) dx

Using and in (44) and simplifying, we get the result .

2. Making use of Lemma [3| for w(z) = G (Uin Dy uisi7x) — o= ey wiGr(si, ) and |g|9 = [f"|7 in
, next implementing the process described in part 1, we attain . O

X f/l

(44)
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Remark 3. In light of the assumption as follows

1< 1 <
o Zuin(si,x) — Gy (U ZW&‘J) >0, for each k€ {1,2,3,4,5}.
" oi=1 " oi=1

Then using (@, it can be verified that

1< 1< ’
Ui Zuis? — (U Zuisi> Z 0.
=1 =1
Remark 4. The inequalities in Theorem [¢] and Theorem are in fact some interpolations by using
Theorem [3.

In fact a bound for the Jensen gap can be extracted from Theorem [10] and is follows as:

Theorem 11. Let the function |f"|9 for ¢ > 1 and f € C?[oy, 03] be concave and s; € [o1,03], u; >0
fori=1,2,... n with restriction that Z?:l u; = U, > 0, then inequality @) holds.

Proof. Since it is well known that for each k, G are convex functions and w; > 0 for all ¢ with its positive
sum U,,. By invoking Jensen’s inequality now, the inequality in can be deduced. Therefore result
follows directly from Theorem |

The subsequent corollary introduces an enhancement to the Jensen-Steffensen inequality, serving as
an application of Theorem

Corollary 10. Let |f”|? for ¢ > 1 and f € C?[o1,03] be a concave function. Also, assume that s; €
[01,02], u; €R fori=1,2,...,n. Further, if

n T n
Due= ue >0, i=12...n, Y u;>0,
c=1 c=1 c=1

and s1 > 89> -+ > 8, or 51 < 85 < -+ < 8y, then (@ holds.
Proof. We get the required result easily by following the procedure of proving Corollary O

Corollary 11. Let the function |f"|? is concave and all other assumptions are same as in the statement
of C’omllary@ then inequality in holds.

Proof. One can obtain the required result as we have obtained in Corollary ]

Corollary 12. Let the function |f"|? be concave and all other assumptions are same as provided in the
statement of C'orollary@ then inequality in holds.

Proof. One can obtain the required result as we have obtained in Corollary (]

The forthcoming two corollaries unveil novel variations of the Holder inequality, each serving as a
direct application of Theorem

Corollary 13. Let ps > 1, p; € (272 + %) for ¢ > 1 be such that p% + piz = 1. Also, let the interval

n b — P2
[01,02] and the tuples (a1, as,...,a,), (b1,ba,...,b,) be positive such that E%‘;’;?, a;b; 7' € lo1, 03] for

i=1 "1
i=1,2,...,n, then

1

(Zn: afl> h <Zn: bfz> - - Xn:aibi
i=1 i=1 =1

_ p1—2
< [pl(m 1) (A2> NG

a
r1 N
12U (2 > (15)
i=1

where

2
1 o\, 122 1 "
Ay = Wzaibi 1 _ <Z" o7 Zaibl)

=171 ;—q i=1"7 ;=1
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and

3
gt B ()

11111 11111

Proof. Let f(y) = yP*, y € [01,02], then f”(y) = p1(p1 — 1)yP* =2 > 0, shows that f is convex. Also,
If"(y)|9 = pl(p1 — 1)7y9P1=2) | this function is concave for the proposed values of ¢ and p;. Thus using

_p2
|i for f(y) = yP*, w; = b* and r; = a;b, "', we derive

1

n n p1—1 n pP1 P
() B) ()
i=1 i=1 i=1

_ p1—2 ﬁ n
< [pl(p; 1) (A?)2> A?—P1‘| Zb;fz (46)
=1

p21011
= 1bz)

By utilizing the inequality a® — 8¢ < (a — 3)¢, 0 < <, e€[0,1] fora = (>, a") (X0
B= (>0, aib)" and e = p%, we obtain

1

n n p1—1 n P1 ﬁ
e S
=1 =1 1=1

Now using in 7 we get . (I

Corollary 14. Let 0 < 01 < o9 while p; € <2qq+1,2> forq > 1, po = pf’ll and (a1,as,...,a,),
(b1,ba,...,by) be positive tuples such that Zl b,ﬁi, al'b; P? € [o1,09] fori=1,2,...,n, then
n n W/ n )
o () ()
i=1 i=1 i=1
< [ 1 (1—1) o " (92);1_21 S (48)
2p1 3 =
where
2
0, = n 7 Za2p1b P2 ( 7 Zam)
i1 b > i1 g
and

11121 11111

6y = n pzzagplb 2p2_< D pzzam>

1
Proof. Assuming a convex function f(y) = y?1, y € [01,02]. For the specified values of p; and ¢, it is
observed that the function |f”|? exhibits concavity. Therefore substituting u; = b and r; = a'b; ¥ in

, we get . (I

An inequality can be established for the power mean as a direct consequence of Theorem [11] as follows:
Corollary 15. Suppose that the interval [o1,02] and the tuples u = (uy, U2, ..., Upn), S = (81,82, ., 5n)
are positive with Y ., u; = U,. Additionally, let v and X represent negatwe real numbers, satzsfymg

v <\ with § € (2, 24 5) for g > 1, then the subsequent inequality is valid
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o7 Comparison of Two Sides of Inequality (49)

x1
Left Side

5 —

Right Side

4.5 —
4
3.5
3
25—

2_

Rl P LT .

1.5
14

0.5

e =
-4

4 -6 -8 -10 il N

v

FIGURE 3. q =1, [01,02] = [1,3200], (u1,us) = (0.5,0.5), (s1,s2) = (0.2,0.3)

M (u,s) = M5(u,s)

< M0 (M) - M) (AR

3\ —M?)’\/\(u,s))gz

(49)

Proof. For the assumed values of \, v and ¢, the function f(y) = y* is convex while on the other hand the
function |f”/|? is valid for concavity on its respective domain in [0, o], therefore using for f(y) = yx
(Il

and s; — sg\, we obtain (49).

Quasi arithmetic mean can be connected in an inequality as an application of Theorem [11| as follows:

Corollary 16. Let |(30 o™ 1)"|? be a concave function for ¢ > 1 and B o o~! being an arbitrary func-
tion, provided that ¢ is a continuous and strictly monotone function. Also, assume that the intervals

(u1,ug,...,up) =u and (s1,S2,...,8,) = s are positive with Z?zl u; = U,. Then

Uin ; u;B(si) — B (Myp(u,s))

n

< ;(; > () = (Mo s>>>

x |(Bop ™t U% Dicg uip®(si) — ¢ (My(u,8))
3 (g Tiy wie(s0) = @ (M (u.)))

Proof. follows from by assuming f — Bo¢ ! and s; — ¢(s;).

A generalization of Theorem [10] to its integral form can be followed as follows:

(50)

Theorem 12. Let |f"|9 for ¢ > 1 and f € C?[o1,03] be a concave function. Also, let the functions
J1,Ja : [a1, ag) = R be integrable such that J1(y) € [01,02] for all y € [a1, az] with H := f;f Ja(y)dy # 0
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and Hf J1(y)J2(y)dy € [o1,02].
1. Assume that (37 (.) holds, then

5 [ e nwanma-1 (3 [ amnma)

;(; R - (; [ J1<9)J2<y)dy>2>

a2 713 (1 ra2 3
5L BBy — (3 22 1w T2 (y)dy)

IN

x| 1 2 (51)
s (h 2z i (i £ pwnm))
2. If the reverse inequality holds in , then
& [ em@nma - (5 [ awnma)
<;<( / 11 (9) 2y dy) ——/ J2(y)Ja(y dy>
e (% 02 R Raw)dy) — & 22 T () o)y .

3 ((é S Jl(y)Jz(y)dy) — 3 L2 IRy )Jz(y)dy)
Remark 5. Integral versions of Corollary Corollary [11] and of Corollary can be presented as
applications of Theorem[13

From Theorem we derive a bound for the Jensen gap, representing the integral form of Theorem

I

Theorem 13. Let |f"|? for ¢ > 1 and f € C?[o1,03] be a concave function. Let the function Jy :
[a1,a2] — R be integrable with the restriction that Ji(y) € [o1,02] for all y € [a1,as] and the function
Ja i [a1,a2] = R be nonnegative with the condition that faaf Ja(y)dy = H > 0, then holds.

Remark 6. The integral form of Corollaries[13, and [16] can be established as direct applications
of Theorem[13

A variant of the Hermite-Hadamard gap is extracted from Theorem [13] as follows:

Corollary 17. Let f € C?[t1,t2] be a function such that |f"|? for ¢ > 1 is concave, then

1 to 1+ to (ts —t1)° | ., [t1+ to
m—hl;ﬂw@_f< 2 NS 24 ( 2 N' (53)

Proof. Using for [0, 02] = [t1,t2] and Jo(y) =1, Ji(y) =y for all y € [ty,t2], we get (53). O
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«104 Comparison of Two Sides of Inequality (53)

I <t Side
15 I Right Side

0.9 +

0.8 —

0.7 +

0.6 —

0.5

04 —

0.3

0.2 +

0.1 —

0.101

FIGURE 4. ¢ =1, f(y) = 1ty

5
2

Remark 7. By substituting ¢ = 1 in Theorem[7 and its related results, we extract the results presented
m [@/ Similarly taking Theoremlg and its related results for ¢ = 1, we obtain the results presented in .

3. APPLICATIONS IN INFORMATION THEORY

The corollaries that follow illustrate various applications to different divergences stemming from The-
orem [Tk

Definition 3. (Csiszdr divergence) Let [01,02) C R, and f : [01,02] — R be a function, then for
(r1,72,...,mn) =T € R and (w1, w2, ..., wy) = w € R} with the condition - € [01,02] (1 =1,2,...,n),
the mathematical formula of Csiszdr divergence is following

D.(r,w) = sz’f (Z) .
i=1 '

Theorem 14. Consider that the function |f"|9 is convex for ¢ > 1 and f € C?*[o1,03]. Further if,

(ri,re,...,mp) =1 € R™, (w1, wa,...,w,) =W € R such that %::1 T

then >
1 _ : i
niDc(r,w) - f (rZL_> '
‘Zi_l Wy Dic1 Wi
1—1
1 1 n 7"12 74’7,7 r; 2 q
< 1_1 1 n Z o (zjrlz_l>
210 (gg — 1)1 \ 2oim1 Wi S Wi Dim1 Wi

ool f (o)l —ailf o)l [ 1 =2
X[ 2 (Z%wizwi_(zﬁwi) )

Ii ¢ [o1,09] fori=1,2,...,n,

w; ) w;

i= i=1 i=
Pl — el [ 1 & S\
" G (zzilwz—;u@(zz‘_fwi) )] | 59

Proof. Choosing s; =

%, u; = #lwl in , we get the result . O
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Definition 4. (Rényi-divergence) Assume that (r1,72,...,7,) = r and (w1, we,...,w,) = W are
positive probability distributions and p # 1 is a nonnegative real number, then the following mathematical
formula holds

1 n
Dre(r7w) = lOg ngwil_u .
p—1 i=1
Corollary 18. Let 1 < p and (r1,72,...,7) =1, (W1, Wa,...,w,) = W are positive probability distri-
Iz p—1
butions, and provided that Y ;| w; (;—) , (;—) € [o1,02) CRT fori=1,2,...,n. Then for q > 1,

the following inequality holds

1 n S p—1
Dye(r,w) — —— r; log <T>
w;

i
_1
1 n r 2(p—1) n . 2\ 179
< s <Z> - riw; ™
2! (0y — 1) 7 (n— o303 \ S \wi ; s
2g+1 2q+1 n 2(p—1) n 2
0'2 —0'1 ) Q _ wol—p
ESEE (S ()T (B
i=1 i=1
2 2 n 3(p—1) n 3 %
o5l —o7! 7 B -
) (w) _ (Z Pl | (55)
i=1 g i=1
Proof. Since the function f(y) = —ﬁ logy, y € |01, 02] satisfies the conditions of Theorem |6} therefore
pn—1
using for this function and substituting u; by r; and s; by (;—) , we obtain . (I
Definition 5. (Shannon entropy) Provided that (wy,ws,...,w,) = W s a positive probability distri-
bution, the Shannon entropy for it, is given by
n
Ey(w)=— Zwl log w;.
i=1
Corollary 19. Let ¢ > 1 and [o1,02] C RY while w = (w1, ws, ..., wy,) be a positive probability distri-
bution such that wi € [01,09] fori=1,2,...,n, then
1—1
1 Es(w) < 1 i 1 2 '
ogn — Eg(w) < ——n
’ 274 (02 — o1) 0303 \ I Wi
1
2q+1 2q+1 n 2q 2q n q
92 — 0 1 2 O3 — 01 1 3
x| 22— e [ i — - . 56

Proof. Since the function f(y) = —logy, y € [01,02] satisfies the assumptions of Theorem [14] therefore
by using for this function and substituting (r1,72,...,7,) by (1,1,...,1), we get . O

Definition 6. (Kullback-Leibler divergence) It is presented by the following expression

n
r
Dy (r,w) = E r; log j,
i=1 v

provided that (r1,72,...,m) =1 and (w1, wa,...,w,) = W are positive probability distributions.
Corollary 20. Let ¢ > 1 and [01,02] C RY while (r1,72,...,7) =1, (w1, wa,...,w,) =W be positive
probability distributions such that It € [0, 0] fori=1,2,...,n, then

Q=

Dkl(r,w) S -+ — 1
21_%(0'270'1) 0102 i—1 W;



442 M. ADIL KHAN, S. KHAN, b. PECARIC, J. PECARIC

1
q+1 g+l [ n 2 q g [ .3 a
oy — 04 T 03— 03 L
» [2 (Z wi 1> 6 (Z o 1>] | 7

i=1 =1 1

Proof. Since the function f(y) = ylogy, y € [o1,02] satisfies the assumptions of Theorem therefore
we get by using for f(y) = ylogy. O

Definition 7. (\%-divergence) This is presented by the following expression

n

Dy2(r,w) = Z (H_Twl),

i=1 g
for (ri,ra,...,rn) =71, (W1,wa,...,w,) =W as two positive probability distributions.
Corollary 21. If ¢ > 1 and [01,02] C RT while (r1,72,...,7) = 1, (w1, wa,...,w,) = W are two
positive probability distributions such that ;—71 € [o1,09] fori=1,2,...,n, then
1 "2
D,2(r,w) < -+ — . 58
e < (B0 (59

Proof. Since the function f(y) = (y — 1)? for y € [01,02] satisfies the assumptions of Theorem
therefore inequality follows by using for such function. O

Definition 8. (Bhattacharyya-coefficient) This is given by the following mathematical expression

n

Cy(r,w) = Z V/Triws,

i=1
provided that (w1, wa, ..., wy) =W and (r1,7s,...,7,) =T are two positive probability distributions.

Corollary 22. For ¢ > 1 and [o1,02] C R, the following inequality holds

1 D p2 T
1—Cy(r,w) < — T Zwil,
102 \i

i=1
1
41 3441 /n o 2q 34 s/ n 4 q
oy —oy i oy —oy i
o I e — 1) - —5—1 ; (59)
l 2 ; w; 6 ; wf
where (r1,72,...,mn) = 1, (W1,ws,...,w,) = W are positive probability distributions such that - &

[01,09] fori=1,2,...,n.

Proof. Since the function f(y) = —\/y, y € [01, 02| satisfies the conditions imposed on it in Theorem
therefore we get by following (54)) for f(y) = —\/y. O

Remark 8. The integral counterparts of the corollaries presented in this section can be gladly derived by
applying Theorem [9

3.1. Estimation of the Zipf-Mandelbrot Entropy. The actual mathematical expression of the prob-
ability mass function for the Zipf-Mandelbrot law is follows as:
! 1/ +0)°
(i,n,0,s8) — Mn,G,s ;
fori=1,2,...,n,n€{1,2,3,...},s>0,0>0and Mugs = > ﬁ is a generalized harmonic
number. As documented in the research by [5], the mathematical structure of the Zipf-Mandelbrot
entropy is elucidated:

s log(i + 6)
Z(M,0,s) = log My, ¢ «.
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Corollary 23. Let 0 < 01 <02, ¢>1, s>0, 0 >0and w; >0 fori=1,2,...,n with ), w; =1,
then

1 < logw;
- — Z(M,0
Mn,G,s ; (Z +9)s ( ) 75)

1—1
1 & 1 !
< - -1
217%(0_2_0.1)50.10.2 (; wi(Z—FG)QsMTZLOS >

1
q+1 atl [ n q q [ a
oy —o0y 1 05— 0] 1
1] - -1 . 60
% l 2 (Z wi(i + 0)2M2, ) 6 <; w2 (i + 0)% M3 )] (60)

1 n,0,s n,0,s
PTOOf. For Ti:m7 i:1,2,...,n, we have
. 1
Zﬂ log — Z m (—slog(i + 0) —log My, 0,5 — log w;)
Z(M,0,5) — — Zn: log wi (61)
— s) —
» Y Mn,ﬂ,s — (’L + 9)53
and

1—1
1 - 1 !
_ , 1
2177(02 - 01)‘70102 <; wi(i+0)* M7, )

1
q+1 g+l [/ n q q [ a
1 - 1
o o2~ S -1 _ %279 P 1 . (62)
2 i=1 w;(i + H)QSMH,G,S 6 o1 Wi (i + G)BSMn,O,s
Now using (61]) and (62) in (57)), we get (60). O

Corollary 24. Let 0 < 01 < 09, 01,05 >0, s1,82 > 0, then for ¢ > 1 the following inequality holds

log(i + 02)%2 My, g, s,
M 91;‘91 +Z Z+91 san91751

1—1
1 = 02) !
2 _5(02 —0’1)50102 Z+0 an

i=1 ,01,81
y O_g+1 O_¢11+1 i (i + 92)S2Mn 0250 1) O’ — 0‘1 i i+ 64 2‘;2M721 Oyss . q (63
2 e (i + 01251 M2 0151 p (i 4 601)3s1 M3 e .
Proof. For r; = +——~sir——, W; = =——~——, i = 1,2,...,n, we have

(7‘+91)8an,,91,51 ’ Wi (i+92)52Mn,92,52 ’ t=

n

1
Zrl IOg o Z ( + 6, )San 0151 (IOg(Z + 02) * My, 02,82 log(z + 61) n 91,61)

log(i + 02)%> My, 0, .5
M,0,s1) + 222 64
—Z(M, 01,51 Z EYACITA (64)

Also,
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Q=

ettt (sht ) bt (g
i _ — -
2 — w; 6 = w;
_1
n . q
_ 1 (Z+02)82 n,02,52 1
- _1 1 2. 2
274 (0y — 1) 10100 \iS (04 61)%1 M3
1
q+1 q+1 n . . n 252 1 2 q
% Oy — 04 Z (i +62)%2 M, 02,82 1) = - 01 Z (i +62) M, 02,82 1 (65)
; 2s 2 3s 3 :
2 (i 01)* M, (i 01) M

Now utilizing (64) and . in ., we get (63 . O

4. CONCLUSION

Jensen’s inequality has an important role in the literature of applied analysis. It enables us to provide
some tools for: estimation of certain parameters in optimization problems, systematic development of a
qualitative theoretical framework concerning differential and integral equations, facilitates the integration
of Rao-Blackwell estimates into the process of parameter estimation within a probability space, estimation
of Zipf-Mandelbrot entropy and various divergences etc. We have established a Jensen type inequality
in terms of Green functions for a class of functions f € C2?. After that we have utilized this result for a
function f such that |f”|? for ¢ > 1, either convex or concave, and obtained some related interpolating
inequalities. Then we have utilized these interpolating inequalities and deduced some estimates for the
Jensen and the Jensen-Steffensen differences. Also, we have obtained some new variants of the reverse
Jensen-Steffensen and Jensen’s inequalities. Drawing upon the outcomes stemming around Jensen’s in-
equality, we have innovated various extensions to the Holder inequality, defined improved bounds for the
discrepancy of the the Hermite-Hadamard inequality, and proposed supplementary inequalities for the
power mean, geometric mean, and quasi-arithmetic mean. In this work,we have also geometrically in-
terpreted the results for power mean and the Hermite-Hadamard inequality. This interpretation directly
verifies the authenticity and sharpness of the results about Jensen’s inequality. Finally, we have presented
some applications involving Zipf-Mandelbrot entropy and various cases of Csiszar divergence.

It may be noted that some related results to this work for twice differentiable functions are published
in [5]. These ideas may encourage many other mathematicians to produce various important results
around Jensen’s, the Jensen-Steffensen and some other inequalities.
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