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 The rapid development of sensor technologies has led to smaller sensor sizes and lower costs. 
Today, the easy-of-use purchasing of sensors such as cameras, Light Detection and Ranging 
(LiDAR), Radio Detection and Ranging (RADAR), Inertial Measurement Units (IMUs), and 
Global Navigation Satellite System (GNSS) receivers have led to significant developments in 
many applications such as robotics and unmanned vehicles. Sensor data is transformed into 
information or products thanks to the methods. Simultaneous Localization and Mapping 
(SLAM) is one of the critical methods in which the vehicle's location is determined, and the 
environment is modelled. This method can realize applications using detection sensors such 
as cameras, LiDAR, or RADAR. This study aimed to model an indoor area with a two-
dimensional (2D) LiDAR sensor placed on an Unmanned Ground Vehicle (UGV) and to analyse 
the accuracy of the produced model. Normal Distribution Transform (NDT) - Particle Swarm 
Optimization (PSO) algorithm was used to generate the 2D model from the collected LiDAR 
data. The NDT-PSO algorithm was executed on the Robot Operating System (ROS) installed on 
the Jetson Nano Developer Kit, and a real-time 2D model of the working area was processed. 
The reference lengths of the 75 facades in the 232 m2 indoor space were measured using a 
total station and calculated with CAD software. Percent error values were evaluated by 
comparing the reference and model lengths of the facades.   
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1. Introduction  
 

With the development of technology, there have been 
significant advances in mobile robot technologies, and 
nowadays, robots have become usable for essential tasks. 
In order for a robot to reach its goal location safely, it 
must plan a path that can proceed without striking 
obstacles [1]. The ability of mobile robots to create maps 
and track their positions while moving in a specific 
environment is generally achieved by the Simultaneous 
Localization and Mapping (SLAM) method. With sensor 
data, SLAM allows the robot to understand its 
environment and update its position as it moves. In this 
way, the robot can adapt to changes in its environment 
and track its current location on the map in real-time [2]. 

With the advancement of the SLAM method, 
significant developments have been made in spatial 
mapping [3]. SLAM enables robots to move safely and 

effectively with real-time path planning, especially in 
tasks requiring complex manoeuvres [4]. Thanks to these 
capabilities, mobile robots can be used in areas such as 
rescue operations [5], industrial automation [6], 
agriculture [7], logistics [8], and cleaning [9], archeology 
[10], increasing work efficiency and helping people avoid 
tasks that may be dangerous. Mobile robots can generally 
be classified as outdoor (such as agricultural robots), or 
indoor robots (such as warehouse logistics robots). This 
classification helps to understand what jobs and 
environments a robot can be used in [11]. 

In outdoor areas, Global Navigation Satellite Systems 
(GNSS) are mainly used for positioning purposes [12–
14]. While GNSS provides high-accuracy position 
information in outdoor environments, such as low signal 
strength, multipath, obstacles, and scattering, negatively 
affect signals and prevent them from reaching the 
desired positioning accuracy [15, 16]. GNSS and Inertial 
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Measurement Unit (IMU) sensors are used together to 
reduce GNSS-related errors, increase position accuracy, 
and ensure continuity in partially and entirely GNSS-
denied environments [17]. IMU consists of an 
accelerometer, gyroscope, and magnetometer sensors 
that determine the robot's position, speed, and direction. 
However, IMU cannot be used alone for long-term 
applications because the accuracy provided by the IMU 
decreases over time due to drift error. GNSS and IMU 
sensors are used concurrently to eliminate each other's 
deficiencies and provide more accurate long-term and 
continuous position and orientation information [18]. 
Loosely-Coupled and Tightly Coupled models containing 
Kalman Filter (KF) are generally used in GNSS/IMU 
integration. In the Loosely-Coupled architecture, the 
speed and position information provided by GNSS is used 
to adjust the IMU, while in the Tightly-Coupled 
architecture, the raw GNSS measurements are directly 
integrated into the navigation filter. However, these 
integration models are known to be more successful in 
outdoor environments [19]. 

Depending on the sensor type, the SLAM method is 
divided into Light Detection and Ranging SLAM (LiDAR-
SLAM) and Visual SLAM (V-SLAM) [20]. Monocular, 
stereo, and RGB-D cameras are used in V-SLAM. While 
the monocular cameras cannot determine the actual size 
of images, stereo, and RGB-D cameras have been 
developed to ensure metric accuracy. Stereo cameras 
estimate the depth of each pixel but require a complex 
structure and high processing power. RGB-D cameras 
obtain depth information using infrared light or the time-
of-flight (ToF) principle, however, they have 
disadvantages such as narrow measurement range, 
limited field of view, and sensitivity to sunlight [21]. 

Recently, advances in sensing hardware have reduced 
the size and weight of LiDAR, enabling portable LiDAR 
systems to be more widely used in navigation [22]. 
LiDAR, an active sensor, has significant advantages such 
as providing more accurate information about the 
environment, being less affected by light changes, and 
requiring simple error models [23–25]. Therefore, point 
cloud information obtained with LiDAR contains direct 
geometric relationships, making the robot's path 
planning and navigation more precise. 

The open-source Robot Operating System (ROS), 
developed in 2007, is frequently used to run SLAM 
algorithms [26]. It offers tools and libraries for running 
SLAM algorithms, processing data, and visualizing the 
results [27]. Robotic problems such as autonomous 
navigation and environmental interaction can be solved 
with ROS, and visualization can be realized with software 
such as RViz and Gazebo [28]. 

In this study, a remotely controlled Unmanned 
Ground Vehicle (UGV) was designed to produce a two-
dimensional (2D) model of an indoor area. A 2D LiDAR 
sensor and a processor were mounted on the UGV, and 
the LiDAR data collected during the vehicle's movement 
and visualized in real-time with the ROS. The collected 
data was processed using the Normal Distribution 
Transform (NDT) Particle Swarm Optimization (PSO) 
(NDT-PSO) LiDAR-SLAM algorithm, and a 2D model of 
the indoor environment was produced. In order to 

determine the accuracy of the model, the facades in the 
study area were measured using terrestrial surveying 
methods, and the reference dimensions of the facades 
were calculated. The percent error values of the facades 
in the model were determined by comparing the 
reference dimensions. 

 
2. LiDAR Sensors 

 

Distance measurement was technically introduced by 
Middleton and Spilhaus in 1953, but the LiDAR principle 
as we know it today emerged after Dennis Gabor's 
holography method in 1945 and the development of new 
techniques such as laser in 1960 [29]. The term LiDAR 
initially emerged as a combination of the terms light and 
radar [30]. This technology is used today, especially in 
autonomous vehicles [31], mapping [32], environmental 
monitoring [33] and many other areas. 

LiDAR systems are classified as one-dimensional 
(1D), two-dimensional (2D), and three-dimensional 
(3D). The working principle of these systems is the same, 
but there are differences, such as the use of a point-to-
point measurement mechanism, the scanning mode 
system, and the number of laser beams used. In 1D 
LiDAR, the distance between an obstacle and an object is 
measured using a fixed laser beam [34]. 2D LiDAR 
sensors record X and Y parameters using only a single 
beam axis and determine the positions of objects on a 
surface in the horizontal plane. 3D LiDAR sensors work 
like 2D sensors, but additional measurements determine 
an object's 3D position and height [35] but more 
processing time is required due to the larger data output 
of 3D LiDAR [36]. 2D LiDAR systems are widely preferred 
for production at lower costs, higher accuracy, and ease 
of commercialization in more basic usage areas [37, 38]. 
The cost difference between 2D and 3D LiDAR sensors 
significantly impacts these sensor's applications [39]. 

LiDAR sensors work by scanning the Field of View 
(FOV), which indicates how many views the sensor can 
provide in a specific angular range in horizontal and 
vertical directions [40]. FOV and lateral resolution are 
determined by factors such as the receiver optics, 
photodetector size, and the divergence angle of the laser. 
While the FOV for 2D LiDAR is limited to the horizontal 
plane, 3D scanners include both horizontal and vertical 
planes [41]. Particularly in autonomous vehicles and 
drones, a wide FOV is vital in obtaining a 360-degree 
view of the environment [42].  

LiDAR systems obtain distance information based on 
the ToF propagation of light [43, 44]. ToF is directly 
estimated from the time difference between transmitting 
and receiving signal pulses [45]. The distance calculation 
between the object and the sensor is shown in Equation 
1. 

 

 d =  
c.T

2
   (1) 

 
Where d is the distance between the object and the 

sensor, c is the speed of light, and T is the period. 
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2.1. 2D LiDAR-SLAM 
 

The general workflow of 2D LiDAR-SLAM can be 
given as follows: 

• An initial map of the surroundings is created 
from LiDAR data to obtain environmental information, 

• Based on the created map information, the 
starting position of the mobile robot and the decisive 
points around are calculated, 

• The mapping and positioning process continue 
during the movement of the mobile robot. New maps are 
created, and the mobile robot's position information is 
updated, 

• New landmarks are created depending on the 
new location of the mobile robot and the current map, 

• The determined new points are compared with 
the previous points, and the detected new points are 
used to update the position of the mobile robot, 

• The mobile robot navigates the environment 
based on current data and thus renews the route 
planning [46–49]. 

Many recent studies have been conducted on 2D 
LiDAR in indoor environments. In [50], the YDLIDAR X4 
sensor and Raspberry Pi 3B processor were used 
together with a mobile robot that can move manually or 
automatically to create a 2D map of a room. The position 
of the robot was determined using the Hector SLAM 
algorithm. They performed wall tracking of the room 
using Proportional-Integral-Derivative (PID) control and 
created a 2D mapping of the room with an error rate of 
5.32%. [51] aimed to segment room maps using 2D 
RPLIDAR A1 and Raspberry Pi. The study was carried out 
in eight different environments, and room segmentation 
was achieved at 96.5%. In [52], it was argued that GNSS 
and cameras are insufficient for Unmanned Aerial 
Vehicles (UAVs) to operate autonomously in closed and 
low-light environments. To create real-time estimates of 
the UAV pose, they used cheap and lightweight 2D LiDAR, 
which is not affected by light compared to other sensors 
and can work in closed areas such as historical buildings, 
and obtained a 3D model. [53] compared semantic 
information such as location, direction, and shape of the 
environment with metric information using 2D LiDAR in 
building areas. They verified the success of the location 
recognition system by comparing it with the Adaptive 
Monte Carlo Localization (AMCL) algorithm. Results 
indicate that as the number of points increases, the 
location accuracy also increases. 

 

2.2. 2D LiDAR-SLAM algorithms  
 

Nowadays, many algorithms are being developed for 
2D LiDAR-SLAM, which is becoming more widespread 
day by day [67,68]. One of these algorithms, Hector-
SLAM, is proposed by Kohlbrecher [54] which is based on 
the Gauss-Newton approach and scan matching 
technique that is used for environmental 2D grid 
mapping, and LiDAR with a high update rate performs 
the scan matching task to quickly and accurately 
determine the robot's position [55]. Unlike other SLAM 
algorithms, it relies not on odometry data but on laser 
scans and a pre-built map. Gmapping, which uses the 
Rao-Blackwellized Particle Filter (RBPF), is another 2D 

LiDAR-SLAM algorithm that aims to minimize the 
variance of particle weights when choosing the 
recommendation distribution. Unlike other SLAM 
algorithms, RBPF determines the robot's motion model 
using point cloud information, not as a recommendation 
distribution of particle sampling that helps reduce 
significant errors caused by motion noise [9]. On the 
other hand, Google developed Cartographer for real-time 
mapping of indoor spaces[22]. The primary purpose of 
this algorithm is to optimize efficiency by processing data 
from particle filters. Creating the map is executed by 
dividing the data into small pieces and then combining 
these pieces to create the road. At the same time, this 
algorithm also uses a mechanism to reduce errors from 
the robot's position. In this way, a more accurate and 
reliable map can be obtained [56] 

In addition to these algorithms, there are also point 
cloud matching algorithms such as Iterative Closest Point 
(ICP) and Normal Distribution Transform (NDT) in 2D 
LiDAR-SLAM. The ICP algorithm finds the transformation 
parameters by minimizing the Euclidean distance 
between the nearest neighbour points. However, since 
the ICP must create exact matches between points, the 
quality of the raster registration may decrease when the 
point cloud is sparse [57]. ICP does not always provide a 
global solution, and the result often depends on the 
accuracy of the initial pose. If an incorrect starting pose 
is obtained, the algorithm produces either an incorrect or 
a local solution [58]. NDT offers a more compact spatial 
representation of a point cloud [59]. NDT exceeds the 
limitations of ICP, such as long operation time and initial 
point-related errors, by matching the maps using 
statistical characteristics [60]. On the other hand, the 
drawback of the NDT, a map-based scan matching 
algorithm, is the significant changes in the robot's 
surroundings and occlusion by moving objects [61]. 

 

2.2.1. NDT-PSO  
 

NDT is an improved version of an occupancy table 
approach and is often used to process data such as a 2D 
laser scan [62]. NDT uses a set of local probability density 
functions of Gaussian normal distributions to transform 
a point cloud into a piecewise continuous function. In this 
method, each normal distribution describes the surface 
shape in an occupied space cell. In this way, NDT 
preserves each cell or region's surface features and 
distribution while creating a continuous representation 
from the point cloud. NDT can process the point cloud, 
record data, and define environmental features. For 
example, it is used in applications such as SLAM to 
determine location using the geometry and features of 
the environment [63]. The NDT scan matching algorithm 
calculates the average of cell points and its covariance in 
Equations 2 and 3, respectively. 

 

�̅� =
1

𝑛
∑ 𝑥𝑖

𝑛
𝑖=1   (2) 

 

σ =  
1

n
 ∑ (xi − x ̅n

i=1 ) ∗ (xi − x ̅)𝑇 (3) 
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Here, 𝑛 represents the number of points in each sub-
sets 𝑥, �̅� is the mean value of the points, and 𝜎 is the 
covariance of the 𝑥𝑖 points.  

Widely used SLAM methods are scan-matching 
approaches that can be computationally burdened, and 
sensitive to the position initialization error. The fact that 
PSO falls to the global minimum with a higher probability 
without position initialization provides an advantage in 
solving the SLAM problem [64]. 

PSO is an algorithm inspired by the movements of the 
swarm [65]. In the iterative PSO algorithm, each solution 
is called a particle, and the solution process starts with a 
population called a swarm. Swarm optimization is 
formulated as Equation 4:  

 
𝑣𝑡+1(𝑝) =  ∑ 𝐹𝑁 (𝑝, 𝑤𝑁)𝑛  (4) 

 
In Equation 4, where 𝑝 is the given particle, 𝑣 is the 

velocity vector, 𝑡 is the iteration, 𝐹𝑁 is the function of the 
different attractive forces affecting the particle motions, 
and 𝑤𝑁  is the weighting factors that balance the 
importance of each force. The 𝐹𝑁 is affected by three 
forces namely momentum, cognitive, and social 
behaviours. Momentum behaviour is expressed by the 
pulling forces to maintain its current motion. 

 
𝐹𝑀 =  𝑤𝑀𝑣𝑡 (𝑝) (5) 

 
In Equation 5, 𝑤𝑀  refers to the inertial weight factor 

and 𝑣𝑡  is the particle’s current velocity. At each iteration, 
the position and velocity of each particle within the 
population are updated using 𝑃𝑏𝑒𝑠𝑡 and 𝐺𝑏𝑒𝑠𝑡 values. 
Pbest represents the state in which a particle has come 
closest to a solution, while 𝐺𝑏𝑒𝑠𝑡 represents the state in 
which it has come closest to a solution among all 
particles. In this process, each particle moves toward a 
new location [66] The second behaviour 𝐹𝑐, as shown in 
Equation 6, indicates the forces affecting the particle 
towards Pbest. 

 
𝐹𝑐 =  𝑤𝑐  |𝑟𝑎𝑛𝑑1| (𝑃𝑏𝑒𝑠𝑡𝑡(𝑝) −  𝑋𝑡  (𝑝)) (6) 

 
In this equation, 𝑤𝑐  represents the cognitive weight 

factor, 𝑋 is the position vector, 𝑋𝑡  gives the current 
position vector of the particle, 𝑟𝑎𝑛𝑑1 represents the 
randomly generated value at each speed change, which 
varies between 0-1. 

 

𝐹𝑠 =  𝑤𝑠 |𝑟𝑎𝑛𝑑2| (𝐺𝑏𝑒𝑠𝑡𝑡 − 𝑋𝑡 (𝑝))  (7) 

 
The third behaviour 𝐹𝑠, shown in Equation 7, 

considers the social behavior of the particle and adjusts 
its movement according to 𝐺𝑏𝑒𝑠𝑡. This value represents 
the best position the swarn has reached so far. 𝑤𝑠 refers 
to the social weight factor, 𝑟𝑎𝑛𝑑2 refers to its randomly 
generated value at each speed change and varies in the 
range of 0-1. The position of each particle is updated 
according to Equation 8. 

 
𝑋𝑡+1 (𝑝) =  𝑋𝑡(𝑝) + 𝑣𝑡+1 (𝑝) (8) 
 

In NDT-PSO, the position estimation problem is 
solved by encoding the geometric transformation 
(translation-Tx, Ty, and rotation - θ) between two scans 
on a particle (Equation 9). 

 

𝑋(𝑝) = 𝑇 = (𝑇𝑥, 𝑇𝑦 , 𝜃) (9) 

 
More detailed information about the NDT-PSO 

algorithm is given in [64]. 
The performance of NDT-PSO in indoor and outdoor 

areas has been tested in both static and dynamic 
environments [64]. The map and estimated positions 
obtained with the NDT-PSO approach maintain accuracy 
under various conditions, including loop-closure 
situations and scenarios with moving objects. The 
algorithm offers high accuracy and reliability, including 
real-time applications against complex and variable 
environmental conditions. It has also been determined 
that the algorithm works quickly and efficiently, meeting 
the speed and response times required for real-time 
systems. This feature makes NDT-PSO an effective 
solution for systems with real-time application 
requirements like mobile robots. 

 

3. Case study  
 

In this study, an unmanned ground vehicle (UGV) was 
developed for 2D mapping of an indoor area. YDLiDAR 
TG-30 laser scanner with a range of 30 meters was used 
to collect detailed information about the environment. 
Jetson Nano processor was used to collect and process 
LiDAR data. Power was supplied to the processor using a 
7.4V LiPo battery, and a regulator was also used to step 
down the power to the appropriate voltage. A schematic 
representation of the UGV and sensor settlement is given 
in Figure 1. 

 

 
Figure 1. General view of the developed UGV (a and b) 
and the used devices and system configuration (c) 
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A shelter of 232 m2 that is in the Ondokuz Mayis 

University, Geomatics Engineering Building was chosen 
as the study area. The angle and distance observations of 
the detail points from the facades were measured with 
the Topcon GM-50 Series total station (Figure 2a). This 
total station provides 5” angle accuracy and 2mm+2ppm 
non-prism distance accuracy. Then, the point 
coordinates of the detail points were calculated and 
converted into a 2D drawing in the CAD environment 
(Figure 2b). A 2D map of the study area was produced in 
a local coordinate system, and these values were 
accepted as reference values for the study area. 

 

 
Figure 2. (a) 2D Mapping the working area with Total 
Station, (b) 2D reference map of the study area 

 
The SLAM method maps the environment and 

accurately estimates the vehicle's pose. In this study, the 
NDT-PSO algorithm, one of the SLAM methods, was used. 
While NDT provides modelling of the environment, PSO 
provides pose estimation. The LiDAR data collected 
through the ROS system installed on the Jetson Nano 
processor was processed using the NDT-PSO algorithm, 
and real-time imaging was provided with Rviz. 
CloudCompare software was used to visualize the 
produced 2D model and measure the facade lengths on 
the model (Figure 3). 

 
Figure 3. 2D model obtained with the NDT-PSO 
algorithm 
 
 
4. Results 
 

Seventy-five facades of the indoor area were 
determined to analyze the provided accuracies by the 
NDT-PSO algorithm (Figure 4). The reference lengths of 
the facades were measured on the CAD environment, 
while the facade lengths on the 2D model produced with 
the NDT-PSO algorithm were measured using 
CloudCompare software. Percent error values, which 
indicate the magnitude of the error, were calculated by 
comparing the facade lengths on the reference and model 
dimensions. The percent error was calculated according 
to Equation 10.  

 

𝜀𝑝 =
|𝑦𝑟−𝑦𝑚|

|𝑦𝑟|
∗ 100  (10) 

 
In Equation 10, 𝜀𝑝, 𝑦𝑟 , and 𝑦𝑚 define the percent error, 

reel value, and measured value, respectively. The 
detailed statistics are given in Table 1. 

 
 

 
 

 
Figure 4. The given facade numbers on the CAD drawing 
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Table 1. The reference, model, difference, and percent error values related to the facades 

Facade  
No 

Reference  
(cm) 

Model  
(cm) 

Error 
(cm) 

%  
Percent  

Error 

 
Facade 

No 
Reference 

(cm) 
Model 
(cm) 

Error  
(cm) 

% 
Percent 

Error 

1 1498.1 1500.0 1.9 0.1 39 308.0 309.0 1.0 0.3 

2 21.2 20.7 0.5 2.4 40 40.0 40.2 0.2 0.5 

3 179.3 180.5 1.3 0.7 41 33.3 33.1 0.1 0.4 

4 39.5 39.2 0.3 0.7 42 38.8 38.7 0.1 0.3 

5 32.6 32.7 0.1 0.2 43 307.4 306.7 0.7 0.2 

6 39.0 38.7 0.3 0.9 44 40.0 40.8 0.8 2.1 

7 305.3 305.5 0.2 0.1 45 33.0 32.4 0.6 1.9 

8 40.0 39.9 0.2 0.5 46 39.1 39.1 0.1 0.2 

9 33.6 33.1 0.6 1.7 47 306.4 310.3 3.9 1.3 

10 38.0 38.9 0.9 2.3 48 40.0 38.9 1.1 2.8 

11 305.5 308.6 3.1 1.0 49 33.0 32.4 0.6 1.8 

12 39.0 39.9 0.9 2.3 50 39.2 38.2 0.9 2.3 

13 13.5 13.9 0.4 2.7 51 296.7 295.7 1.0 0.3 

14 486.0 490.8 4.8 1.0 52 32.4 32.6 0.2 0.7 

15 12.5 12.6 0.1 0.5 53 73.0 71.6 1.4 1.9 

16 71.3 70.3 1.0 1.4 54 73.0 71.0 2.0 2.8 

17 48.0 48.1 0.1 0.2 55 32.4 32.9 0.5 1.6 

18 236.0 237.3 1.3 0.5 56 33.0 33.5 0.5 1.4 

19 139.0 141.8 2.8 2.0 57 73.1 71.0 2.1 2.9 

20 39.0 38.0 1.0 2.6 58 73.1 71.0 2.1 2.9 

21 51.0 52.4 1.4 2.7 59 33.0 32.9 0.1 0.3 

22 149.0 149.9 0.9 0.6 60 33.0 32.5 0.5 1.6 

23 18.7 18.6 0.1 0.5 61 72.2 71.4 0.8 1.1 

24 72.6 71.0 1.6 2.2 62 72.2 70.8 1.3 1.9 

25 33.0 32.4 0.6 1.9 63 33.0 32.7 0.4 1.2 

26 197.0 196.6 0.4 0.2 64 32.9 32.5 0.4 1.1 

27 315.2 317.8 2.7 0.8 65 72.0 71.2 0.8 1.1 

28 209.0 210.9 1.9 0.9 66 72.0 70.8 1.2 1.6 

29 383.2 383.5 0.3 0.1 67 32.9 32.0 0.8 2.6 

30 42.3 41.2 1.1 2.6 68 32.0 32.3 0.4 1.1 

31 311.5 316.8 5.3 1.7 69 73.0 71.1 1.9 2.6 

32 40.0 39.5 0.5 1.3 70 73.0 71.6 1.4 1.9 

33 33.0 33.6 0.6 1.7 71 32.0 31.7 0.3 0.9 

34 40.0 39.3 0.7 1.7 72 32.4 32.3 0.1 0.4 

35 305.4 306.7 1.3 0.4 73 73.0 71.5 1.5 2.0 

36 39.7 39.9 0.1 0.3 74 73.0 72.4 0.6 0.9 

37 33.0 32.3 0.7 2.2 75 32.4 31.6 0.8 2.5 

38 39.1 39.8 0.8 1.9      

 
 

The table shows the data comprising 75 facades 
ranging from 0.13 to 15 meters. It was calculated that the 
minimum and maximum difference values between the 
two data sets were 0.1 cm and 5.3 cm, respectively, and 
the average of the difference values was 1.0 cm. Figure 5 
shows that percent error values are in the range of 0-3%. 
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Figure 5. Percent error (%) of the façades calculated 
from the reference and model lengths 
 

Current standards for large-scale maps in Türkiye are 
regulated by Large-Scale Map and Map Information 
Production Regulation 2018. According to this 
regulation, detailed measurements of facade control are 
given in Equation 11. 
 
𝑑 = 0.05 + 0.001 ∗ 𝑆  (11) 
 

Where 𝑑 is the error limit between the reference and 
model values in meter, and 𝑆 is façade length in meter. 
According to this formula, it is seen that the error limits, 
depending on the length, vary between 5.0 and 6.5 cm. 
Considering that our model errors vary between 0.1 and 
5.3 cm, it can be concluded that the model data can be 
used for facade length estimation. 

There is no similar study conducted with the NDT-
PSO algorithm that compares the model and the 
reference lengths. The closest study to ours is the study 
performed by [50] using the Hector SLAM method 
explained in Section 2.1. In the study, the actual wall 
lengths of the room were compared with the wall lengths 
measured with 2D LiDAR and the average error 
percentage was determined as 5.32%. When comparing 
the results with our study, it can be concluded that the 
obtained average percent error of 1.3% provides higher 
performance. 

 

5. Conclusion  
 

Nowadays, the types of applications using mobile 
robots are increasing day by day. One of the most critical 
applications is SLAM, in which mobile robots can 
calculate their positions and model their surroundings. 
This study aimed to produce a 2D model of an indoor 
area using the 2D LiDAR sensor data mounted on a 
mobile robot and to determine the accuracy of the 
produced model. NDT-PSO SLAM algorithm was used to 
generate the model from LiDAR data. In order to 
determine the accuracy of the model produced with the 
SLAM algorithm, the reference data of the study area was 
produced using a total station. When the reference map 
is compared with the model obtained with the NDT-PSO 
algorithm, it is seen that error values in the range of 0-
3% are reached proportionally. Thanks to this model, 

which was produced in real-time with the NDT-PSO 
algorithm, it has been observed that the intense 
workloads of measurement, calculation, and drawing 
required in terrestrial techniques can be eliminated. 
These accuracy values show that the method can be used 
for most applications except for studies requiring mm-
level accuracy. However, modelling with 2D LiDAR 
produces only a 2D model of the work area, which cannot 
provide sufficient detailed information for applications 
requiring 3D modelling. In future studies, modelling will 
be carried out with 3D LiDAR-SLAM algorithms. 
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