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Abstract
The representation of an edge of a graph in a 2-dimensional coordinate system (shown
in Fig. 1) made it possible to get a geometric interpretation of several earlier proposed
vertex-degree-based graph indices. In particular, the sum of sine, cosine, and secant of
the angle α (shown in Fig. 1) over all edges of the underlying graph yields, respectively,
the second Sombor, inverse symmetric division deg, and symmetric division deg indices.
Analogous trigonometric relations for the cosecant and cotangent of α are not possible.
Therefore, the only remaining such relation is for the tangent of α, resulting in a new
vertex-degree-based topological index, the tangent Sombor index, Tan.
In this paper, the basic properties of Tan are established. Connected graphs and trees
reaching extremal Tan-values are characterized. Inequalities between Tan and other graph
indices are established. The chemical usefulness of Tan in terms of structure sensitivity,
abruptness, degeneracy, and correlation with some physicochemical properties of octane
isomers and other indices is investigated.
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1. Introduction
Let G = (V, E) be a simple graph with vertex set V and edge set E. The degree of a

vertex u ∈ V is denoted by du. An edge e ∈ E connecting the vertices u, v ∈ V is denoted
by e = uv.

Nowadays, in the mathematical and chemical literature, there exist several dozens of
vertex-degree-based (VDB) graph indices (usually referred to as “topological indices”),
some of which have found important chemical or pharmacological applications. These
indices are intensively investigated from both chemical and mathematical points of view
[10,17,28]. Their general mathematical form is:

TI(G) =
∑

uv∈E

F (du, dv) , (1.1)
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where F (x, y) is some function with the property F (x, y) = F (y, x), defined for all values
of x, y that the vertex degrees of a graph may assume.

Some of the VDB graph indices that we are considering within the present study are:
the second Zagreb index [14]

M2(G) =
∑

uv∈E

du dv ,

the Albertson index [1]

Alb (G) =
∑

uv∈E

|du − dv| ,

the general Randić index for α = −1 [4]

R−1 (G) =
∑

uv∈E

1
du dv

,

the symmetric division deg index [2, 29]

SDD(G) =
∑

uv∈E

(
du

dv
+ dv

du

)
, (1.2)

the inverse symmetric division deg index [9]

ISDD(G) =
∑

uv∈E

du dv

d2
u + d2

v

, (1.3)

and the Sombor index [11]

SO(G) =
∑

uv∈E

√
d2

u + d2
v .

In a recent paper [11], it was noticed that the vertex pair (du, dv) in formula (1.1) can
be given a geometric interpretation, as shown in Fig. 1.

Figure 1. A geometric representation of an edge e = uv of a graph G, connecting
vertices of degree du = a and dv = b (a > b). Point A corresponds to the ordered
pair (du, dv), whereas its dual, denoted by B, to the pair (dv, du). The (Euclidean)
distance between A and the origin O (or the equal distance between B and O),
summed over all edges, was used for the definition of the Sombor index. The
distance between A and B pertains to the Albertson index. The angle between
the lines AO and BO is denoted by α = αuv.

The Sombor index is the first VDB graph index designed by means of geometry-based
consideration (cf. Fig. 1). Eventually, it found remarkable chemical [18, 22, 23] and
other [3, 24] applications, and its mathematical properties were studied in due detail,
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see the review [19]. Motivated by its success, further geometry-based studies have been
undertaken, resulting in design of several new VDB graph indices [8, 12,13,15,27].

In [12], the following six Sombor-index-like VDB graph indices were put forward, all
related to the triangle ABO in Fig. 1.

SO1(G) = 1
2
∑

uv∈E

∣∣∣d2
u − d2

v

∣∣∣ , SO2(G) =
∑

uv∈E

∣∣d2
u − d2

v

∣∣
d2

u + d2
v

,

SO3 (G) =
√

2π
∑

uv∈E

d2
u + d2

v

du + dv
SO4(G) = π

2
∑

uv∈E

(
d2

u + d2
v

du + dv

)2

,

SO5(G) = 2π
∑

uv∈E

∣∣d2
u − d2

v

∣∣
√

2 + 2
√

d2
u + d2

v

, SO6(G) = π
∑

uv∈E

(
d2

u − d2
v√

2 + 2
√

d2
u + d2

v

)2

.

Of these, SO2 is related to the angle α = αuv, whose geometric meaning is explained in
Fig. 1. In particular,

SO2(G) =
∑

uv∈E

sin αuv (1.4)

where, as shown in [12],

sin α =
∣∣d2

u − d2
v

∣∣
d2

u + d2
v

. (1.5)

In [25], the topological index SO2 was named “second Sombor index” and was eventually
studied in much detail [8, 25,26].

Knowing sin α, Eq. (1.5), the analogous expressions for other trigonometric functions
of α are straightforwardly obtained:

cos α =
√

1 − sin2 α = 2du dv

d2
u + d2

v

(1.6)

sec α = 1
cos α

= d2
u + d2

v

2du dv
(1.7)

csc α = 1
sin α

= d2
u + d2

v

|d2
u − d2

v|
(1.8)

tan α = sin α

cos α
=
∣∣d2

u − d2
v

∣∣
2du dv

(1.9)

cot α = cos α

sin α
= 2du dv

|d2
u − d2

v|
. (1.10)

Observation 1.1. Bearing in mind that

d2
u + d2

v

du dv
= du

dv
+ dv

du

we see that the symmetric division deg index SDD, Eq. (1.2), is related to the secant of
α as

SDD(G) = 2
∑

uv∈E

sec αuv .
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Observation 1.2. Analogously, the inverse symmetric division deg index ISDD, Eq.
(1.3), is related to the cosine of α as

ISDD(G) = 1
2
∑

uv∈E

cos αuv .

Observation 1.3. The cosecant and cotangent of α cannot be related to any VDB index
because there are graphs possessing edges uv for which du = dv and then the divisor on
the right-hand sides of Eqs. (1.8) and (1.10) is zero.

Bearing in mind Eq. (1.4) and Observations 1.1–1.3, we see that the only remaining
trigonometric function of α is the tangent. This motivates us to consider a new VDB
graph index defined as

Tan = Tan(G) =
∑

uv∈E

tan αuv

or, by Eq. (1.9),

Tan = Tan(G) =
∑

uv∈E

∣∣d2
u − d2

v

∣∣
2du dv

.

We prefer to call Tan the tangent Sombor index.
In what follows, we characterize extremal graphs and trees in the class of all graphs

and trees. Moreover, we provide bounds for Tan in terms of some other well-known VDB
indices. In the last section, we investigate the chemical applicability potential of this
index in the context of structure sensitivity, abruptness, degeneracy, and its correlation
with various thermodynamic properties.

2. Basic mathematical properties of tangent Sombor index

Let us denote wdj ,di
=

∣∣∣d2
i − d2

j

∣∣∣
2di dj

as the contribution to Tan(G) of the edge ij. Note

that Pn, Sn, Kn represent the path graph, star graph and complete graph of order n,
respectively.

Theorem 2.1. Let G = (V, E) be a connected graph with n ≥ 2 vertices and m edges.
Then,

0 ≤ Tan (G) ≤ m
∆2 − δ2

2∆δ
,

where ∆ and δ are the maximum and minimum vertex degrees among all vertices in G,
respectively. The left and right equalities hold if and only if G is a regular graph and G is
the graph where max {di, dj} = ∆ and min {di, dj} = δ for each edge, respectively.

Proof. It is evident that Tan (G) reaches the minimum value when d2
i − d2

j = 0 for all
edges. Since this is satisfied in the case of G is a regular graph, the lower bound is proved.

Focusing on the upper bound, without loss of generality let us assume that di ≥ dj . For
any connected graph G with n ≥ 2 vertices, the following inequality holds:

δ

∆
≤ dj

di
≤ 1.

Let us define a function in such a way that

f

(
dj

di

)
=

d2
i − d2

j

2di dj
=

1 −
(

dj

di

)2

2dj

di

.
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It is clear that the function f (x) = 1 − x2

2x
is a decreasing function on the interval

(
δ

∆
, 1
)

using the first derivative f ′ (x) = −2x2 − 2
4x2 .

Then the maximum value of the function f

(
dj

di

)
on the interval

(
δ

∆
, 1
)

is obtained
when dj = δ, di = ∆. As a result, Tan(G) reaches the maximum value for graphs with
max {di, dj} = ∆ and min {di, dj} = δ for each edge ij ∈ E and the maximum value is

Tan(G) = m
∆2 − δ2

2∆δ
. □

Theorem 2.2. Let T = (V, E) be a tree with n ≥ 2 vertices. Then,
Tan (Pn) ≤ Tan (T ) ≤ Tan (Sn) .

The left and right equalities hold if and only if T ∼= Pn and T ∼= Sn, respectively. Moreover

Tan(P2) = 0 and Tan(Pn) = 3
2

when n ≥ 3. Furthermore, Tan(Sn) = (n − 1)
(
n2 − 2n

)
2n − 2

when n ≥ 2.

Proof. In the proof of Theorem 2.1, it is stated that when d2
i − d2

j = 0 for all edges,
Tan (T ) reaches the minimum value. However, when working with trees, there is no
tree except P2 satisfying the condition di = dj for all edges. It is already known that
Tan(P2) = 0. For n ≥ 3, trees by nature must contain at least 2 pendant edges. At this

point, let us consider w1,di
= d2

i − 1
2di

. By considering the function f(x) = x2 − 1
2x

with the

domain 2 ≤ x ∈ N and f ′(x) = 2x2 + 2
4x2 > 0, it can be deduced that f is increasing. As a

result, it is obtained that
w1,2 < w1,3 < · · · < w1,n−1.

Hence, for Pn, which has just 2 pendant vertices and the other edges are the edges connect-
ing the vertices of degree 2, it achieves the minimum value, which is Tan(Pn) = 2w1,2 =
23

4
= 3

2
.

As for the upper bound, since the number of edges in a tree T with n vertices is n − 1,
the maximum possible vertex degree in T is n−1, and the minimum possible vertex degree
in T is 1, the result is obtained using Thm. 2.1 as follows:

Tan(T ) ≤ Tan(Sn) = (n − 1) (n − 1)2 − 12

2 · 1 · (n − 1)
= (n − 1)

(
n2 − 2n

)
2n − 2

□
Let us recall Radon’s inequality for future use.

Lemma 2.3. [20] Let x1, x2, . . . , xk, r be nonnegative real numbers and y1, y2, . . . , yk be
positive real numbers. Then the following inequality holds:

k∑
i=1

xr+1
i

yr
i

≥

[∑k
i=1 xi

]r+1[∑k
i=1 yi

]r .

Equality holds if and only if x1
y1

= x2
y2

= · · · = xk

yk
.

Theorem 2.4. Let G = (V, E) be a connected graph with n ≥ 2 vertices and m edges.
Then,

Alb (G)
2M2 (G)

≤ Tan (G) ≤ 1
2

SDD (G) + R−1 (G) .
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The left and right equalities hold if and only if G is a regular graph and G ∼= Sn, respec-
tively.

Proof. First, let us focus on the lower bound. It is clear that
∣∣∣d2

i − d2
j

∣∣∣ ≥ |di − dj |, where
di, dj ∈ N+. Equality holds if and only if di = dj . Hence, we get the following inequality:

Tan (G) =
∑

ij∈E

∣∣∣d2
i − d2

j

∣∣∣
2di dj

≥
∑

ij∈E

|di − dj |
2di dj

=
∑

ij∈E

√
|di − dj |

2

2di dj
,

with the equality in the case of di = dj for all edges of G. Then, using Radon’s inequality
leads to the following inequality:

Tan(G) ≥
∑

ij∈E

√
|di − dj |

2

2di dj
≥

(∑
ij∈E

√
|di − dj |

)2

2
∑

ij∈E di dj

with the equality if and only if G is a regular graph. Furthermore, it is obtained the
following inequality by using some simple mathematical properties:

Tan(G) ≥

(∑
ij∈E

√
|di − dj |

)2

2
∑

ij∈E di dj
,

≥

√∑
ij∈E |di − dj |

2

2
∑

ij∈E di dj
with the equality in the case of di = dj for all edges of G,

=
∑

ij∈E |di − dj |
2
∑

ij∈E di dj
= Alb(G)

2M2(G)
.

Equality holds if and only if G is a regular graph.

Let us investigate the upper bound. The triangle inequality shows that∣∣∣x2
1 − x2

2

∣∣∣ < x2
1 + x2

2, (2.1)

where x1, x2 ∈ N+.
Thus, by using Eq. (2.1), it is clear that x2

1 + x2
2 −

∣∣x2
1 − x2

2
∣∣ reaches the minimum value

when x1 = x2 = 1 for x1, x2 ∈ N+. Therefore, for an edge of G, it can be seen that the
inequality ∣∣∣d2

i − d2
j

∣∣∣ ≤ d2
i + d2

j − 2

exists by considering the smallest vertex degree pair di = 1, dj = 1. Moreover, one can
observe that the equality holds if and only if the low-degree end vertex of the edge is 1.
Using this inequality, the following result is obtained:

Tan(G) =
∑

ij∈E

∣∣∣d2
i − d2

j

∣∣∣
2di dj

≤
∑

ij∈E

d2
i + d2

j − 2
2di dj

= 1
2

∑
ij∈E

d2
i + d2

j

di dj
− 2

∑
ij∈E

1
di dj



= 1
2

∑
ij∈E

(
di

dj
+ dj

di

)
− 2

∑
ij∈E

(di dj)−1

 = 1
2

SDD (G) − R−1(G) .

Since the degree of the low-degree end vertex of all edges of Sn is 1, the equality holds if
and only if G ∼= Sn. □
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3. Chemical applicability potential of tangent Sombor index
The thermodynamic properties of octane isomers given in Table 1, acentric factor

(AcenFac), standard enthalpy of vaporization (DHVAP), entropy, enthalpy of vaporization
(Hvap) were obtained from [5], also boiling point, and enthalpy of formation were obtained
from [30].

In Table 1, the absolute values of Pearson correlation coefficients (|R|) values between
the indices and the indicated chemical properties of octane isomers are presented.

SO1 (G) SO2 (G) SO3 (G) SO4 (G) SO5 (G) SO6 (G) ISDD (G) SDD (G) SO (G) Tan (G)
AcenFac 0.91920 0.92019 0.94819 0.94667 0.93033 0.90293 0.92463 0.90103 0.95942 0.93307
DHvap 0.95220 0.95610 0.95101 0.93001 0.97268 0.93790 0.97683 0.95278 0.94696 0.98066
Entropy 0.89015 0.84327 0.94008 0.94241 0.88927 0.90482 0.91033 0.91007 0.94659 0.91103
Hvap 0.91752 0.91982 0.91122 0.88373 0.93938 0.90531 0.95253 0.92767 0.90317 0.95052
Boiling P. 0.78107 0.79030 0.76011 0.72502 0.80734 0.77339 0.82347 0.80842 0.74330 0.82498
Enthalpy 0.82559 0.75893 0.81551 0.79538 0.82835 0.84476 0.85371 0.86117 0.79730 0.84820

Table 1. The absolute values of Pearson correlation coefficients (|R|) between
the indices and the specified chemical properties of octane isomers.

It can be observed from Table 1 that Tan(G) is comparable to ISDD(G) and they have
the best performance and second best performance for standard enthalpy of vaporization
(DHVAP), enthalpy of vaporization (Hvap) and boiling point among all indices that exist
in Table 1. Moreover, there is no significant difference between the |R| values of the best
performing indices for acentric factor, entropy, and enthalpy of formation and the |R| value
of the Tan(G) index.

The following equations present regression models with standard error of the estimates
(SEE) for Tan (G) index.

AcenFac = −0.01382 · Tan (G) + 0.41847, where SEE is equal to 0.01314.

DHvap = −0.15700 · Tan (G) + 10.06614, where SEE is equal to 0.07734.

Entropy = −1.71851 · Tan (G) + 115.70164, where SEE is equal to 1.91964.

Hvap = −0.80442 · Tan (G) + 73.97868, where SEE is equal to 0.64883.

Boiling P. = −2.11638 · Tan (G) + 399.51332, where SEE is equal to 3.57822.

Enthalpy = −1.86454 · Tan (G) − 205.70533, where SEE is equal to 2.87356.

In Table 2, degeneracy values of the indices are presented for octanes, nonanes, decanes,
and trees with 6, 7, . . . , 12 and 13 vertices.

In this study, the method proposed by Konstantinova in [16] for evaluating the degener-
acy of a topological index is used. A topological index with lower degeneracy capture more
structural information, namely lower degeneracy provides higher discriminative power [6].

Accordingly, Table 2 shows that the index with the highest discriminative power among
the indices analyzed is SO4 (G), while the index with the lowest discriminative power is
SO1(G).

The discriminative powers of other indices with a degeneracy value between the de-
generacy values of SO4(G) and SO1(G) indices are quite similar to each other. When
the discriminative powers of these indices are compared with the discriminative power of
Tan(G), it is seen that the maximum value of the degeneracy value difference is approxi-
mately 0.08. In addition, based on octane, nonane and decane isomers, Tan(G) is able to
distinguish approximately 88%, 80% and 66% of these isomers, respectively.
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SO1 (G) SO2 (G) SO3 (G) SO4 (G) SO5 (G) SO6 (G) ISDD (G) SDD (G) SO (G) Tan (G)
Octanes 0.50000 0.11111 0.05556 0.05556 0.11111 0.11111 0.05556 0.11111 0.11111 0.11111
Nonanes 0.65714 0.20000 0.14286 0.11429 0.20000 0.17143 0.08571 0.20000 0.17143 0.20000
Decanes 0.78667 0.34667 0.28000 0.22667 0.32000 0.32000 0.29333 0.32000 0.30667 0.33333
6 vertices 0.16667 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000
7 vertices 0.27273 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000
8 vertices 0.43478 0.08696 0.04348 0.04348 0.08696 0.08696 0.04348 0.08696 0.08696 0.08696
9 vertices 0.57447 0.14894 0.10638 0.08511 0.14894 0.12766 0.06383 0.14894 0.12766 0.14894
10 vertices 0.70755 0.25472 0.20755 0.16981 0.23585 0.23585 0.21698 0.23585 0.22642 0.24528
11 vertices 0.80000 0.30213 0.29362 0.22128 0.31064 0.31064 0.30213 0.34043 0.29362 0.32766
12 vertices 0.87296 0.40290 0.39020 0.32668 0.42831 0.41924 0.39746 0.48094 0.40472 0.45917
13 vertices 0.92314 0.49500 0.49424 0.43274 0.51729 0.50346 0.49347 0.60415 0.48655 0.56879

Table 2. Degeneracy values of the indices for octanes, nonanes, decanes, and
trees with 6, 7, . . . , 13 vertices.

In Table 3, structure sensitivity (SS) and abruptness (Abr) values (with ratios) of the
indices are presented for trees with 6, 7, . . . , 12 and 13 vertices.

6 7 8 9 10 11 12 13

SO1 (G)
SS 1.07494 0.81580 0.60135 0.48720 0.39877 0.33955 0.29656 0.26419
Abr 1.61806 1.35036 1.15274 1.01002 0.91481 0.83478 0.77716 0.72689
Ratio 0.66434 0.60413 0.52167 0.48237 0.43591 0.40675 0.38159 0.36346

SO2 (G)
SS 0.45051 0.35102 0.26478 0.21961 0.18463 0.15894 0.14028 0.12581
Abr 0.64811 0.56479 0.50563 0.45710 0.42109 0.38677 0.35947 0.33603
Ratio 0.69512 0.62150 0.52365 0.48045 0.43846 0.41093 0.39024 0.37441

SO3 (G)
SS 0.22925 0.18721 0.15324 0.13167 0.11307 0.10019 0.08918 0.08064
Abr 0.35426 0.31938 0.29372 0.27301 0.25466 0.24076 0.22776 0.21596
Ratio 0.64713 0.58618 0.52172 0.48229 0.44403 0.41614 0.39154 0.37342

SO4 (G)
SS 0.46294 0.38254 0.31402 0.27201 0.23479 0.20928 0.18726 0.17015
Abr 0.76988 0.71982 0.66164 0.62406 0.58623 0.55943 0.53314 0.50958
Ratio 0.60131 0.53144 0.47460 0.43588 0.40051 0.37409 0.35125 0.33390

SO5 (G)
SS 0.79054 0.60290 0.44708 0.36385 0.2992 0.25456 0.22216 0.19764
Abr 1.13413 0.92966 0.79497 0.69629 0.62692 0.56830 0.52594 0.48933
Ratio 0.69704 0.64851 0.56239 0.52256 0.47725 0.44793 0.42240 0.40390

SO6 (G)
SS 1.53487 1.11517 0.81476 0.65420 0.52996 0.44952 0.38929 0.34502
Abr 2.57338 2.10770 1.72740 1.51864 1.35383 1.22608 1.13038 1.05156
Ratio 0.59644 0.52909 0.47167 0.43078 0.39146 0.36663 0.34438 0.32810

ISDD (G)
SS 0.25286 0.19457 0.15045 0.12187 0.09969 0.08475 0.07305 0.06436
Abr 0.33822 0.28416 0.25342 0.22369 0.19928 0.18106 0.16547 0.15239
Ratio 0.74761 0.68472 0.59370 0.54481 0.50023 0.46806 0.44145 0.42230

SDD (G)
SS 0.23593 0.19127 0.15463 0.13190 0.11193 0.09824 0.08664 0.07773
Abr 0.36520 0.32663 0.29946 0.27726 0.25581 0.23995 0.22518 0.21221
Ratio 0.64603 0.58557 0.51636 0.47571 0.43757 0.40941 0.38476 0.36631

SO (G)
SS 0.18346 0.15089 0.12455 0.10734 0.09260 0.08228 0.07344 0.06656
Abr 0.28034 0.25486 0.23615 0.22042 0.20711 0.19689 0.18727 0.17836
Ratio 0.65441 0.59205 0.52743 0.48699 0.44711 0.41788 0.39216 0.37316

Tan (G)
SS 0.68751 0.52638 0.40056 0.33089 0.27440 0.23520 0.20515 0.18244
Abr 1.02777 0.85421 0.73494 0.65519 0.58867 0.53842 0.49737 0.46236
Ratio 0.66893 0.61621 0.54502 0.50503 0.46613 0.43682 0.41248 0.39459

Table 3. Both structure sensitivity (SS) and abruptness (Abr) values (with ratios
(SS/Abr)) of the indices for trees with 6, 7, . . . , 12 and 13 vertices.

The gradual change of any topological index values calculated on similar molecules as
a result of gradual changes in the structure of a molecule was called the smoothness of
the topological index in [7]. A useful model for measuring the smoothness of a topological
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index is presented for the first time in [7] and is frequently used in chemical applicability
potential investigations. This model includes the calculation of the structure sensitivity
(SS) and abrubtness (Abr) values of the corresponding topological index.

In this study, the SS and Abr calculation method introduced in [7] is followed. A
topological index with a value of SS as large as possible and a value of Abr as small as
possible has a significant sensitivity to insufficient structural changes, for details we refer
to [7, 21, 23]. In addition, from the formulae for Abr and SS presented in the method
introduced in [7], it follows that the smallest possible value of Abr is equal to SS. In this
respect, it can be said that a topological index with an SS/Abr value as close as possible
to 1 has better performance.

Accordingly, if it is focused on the SS/Abr ratios of the trees as the number of vertices
increases in Table 3, it is observed that ISDD(G) has the best performance among all
indices in Table 3 followed by SO5(G) and Tan(G).

In Table 4, the absolute values of the mutual Pearson correlation coefficients (|R|)
between Tan(G), ISDD(G), SO(G) and some indices included in the mathematical lower
and upper bounds of Tan(G) presented in Theorem 2.4 are presented by using decane
isomers.

M2(G) Alb(G) R−1(G) SDD(G) ISDD(G) SO(G) Tan(G)
M2(G) 1 0,80512 0,61860 0,77272 0,80627 0,88741 0,81078
Alb(G) 1 0,88125 0,96100 0,97774 0,97241 0,98900
R−1(G) 1 0,96341 0,94506 0,88862 0,92961

SDD(G) 1 0,98810 0,97547 0,98513
ISDD(G) 1 0,98093 0,99619

SO(G) 1 0,98291
Tan(G) 1

Table 4. The absolute values of the mutual Pearson correlation coefficients (|R|)
between Tan(G), M2(G), Alb(G), R−1(G), SDD(G), ISDD and SO(G).

Table 4 shows that Tan(G) has a strong correlation with the ISDD(G). This indicates
that the two indices have a close chemical applicability potential, which is also evident in
Table 1.
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