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Abstract

In this study, the concept of delta convergence, which is a generalization of the statistical convergence of double sequences is introduced.
In connection with this, C, and W, function spaces, which consist of some functions of two-variables, are introduced and the relationship
between them is examined.
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Cift Indisli Dizilerin istatistiksel Yakinsakliginin Bir Genellestirilmesi Uzerine

Ozet

Bu calismada, cift indisli dizilerin istatistiksel yakinsamasinin bir genellestirmesi olan delta yakinsaklik kavrami tanitilmaktadir.
Bununla baglantih olarak, iki degiskenli bazi fonksiyonlardan olusan C, ve W, fonksiyon uzaylar1 tanitilmakta ve aralarindaki iligki
incelenmektedir.

Anahtar Kelimeler: Zaman skalasi, istatistiksel yakinsaklik, delta yakinsaklik, ¢ift indisli dizi.
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1. Introduction and Background

The notion of statistical convergence of real sequences was first introduced by Fast [1]. The interest in this concept
increased with the articles of Schoenberg [2], Salat [3], Fridy [4], and Connor [5]. The statistical convergence of
double-sequences and their properties were studied by Mursaleen [6]. The analog of the asymptotic density
definition in natural numbers, called delta density, was provided on the time scale by Seyyidoglu [7]. This has made
it possible to extend the concept of statistical convergence to the time scale. In recent years, many articles have
been published about the statistical convergence on time scale [8-11].

One can refer to [12,13] for the concepts related to time scale below. A time scale T is nonempty closed subset of
R . The forward jump operator on T is defined by

o(t) =inf{s € T:s > t}.
An interval [a, b) on the time scale T is
[a,b):={teT:a<t < b}

with a, b € T. Other intervals are defined similarly. The family F, which consists of the intervals [a, b) of T, is a
semiring and the function m: F — [0, o) defined by m([a, b)) = b — a is a countably additive measure on F. If we
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define m*: 2T — [0, o] by

m*(4) = inf{z m(A4,):AcC UAk,Ak cF, ke N}

k=1 k=1

then m” is an outer measure. Furthermore, if we restrict this outer measure to the family of m*-measurable sets,
we get a measure called Lebesgue A-measure.

Throughout this article, we will agree that the time scale T; is unbounded from above; a; = min T; and o; is
forward jump operatér on T;, (i = 1,2). Also, we set X := T; X T, and u is product measure on X.

As defined in [6], a real double sequence x = (x; ;) is said to be statistical convergent to a real number L if

, 1. .
ml,ﬁooﬁﬂ(l,ﬂ!l <mj<nlx,|2el|=0

foreach € > 0.
2. Pringsheim Convergence and A-Convergence

The definitions below are necessary for the theorems we will construct.
Definition 2.1. (Pringsheim convergence). A function f: X — R is said to be convergent to L in the Pringsheim’s

sense on a set A c X if for every € > 0 there exists (t;,t;) € A such that |f(t,,t,) — L| < € whenever t; > t;,t, >
t; and (t, t,) € A. In this case, we write " lltII)l Af(tl, t,) = L.
112)€

Definition 2.2. (A-Density). Let A be a u-measurable subset of X. A-density of A is defined by

ANI(t,t
§(A) = lim HAN It t2)
(t1,t2)€EA a(ty, ty)

provided that this limit exists where I(t;, t,) = [ay, t1] X [az, t;] and a(ty, t,) = (0,(t;) — a;)(0,(t;) — ay).
Definition 2.3. (A-Convergence). A u-measurable function f: X — R is A-convergent to the number L provided

that for each € > 0 there exists K, € X such that §(K,) = 1 and |f(¢;,t,) — L| < ¢ holds for all (¢, t,) € K, and we
write A-(}irtn) f(ty, ty) = L.
1,02

Theorem 2.4.If f: X = R a y-measurable function then A-(}il}l) f(ty, t;) = L ifand only if there exists a subset K ¢
102
T such that §(K) = 1 and (tll,]tg)lexf(tl' t,) = L.

Proof. If there exists a set with the mentioned properties and € > 0 is an arbitrary number, then we can choose a
point (t;,t3) € K thatforall t; > t{,t, > t; and (t,,t,) € K we have

If(t,t) — Ll <e. (2.1)

A-density of K* := K N ([t;, ©) X [t3,)) is equal to 1 and the inequality (2.1) holds for all (¢, t,) € K*, it follows
that f satisfies A-(girgl)f(ti, t,) = L.
12

Conversely, suppose that f is A-convergent to L. Put

Ky:=X

1
K= {e) exilfeun) -1 <-) =12,
Obviously,

Ky> K, DK, > (2.2)

and
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6(K,)=1 (n=0,1,..) (2.3)

hold. According to (2.3) there exist such points (tf"), té")) €K,
tl(n) > tl(n—l) S > til)
R &

that forall t; > t™ and t, > t™ we have

u(K, nI(t,t)) n-—1 (2.4)
> :
a(ty, tz) n

If we define the sets D,,, S,, and K as follows
D, = [ay, tT V] x [ap, t{*V] (n=0,1,..),

S,=D,—-D,_, (n=0,1,...) where D_;:=0,

K=\ |(S:nKkK),
U
we obtain
(Kn NI(ty, t,) © (U(si n Ki)) u (((Sn NK,) NIty tz))

=KnI(ty,ty)

when t™ < t, <t £ < t, < t{**. From the last inclusion and (2.4) we get

pK NIt t)) (K 0 1(t, t2)) Jn= 1
a(ty,t,)  — a(ty,ty) n

for all (t;,t,) € Xsuch that t™ < t; < tI*™, tf” < t, < t{**™. From this we get §(K) = 1. Finally let us Show
that « lltI‘I)l Kf(tl, t,) = L. Let € be an arbitrary positive number. Choose an n such that % < € and next choose a
1l2)€

point (t;,t;) € K such thatt; > tin), t; > tén) . According to construction of K there exists a set K,,, and (¢t;,t}) €

K., (n < m). Thus
1 1
t,t) - Ll <—<-<
If (s, t2) | m=n &
for all (t,,t,) € K, t; > t1, t, > t; which shows that " litrr)1€Kf(t1, t,)=L. 1
12

3.C, and W), Spaces

Let’s define the sets of bounded, A-convergent and strongly p-Cesaro summable functions (p > 0) consisting of
some u-measurable functions, as follows:

B:= {f:X—> R| sup [f(t,t)l < 00}'

(t1,t2)€X

Cp: = {f:X - R|A- (}irp)f(tl,tz) =L, forsome L € R},
1,42
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1
Wy:={f:X->R| lim

—_ p e
0 e f If(§&,m) — LIPdu(é,n) = 0, for some L € R

I(t1,t2)
respectively. It is clear that the sets above real vector spaces according to the usual addition and scalar

multiplication operations. Obviously, the vector space B is a Banach space with the respect to the supremum norm.
Also, one can obtain the relation W, c W, using the Holder inequality under the condition 0 < p < q.

Theorem 3.1.BNCy c W, .

Proof. Let € be an arbitrary positive number. There is a set K € X such that §(K) = 1 and

)] < G)l/p (3.1)
holds at each (t,t,) € K. If we say
M= |L| + (tfli?ex'f(tl’t”" (3.2)
then there exists a point (tj,t3) in X such that
u(KenI(ty,ty)) £ (3.3)

a(ty,ty) 2Mp

satisfy for all t; > t; and t, > t3; thus by (3.1), (3.2) and (3.3)

If(&m) — LIPdu(é,n)

f F (&) — LIPdu(,n)

a(ty, tz) a(ty, ty)
I(t1,t2) I(t1,t2)NK
+ If (& m) — LIPdu(¢,n)
a(ty, ty)
I(tq,t2)NKE
€ p(Ke N I(ty,t;))
- p M
< 2t ey M
< &

holds for all t; > t; and t, > t;. Since € > 0 arbitrary, the proofis complete. B
Theorem 3.2. W, c C,.
Proof. Suppose that ¢ > 0. We define the set

K= {(ts, t;) €X:|f(ts, t2) — LIP = €}.

If the limit is taken in the Pringsheim’s sense on X in the following inequality, the desired result is obtained.

! 1
a(t,, ) ( f IF(&,m) = LIPdu(&,n) = FTORS) y If (&, 1) = LIPdu(&,n)
I(t1.t) ek
€
= @, ) du(€,m)
€
= m”(K NI(ty,ty)). W

Corollary 3.3.BNW, = BN C,.

Proof. It is clear from theorem 3.1 and 3.2. &
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Theorem 3.4. The set B N C, is closed subspace of normed space B which equipped with the supremum norm.

Proof. Suppose that f,, EBNC,, f, = f € Band A-(}irtn)fn(tl, t,) = L,. For a given € > 0, there is an n, € N such
1,02

that for all m,n > n, we have
€
Ifn = fnll <3 (34)
For each n there is a set K,, € X such that §(K,,) = 1 and
€ (3.5)
|fn(t1rt2) - Lnl < §

holds for all (¢4, t;) € K,,. From (3.4) and (3.5), we get

[y = Lyl S Ly = fn(tn t)] + | fn(t t) = fu(t, )]+ [ fu(ty, ) — Lyl < €

for m,n > ny and (ty,t,) € K, N K,,. This shows that the sequence (L,) is convergent, say, L,, = L. Hence there is
a natural number N such that

€
L, — Ll <= (3.6)
3
and
€

It t) = f(tut)] <5 for (6, ) €X. (3.7)

Thus from (3.5), (3.6) and (3.7) we obtain
|f(t1,t2) - Ll = |f(t1vtz) _fN(tlth)l + |fN(t1,t2) - Lnl + |Ln - L| <e

for (t;,t,) € K,,. Therefore, f € B N C,. This shows that the set B N C, is closed subspace of B. B
Mursaleen’s Theorem [6], which states that the space of bounded and statistically convergent double sequences is
not dense in the space of bounded double sequences, is a special case of the following theorem:

Theorem 3.5. The set B N C, is nowhere dense in B.

Proof. The proof is based on the fact that a closed proper subspace of a normed space is nowhere dense in that
space. Therefore, considering Theorem 3.4, it is sufficient to show that B N C, # B. We can choose the points ti(l) <
t? < .and t{” <t < - such that

U ((UZ=1Ak) n 1(t1<2“—1>, t§2"—1>)) 3
a(tizn_l),t(zn_l)) > Z

1 (U0 0 1(67,67))
a(tl(Zn)’téZn)) 4

are satisfied, where
1 1
4= 1(5",157)
Ak — I(I{Zk_l),t;y{_l)) _ I(t§2k_2),t§2k_2)) (k > 2)_

Thus, A-density of the set A := Uy, 4, does not exist. So, the function f: X — R defined as

(1 (tut) €A
ftytr) = {0 (t,t,) € X — A
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is not A-convergent. B
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