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Abstract

We define the Gauss Lichtenberg numbers. Then we give a formula for the Gauss Lichtenberg numbers by using the Lichtenberg numbers.
We show that there is a relation between the Gauss Lichtenberg numbers, Lichtenberg, Jacobsthal and Mersenne numbers. Their Binet’s
formulas are obtained. We also define the matrices of the Gauss Lichtenberg numbers. We examine properties of the matrices.
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1. Introduction

The investigation of Gaussian numbers is a research topic of great interest in recent years. If Z is the set of integers, the set of these numbers
is denoted by Z[i] = {a+bi : a,b ∈ Z, i2 =−1}. Gaussian numbers were investigated by Gauss in 1832. In 1963, Horadam [11], introduced
the concept of Gaussian Fibonacci numbers. And then Jordan [12] considered the two different sequences of Gaussian numbers and extended
some relationships which are known about the common Fibonacci sequences.
In [2], Aşci and Gürel introduced the concept of Gaussian Jacobsthal and Gaussian Jacobsthal-Lucas numbers. They also studied also
the complex Jacobsthal polynomials [3]. Polynomials that can be defined by Jacobsthal-like recursion relations are called Jacobsthal
Polynomials and they were studied in 1997 by Horadam and in 2000 by Djordjević (see [6, 9]). More mathematicians were involved in the
study of Jacobsthal polynomials such as Djordjević and Srivastava [7], among others. In [18, 19], Morales defined and studied the Gaussian
third-order Jacobsthal numbers and Gaussian third-order Jacobsthal-Lucas polynomials.
Recently, in [5], Daşdemir and Bilgici introduced the Gaussian Mersenne numbers and studied some of their properties. In [17], Kumari et al.
defined the generalization of the Mersenne and Gaussian Mersenne polynomials with arbitrary initial values and studied their properties.
Further, in [23], Stockmeyer listed several characterizations of the new sequence called Lichtenberg sequence relative to Mersenne and
Jacobsthal numbers, and numerous examples of cases in which the Lichtenberg sequence occurs. Also, in [8], Hinz introduced some
fundamental characterizations of the Lichtenberg sequence, without placing emphasis on its properties.
Lichtenberg numbers are named after Georg Christoph Lichtenberg, who studied these numbers in the 17th century. Lichtenberg numbers
are denoted by `n, defined mathematically by the recurrence `n + `n−1 = 2n−1 and have the form

`n =
1
6

[
(−1)n+1 +2n+2−3

]
.

The first few terms of the Lichtenberg sequence are:

0,1,2,5,10,21,42,85,170,341,682, ...(A000975).

The Lichtenberg numbers {`n}∞
n=0 are defined by the following recurrence relation

`n+3 = 2`n+2 + `n+1−2`n, (1.1)

with `0 = 0, `1 = 1 and `2 = 2 (see, e.g. [8, 23]). Also, the Binet formula for Lichtenberg numbers is defined in two different ways, including
well-known sequences:

`n =
1
2

[
2n+2− (−1)n+2

3
−1
]
=

1
2
[Jn+2−1] (1.2)
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and

`n =
1
3

[
2n+1−1− (−1)n +1

2

]
=

1
3

[
Mn+1−

(−1)n +1
2

]
, (1.3)

where Jn is the n-th Jacobsthal number (see [10]) and Mn is the n-th Mersenne number (see [4]).
In this paper, we will present a unified view on complex sequences and discuss some properties of the Gauss Lichtenberg sequence {g`n}n≥0
defined mathematically by the recurrence

g`n+1 +g`n = 2n(2+ i)− (1+ i), g`0 = 0,

and related sequences such as the Gaussian Jacobsthal sequence, which is the sequence of differences of g`n. And, of course, at some point
Mersenne and Gaussian Mersenne numbers will enter the scene.

2. Gauss Lichtenberg numbers, Gauss modified Lichtenberg numbers and their some properties

2.1. Gauss Lichtenberg numbers

Now, we introduce Gauss Lichtenberg numbers g`n and present some of their basic properties.

Definition 2.1. Gauss Lichtenberg numbers g`n are defined by

g`n+3 = 2g`n+2 +g`n+1−2g`n, n≥ 0, (2.1)

with g`0 = 0, g`1 = 1 and g`2 = 2+ i.

The first few terms are as follows:

g`3 = 2g`2 +g`1−2g`0

= 2(2+ i)+(1)−2(0) = 5+2i,

g`4 = 2g`3 +g`2−2g`1

= 2(5+2i)+(2+ i)−2(1) = 10+5i,

g`5 = 2g`4 +g`3−2g`2

= 2(10+5i)+(5+2i)−2(2+ i) = 21+10i.

Theorem 2.2. For n≥ 0, we have
g`n+1 = `n+1 + i`n

where `n is the n-th Lichtenberg number defined mathematically by the recurrence `n+1 + `n = 2n+1−1 and `0 = 0.

Proof. We can prove the theorem by the induction method on n. For n = 3, we have

g`3 = 2g`2 +g`1−2g`0 = 5+2i = `3 + i`2.

Now, assume that the theorem holds for n≤ k, that is g`k+1 = `k+1 + i`k. Then, for n = k+1, we have

g`k+2 = 2g`k+1 +g`k−2g`k−1

= 2(`k+1 + i`k)+(`k + i`k−1)−2(`k−1 + i`k−2)

= 2`k+1 + `k−2`k−1 + i(2`k + `k−1−2`k−2)

= `k+2 + i`k+1.

Thus, the result follows.

Here, we define Binet’s formulas for the Gauss Lichtenberg numbers. Let {−1,1,2} be the solutions of the equation x3−2x2− x+2 = 0
associated with Eq. (2.1). So, we obtain for all n≥ 0:

g`n =
1
6

[
(−1)n(−1+ i)+2n+1(2+ i)−3(1+ i)

]
.

Using the definitions of Gaussian Jacobsthal numbers {Jg
n+1}n≥0 in [2] and Gaussian Mersenne numbers {Mg

n}n≥0 in [5], we have

Jg
n+1 = Jn+1 + Jni =

1
3
[2n(2+ i)− (−1)n(−1+ i)] ,

Mg
n+1 = Mn+1 +Mni = 2n(2+ i)− (1+ i),

(2.2)

where Jn is the n-th Jacobsthal number and Mn is the n-th Mersenne number, respectively. Finally, we can write

g`n =
1
2
[
Jg

n+2− (1+ i)
]
=

1
6
[
2Mg

n+1 +(−1)n(−1+ i)− (1+ i)
]
. (2.3)

In particular, we obtain

g`n =
1
3

{
Mg

n+1−1 if n≡ 0 (mod 2)
Mg

n+1− i if n≡ 1 (mod 2) .

Furthermore, we easily obtain the identities stated in the following result:
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Theorem 2.3. For n≥ 0, we have

(g`n)
2 +(g`n+1)

2 =
1
9

[
5
(
Mg

n+1
)2

+2
(
Mg

n+1 +(1+ i)
)

An−2i
]
,

where {An}n≥0 is the sequence defined by An+1 =−An +(1+ i) and A0 = 1.

Proof. Using Eq. (2.3) and the notation An = 1
2
[
(−1)n+1(−1+ i)+(1+ i)

]
, we can write g`n = 1

3
[
Mg

n+1−An
]
, where Mg

n+1 is the
(n+1)-th Gaussian Mersenne number and

An =

{
1 if n≡ 0 (mod 2)
i if n≡ 1 (mod 2) . (2.4)

Then, using the identities A2
n +A2

n+1 = 0 and Mg
n+1 = 2Mg

n +(1+ i), we have

9 ·
[
(g`n)

2 +(g`n+1)
2
]

=
(
Mg

n+1−An
)2

+
(
Mg

n+2−An+1
)2

=
(
Mg

n+1
)2−2Mg

n+1An +A2
n +
(
Mg

n+2
)2−2Mg

n+2An+1 +A2
n+1

=
(
Mg

n+1
)2

+
(
Mg

n+2
)2−2

(
Mg

n+1An +Mg
n+2An+1

)
= 5

(
Mg

n+1
)2

+2i+2Mg
n+1An +2(1+ i)An−4i

= 5
(
Mg

n+1
)2

+2
(
Mg

n+1 +(1+ i)
)

An−2i,

where {An}n≥0 is the sequence defined in Eq. (2.4).

Remark 2.4. For n≥ 1, using An+1 =−An +(1+ i), we have

g`n+2−3g`n+1 +2g`n =
1
3
[
Mg

n+3−An+2−3Mg
n+2 +3An+1 +2Mg

n+1−2An
]

= −1
3
[An+2−3An+1 +2An]

= −1
3
[An +3An−3(1+ i)+2An]

= (1+ i)−2An.

Then, g`n+2−3g`n+1 +2g`n = (1+ i)−2An =

{
−1+ i if n≡ 0(mod 2)
1− i if n≡ 1(mod 2) .

Definition 2.5. The Gauss Lichtenberg number matrix Q`n is defined by

Q`n =

 g`n+2 g`n+3−2g`n+2 −2g`n+1
g`n+1 g`n+2−2g`n+1 −2g`n
g`n g`n+1−2g`n −2g`n−1

 , n≥ 1,

where Q`0 =

 2+ i 1 −2
1 i 0
0 1 i

 for convenience.

Note that the matrix Q`n has order 3×3 and its coefficients are gaussian integers. Now, we study important properties of this new matrix,
whose coefficients are Gauss Lichtenberg numbers.

Proposition 1. For n≥ 0, we have
det(Q`n+1) = (−1)n2n+2(2+ i).

Proof. First, using g`n+1 = `n+1 + i`n, note that

Q`n+1 =

 `n+3 `n+4−2`n+3 −2`n+2
`n+2 `n+3−2`n+2 −2`n+1
`n+1 `n+2−2`n+1 −2`n

+ i

 `n+2 `n+3−2`n+2 −2`n+1
`n+1 `n+2−2`n+1 −2`n
`n `n+1−2`n −2`n−1


=

 2 1 −2
1 0 0
0 1 0

n+2

+ i

 2 1 −2
1 0 0
0 1 0

n+1

=

 2+ i 1 −2
1 i 0
0 1 i

 2 1 −2
1 0 0
0 1 0

n+1

= Q`0

 2 1 −2
1 0 0
0 1 0

n+1

.

So we use multiplicative property of the determinant and we get

det(Q`n+1) =

∣∣∣∣∣∣
2+ i 1 −2

1 i 0
0 1 i

∣∣∣∣∣∣
∣∣∣∣∣∣

2 1 −2
1 0 0
0 1 0

∣∣∣∣∣∣
n+1

= (−2)n+2(2+ i).

Thus, the result follows.
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Using Proposition 1 and properties of the determinant we can deduce that.

Proposition 2. For n,m≥ 1, we have

det(Q`n)det(Q`m)+det(Q`n+1)det(Q`m+1) = 5 · (−2)n+m+2(3+4i).

Proof. From definition of determinant, we have

det(Q`n)det(Q`m)+det(Q`n+1)det(Q`m+1) = (−2)n+1(2+ i) · (−2)m+1(2+ i)+(−2)n+2(2+ i) · (−2)m+2(2+ i)

= (−2)n+m+2(2+ i)2 +(−2)n+m+4(2+ i)2

= 5 · (−2)n+m+2(2+ i)2

= 5 · (−1)n+m2n+m+2(3+4i).

Then, the result is obtained.

Using n = m in Proposition 2, we get

Corollary 2.6. For n≥ 1, we have
det
(
(Q`n)

2
)
+det

(
(Q`n+1)

2
)
= 5 ·22(n+1)(3+4i).

Proposition 3. For n,m≥ 0, we have
4(2+ i)det(Q`n+m+1) = det(Q`n+1)det(Q`m+1) .

Proof. From definition of determinant, we have

det(Q`n+1)det(Q`m+1) =
(
(−2)n+2(2+ i)

)(
(−2)m+2(2+ i)

)
= (−2)n+m+4(2+ i)2

= (−2)2(2+ i) · (−2)n+m+2(2+ i)

= 4(2+ i)det(Q`n+m+1) .

Proposition 4. For n≥ 0, we have

det((Q`n+2)
n)−det((Q`n+1)

n) = (−2)n2+2n(2+ i)n((−2)n +1).

Proof.

det((Q`n+2)
n)−det((Q`n+1)

n) =
(
(−2)n+3(2+ i)

)n
+
(
(−2)n+2(2+ i)

)n

= (−2)n2+3n(2+ i)n +(−2)n2+2n(2+ i)n

= (−2)n2+2n(2+ i)n((−2)n +1).

Then, the result follows.

2.2. Gauss modified Lichtenberg numbers

In this subsection, we introduce Gauss modified Lichtenberg numbers {g`∗n}n≥0 and present some of their basic properties.

Definition 2.7. Gauss modified Lichtenberg numbers g`∗n are defined by

g`∗n+3 = 2g`∗n+2 +g`∗n+1−2g`∗n, n≥ 0, (2.5)

with g`∗0 = 3+ i
2 , g`∗1 = 2+3i and g`∗2 = 6+2i.

The first few terms are as follows:

g`∗3 = 2g`∗2 +g`∗1−2g`∗0

= 2(6+2i)+(2+3i)−2
(

3+
i
2

)
= 8+6i,

g`∗4 = 2g`∗3 +g`∗2−2g`∗1
= 2(8+6i)+(6+2i)−2(2+3i) = 18+8i,

g`∗5 = 2g`∗4 +g`∗3−2g`∗2
= 2(18+8i)+(8+6i)−2(6+2i) = 32+18i.

Theorem 2.8. For n≥ 1, we have
g`∗n+1 = `∗n+1 + i`∗n,

where `∗n is the n-th modified Lichtenberg number defined by `∗n = 2n + εn, with εn = (−1)n +1.
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Proof. We can prove the theorem by the induction method on n. For n = 3, we have

g`∗3 = 2g`∗2 +g`∗1−2g`∗0 = 8+6i = `∗3 + i`∗2.

Now, assume that the theorem holds for n≤ k, that is g`∗k+1 = `∗k+1 + i`∗k . Then, for n = k+1, we have

g`∗k+2 = 2g`∗k+1 +g`∗k −2g`∗k−1

= 2
(
`∗k+1 + i`∗k

)
+
(
`∗k + i`∗k−1

)
−2
(
`∗k−1 + i`∗k−2

)
= 2`∗k+1 + `∗k −2`∗k−1 + i

(
2`∗k + `∗k−1−2`∗k−2

)
= `∗k+2 + i`∗k+1.

Thus, the result follows.

The Binet formula for the Gauss modified Lichtenberg numbers is given by

g`∗n = 2n−1(2+ i)+(−1)n−1(−1+ i)+(1+ i),

or equivalently

g`∗n = 2n−1(2+ i)+2An, g`∗0 = 3+
i
2
,

with An as in Eq. (2.4).

Theorem 2.9. For n≥ 2, we have
1
2
·g`∗n+1 = g`n+1 +g`n−3g`n−1,

Proof. Using the relation g`n =
1
3
[
Mg

n+1−An
]

for the n-th Gauss Lichtenberg number, the identities An+1 =−An +(1+ i) and Mg
n+1 =

2Mg
n +(1+ i). Then, we have

g`n+1 +g`n−3g`n−1 =
1
3
[
Mg

n+2−An+1 +Mg
n+1−An−3Mg

n +3An−1
]

=
1
3
[
4Mg

n+1−5Mg
n +2An+1−An

]
=

1
3
[3Mg

n −3An +6(1+ i)]

= Mg
n −An +2(1+ i).

Using An =
1
2
[
(−1)n+1(−1+ i)+(1+ i)

]
and Mg

n = 2n−1(2+ i)− (1+ i), we obtain

Mg
n −An +2(1+ i) =

1
2

[
2n(2+ i)− (−1)n+1(−1+ i)− (1+ i)+2(1+ i)

]
=

1
2
[2n(2+ i)+(−1)n(−1+ i)+(1+ i)]

=
1
2
·g`∗n+1.

Thus, the result follows.

Theorem 2.10. For n≥ 2, we have

9 ·g`n = 10g`∗n+1−
3
2

g`∗n−13g`∗n−1.

Proof. Using the relation g`∗n = 2n−1(2+ i)+2An, for the n-th Gauss modified Lichtenberg number. Then, we obtain

10g`∗n+1−
3
2

g`∗n−13g`∗n−1 = 10 [2n(2+ i)+2An+1]−
3
2

[
2n−1(2+ i)+2An

]
−13

[
2n−2(2+ i)+2An−1

]
= 10 ·2n(2+ i)+20An+1−3 ·2n−2(2+ i)−3An−13 ·2n−2(2+ i)−26An+1

= 6 ·2n(2+ i)+3An−6(1+ i)

= 3
[
2n+1(2+ i)+An−2(1+ i)

]
= 9 ·g`n.

Then, the result follows.

Theorem 2.11. For n≥ 0 and m≥ 2, we have

g`n+m+1 = `n+1g`m+1 +(`n+2−2`n+1)g`m−2`ng`m−1.
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Proof. Using Theorem 2.2 and formula `n+m+1 = `n+1`m+1 +(`n+2−2`n+1)`m−2`n`m−1, we have

`n+1g`m+1 +(`n+2−2`n+1)g`m−2`ng`m−1

= `n+1 (`m+1 + i`m)+(`n+2−2`n+1)(`m + i`m−1)−2`n (`m−1 + i`m−2)

= `n+1`m+1 +(`n+2−2`n+1)`m−2`n`m−1 + i [`n+1`m +(`n+2−2`n+1)`m−1−2`n`m−2]

= `n+m+1 + i`n+m

= g`n+m+1.

Then, the result is obtained.

Definition 2.12. The Gauss modified Lichtenberg number matrix Q`∗n is defined by

Q`∗n =

 g`∗n+2 g`∗n+3−2g`∗n+2 −2g`∗n+1
g`∗n+1 g`∗n+2−2g`∗n+1 −2g`∗n
g`∗n g`∗n+1−2g`∗n −2g`∗n−1

 , n≥ 1,

where Q`∗0 =

 6+2i −4+2i −4−6i
2+3i 2−4i −6− i
3+ i

2 −4+2i −1−5i

 for convenience.

Note that Gaussian modified Lichtenberg number Q`∗n satisfies the relation Q`∗n+3 = 2Q`∗n+2 +Q`∗n+1−2Q`∗n.

Proposition 5. For n≥ 0, we have
det
(
Q`∗n+1

)
= 36 · (−1)n2n+1(2+ i).

Proof. The usual modified Lichtenberg number `∗n satisfies the next relation `∗n+3 = 2`∗n+2 + `∗n+1−2`∗n, Then, we have `∗n+2 `∗n+3−2`∗n+2 −2`∗n+1
`∗n+1 `∗n+2−2`∗n+1 −2`∗n
`∗n `∗n+1−2`∗n −2`∗n−1

=

 6 −4 −4
2 2 −6
3 −4 −1

 2 1 −2
1 0 0
0 1 0

n

.

Then, we have

Q`∗n+1 =

 `∗n+3 `∗n+4−2`∗n+3 −2`∗n+2
`∗n+2 `∗n+3−2`∗n+2 −2`∗n+1
`∗n+1 `∗n+2−2`∗n+1 −2`∗n

+ i

 `∗n+2 `∗n+3−2`∗n+2 −2`∗n+1
`∗n+1 `∗n+2−2`∗n+1 −2`∗n
`∗n `∗n+1−2`∗n −2`∗n−1


=

 6 −4 −4
2 2 −6
3 −4 −1



 2 1 −2

1 0 0
0 1 0

n+1

+ i

 2 1 −2
1 0 0
0 1 0

n


=

 6 −4 −4
2 2 −6
3 −4 −1

 2+ i 1 −2
1 i 0
0 1 i

 2 1 −2
1 0 0
0 1 0

n

.

So we use multiplicative property of the determinant and we get

det
(
Q`∗n+1

)
=

∣∣∣∣∣∣
6 −4 −4
2 2 −6
3 −4 −1

∣∣∣∣∣∣
∣∣∣∣∣∣

2+ i 1 −2
1 i 0
0 1 i

∣∣∣∣∣∣
∣∣∣∣∣∣

2 1 −2
1 0 0
0 1 0

∣∣∣∣∣∣
n

= −36 · (−2)n(−4−2i)

= 36 · (−1)n2n+1(2+ i).

Thus, the result follows.

Proposition 6. For n≥ 0, we have
det
(
Q`∗n+1

)
= 18 ·det(Q`n+1) .

Proof. The proof is easily deduced from Propositions 1 and 5.

3. Conclusion

We defined new numbers by using definitions of Gauss sequence, the Lichtenberg number and modified Lichtenberg number are studied. The
properties of those numbers were examined. Some theorems about these numbers were presented, their matrix representations are established
and identities with their determinants are demonstrated. In the future, we extend these results to generalized Lichtenberg numbers, including
arbitrary initial conditions. In particular, these types of numbers can be extended by applying some previous work such as binomial transform
([14, 22]), finite operators ([13]), Hessenberg determinants ([15]), third-order quaternions ([20, 21]), hybrid numbers ([1]), bicomplex
numbers ([16]), and many others.
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