Upper Bounds on the Domination and Total Domination Number of Fibonacci Cubes

Elif SAYGI ${ }^{* 1}$
${ }^{1}$ Department of Mathematics and Science Education, Hacettepe University, 06800, Ankara, Turkey

(Alınıs / Received: 23.11.2016, Kabul / Accepted: 20.07.2017, Online Yayınlanma / Published Online: 11.08.2017)

Keywords

Fibonacci cube, Domination number, Total domination number

Abstract

One of the basic model for interconnection networks is the n-dimensional hypercube graph Q_{n} and the vertices of Q_{n} are represented by all binary strings of length n. The Fibonacci cube Γ_{n} of dimension n is a subgraph of Q_{n}, where the vertices correspond to those without two consecutive 1 s in their string representation. In this paper, we deal with the domination number and the total domination number of Fibonacci cubes. First we obtain upper bounds on the domination number of Γ_{n} for $n \geq 13$. Then using these result we obtain upper bounds on the total domination number of Γ_{n} for $n \geq 14$ and we see that these upper bounds improve the bounds given in [1].

Fibonacci Küplerinin Baskınlık ve Toplam Baskınlık Sayıları için Üst Sınırlar

Anahtar Kelimeler

Fibonacci küp,
Baskınlık sayısı,
Toplam baskınlık sayısı

Özet: Bağlantı ağları için en temel modellerden biri n-boyutlu hiperküp grafı Q_{n} dir ve Q_{n} nin köşeleri boyu n olan tüm ikilik diziler ile temsil edilir. n-boyutlu Fibonacci küpü Γ_{n}, Q_{n} nin bir alt grafidır ve köşeleri, ikilik dizi gösterimlerinde ardışık 1 içermeyen tüm köşelere karşı gelir. Bu çalışmada, Fibonacci küplerinin baskınlık ve toplam baskınlık sayıları ile ilgilendik. Öncelikle, $n \geq 13$ olmak üzere Γ_{n} nin baskınlık sayısı için üst sınırlar elde ettik. Sonrasında bu sonuçları kullanarak $n \geq 14$ olmak üzere Γ_{n} nin toplam baskınlık sayısı için üst sınırlar bulduk ve bu sınırların [1] de verilen üst sınırları geliştirdiğini gördük.

1. Introduction

An interconnection network can be represented by a graph $G=\{V, E\}$ with vertex set V and edge set E. In this representation, V denotes the processors and E denotes the communication links between processors. One of the basic model for interconnection networks is the n-dimensional hypercube graph Q_{n}. The vertices of Q_{n} are represented by all binary strings of length n and two vertices are adjacent if and only if they differ in exactly one position. The n-dimensional Fibonacci cube Γ_{n} is a subgraph of Q_{n}, where the vertices correspond to those without two consecutive 1 s in their string representation. For convenience, Γ_{0} is defined as Q_{0}, the graph with a single vertex and no edges. Γ_{n} is also used a model of computation for interconnection networks [2].

In literature many interesting properties of Γ_{n} exist. Their usage in theoretical chemistry and some results on the structure of Fibonacci cubes, including representations, recursive construction, hamiltonicity, the nature of the degree sequence and some enumeration results are presented in [3]. Characterization of induced hypercubes in Γ_{n} are considered in [4-8] and many additional new properties of Fibonacci cubes are given in the literature, see for example [9-11]. Furthermore, the domination number (see, Section
$2)$ of Γ_{n} is first considered in [12, 13]. A lower bound for the domination number and its exact values for $n \leq 8$ is presented in [12]. In [13], upper and lower bounds for the domination number of Γ_{n} are obtained and a comparison with the domination number of Lucas cubes is given. In [14], an integer programming method is used to compute the exact values of the domination number of Γ_{n} for $n \leq 10$ and then this technique is used in [1] to obtain the exact value of domination for $n=11$. Also in [1] total domination number of a graph is defined and upper and lower bounds are obtained. In addition, using integer programming method exact values for total domination number is obtained for $n \leq 12$.

In this paper, we obtain some upper bounds on the domination number of Γ_{n} for $n \geq 13$. Then using the fundamental decomposition of Γ_{n} we obtain an upper bound on the total domination number of Γ_{n} for $n \geq 14$. We compare our result with the ones in [1] in Table 2 and see that our bounds are better.

2. Material and Method

Let $G=\{V(G), E(G)\}$ be a graph with vertex set $V(G)$ and edge set $E(G)$. Then $D \subseteq V(G)$ is a dominating set if every vertex in $V(G)$ either belongs to D or is adjacent to
some vertex in D. The domination number $\gamma(G)$ is defined as the minimum cardinality of a dominating set of the graph G. Similarly, $D \subseteq V(G)$ is a total dominating set if every vertex in $V(G)$ is adjacent to some vertex in D and the total domination number $\gamma_{t}(G)$ is defined as the minimum cardinality of a total dominating set of G.

An n-dimensional hypercube (or n-cube) Q_{n} is the simple graph whose vertices are represented by all binary strings of length n and there is an edge between two vertices if and only if they differ in exactly one position. That is,

$$
\begin{aligned}
& V\left(Q_{n}\right)=\left\{v_{1} v_{2} \cdots v_{n} \mid v_{i} \in\{0,1\}, 1 \leq i \leq n\right\} \text { and } \\
& E\left(Q_{n}\right)=\left\{(u, v) \mid u, v \in V\left(Q_{n}\right), d_{H}(u, v)=1\right\},
\end{aligned}
$$

where $d_{H}(u, v)$ denotes the Hamming distance between u and v, that is, the number of different positions in u and v. The number of vertices in Q_{n} is 2^{n} and each of them has degree n, thus $\left|E\left(Q_{n}\right)\right|=n 2^{n-1}$. It is known that the number of all binary sequences having length n without two consecutive 1 s is enumerated by the Fibonacci numbers. For this reason Fibonacci cube Γ_{n} can be obtained from Q_{n} by removing all vertices containing consecutive 1 s in its string representation. The number of vertices of the Fibonacci cube Γ_{n} is F_{n+2}, where F_{n} is the usual Fibonacci numbers defined as $F_{0}=0, F_{1}=1$ and $F_{n}=F_{n-1}+F_{n-2}$ for $n \geq 2$. Here we remark that the generating function of F_{n} (see, for example [15]) is

$$
\begin{equation*}
\sum_{n \geq 0} F_{n} x^{n}=\frac{x}{1-x-x^{2}} \tag{1}
\end{equation*}
$$

Note that Fibonacci cubes can also be defined recursively using the recursive relation of Fibonacci numbers. It is called as the fundamental decomposition of Γ_{n} in [3]. We can describe it as follows:
Γ_{n} can be decomposed into the subgraphs induced by the vertices that start with 0 and 10 respectively. Let $V\left(\Gamma_{n}\right)=$ $A_{n} \cup B_{n}$ where
$A_{n}=\left\{1 v \mid v \in B_{n-1}\right\} \quad$ and $\quad B_{n}=\left\{0 v \mid v \in A_{n-1} \cup B_{n-1}\right\}$
with $A_{0}=\emptyset$ and $B_{0}=\{\varepsilon \mid \varepsilon$ is the empty string $\}$. Note that for $n \geq 2$ any vertex in A_{n} must start with 10. Therefore, for $n \geq 2$ the vertices in B_{n} will constitute a graph isomorphic to Γ_{n-1} and the vertices in A_{n} will constitute a graph isomorphic to Γ_{n-2}. We will show this fundamental decomposition for $n \geq 2$ as

$$
\begin{equation*}
\Gamma_{n}=0 \Gamma_{n-1}+10 \Gamma_{n-2} . \tag{2}
\end{equation*}
$$

Here note that $0 \Gamma_{n-1}$ has a subgraph isomorphic to $00 \Gamma_{n-2}$, and there is a matching between $00 \Gamma_{n-2}$ and $10 \Gamma_{n-2}$. In the following section we will use the decomposition (2) to obtain upper bounds on $\gamma\left(\Gamma_{n}\right)$ and $\gamma_{t}\left(\Gamma_{n}\right)$.

We present first 6 Fibonacci cubes with minimum dominating sets in Figure 1 (those vertices having circles around). Furthermore, we present minimum total dominating sets of $\Gamma_{1}, \ldots, \Gamma_{5}$ in Figure 2.
$\stackrel{\ominus}{\oplus}$

Figure 1. $\Gamma_{0}, \ldots, \Gamma_{5}$ and their dominating sets.

Figure 2. $\Gamma_{1}, \ldots, \Gamma_{5}$ and their total dominating sets.

3. Results

In this section, we will obtain upper bounds on the domination number $\gamma\left(\Gamma_{n}\right)$ and total domination number $\gamma_{t}\left(\Gamma_{n}\right)$ of Fibonacci cube Γ_{n}. We start by presenting some known values of these numbers in Table 1, which was given in [1, 14].

Table 1. Known values of $\gamma\left(\Gamma_{n}\right)$ and $\gamma_{t}\left(\Gamma_{n}\right)$.

n	$\left\|V\left(\Gamma_{n}\right)\right\|$	$\gamma\left(\Gamma_{n}\right)$	$\gamma_{t}\left(\Gamma_{n}\right)$
1	2	1	2
2	3	1	2
3	5	2	2
4	8	3	3
5	13	4	5
6	21	5	7
7	34	8	10
8	55	12	13
9	89	17	20
10	144	25	30
11	233	39	44
12	377	$54-61$	65
13	610	$?$	$97-101$

For any graph G of minimum degree δ it is known that [16, 17]

$$
\gamma(G) \leq \frac{|V(G)|}{\delta+1} \sum_{j=1}^{\delta+1} \frac{1}{j}
$$

Then using $\delta\left(\Gamma_{n}\right)=\left\lfloor\frac{n+2}{3}\right\rfloor$ (see, [18]) one can write

$$
\begin{equation*}
\gamma\left(\Gamma_{n}\right) \leq \frac{F_{n+2}}{\left\lfloor\frac{n+5}{3}\right\rfloor} \sum_{j=1}^{\left\lfloor\frac{n+5}{3}\right\rfloor} \frac{1}{j} \tag{3}
\end{equation*}
$$

and using $\gamma_{t} \leq 2 \gamma$ it is given in [1] that

$$
\begin{equation*}
\gamma_{t}\left(\Gamma_{n}\right) \leq \frac{2 F_{n+2}}{\left\lfloor\frac{n+5}{3}\right\rfloor} \sum_{j=1}^{\left\lfloor\frac{n+5}{3}\right\rfloor} \frac{1}{j} \tag{4}
\end{equation*}
$$

By using the fundamental decomposition (2) of Γ_{n}, the following upper bound on $\gamma_{t}\left(\Gamma_{n}\right)$ is obtained in [1].

Theorem 3.1. [1] If $n \geq 11$, then $\gamma_{t}\left(\Gamma_{n}\right) \leq 2 F_{n-10}+$ $21 F_{n-8}$.

Note that, in [1] by using integer programming it is shown that $54 \leq \gamma\left(\Gamma_{12}\right) \leq 61$ and $97 \leq \gamma_{t}\left(\Gamma_{13}\right) \leq 101$.
Remark 3.2. By using the fact that $\gamma_{t}\left(\Gamma_{13}\right) \leq 101$, it is stated in [1] that for $n \geq 12$ Theorem 3.1 can be further improved to $\gamma_{t}\left(\Gamma_{n}\right) \leq 601 F_{n-1}-371 F_{n}$. But this better result is not presented in [1, Table 2]. We will consider this result in our Table 2.
In the following theorem, using the fundamental decomposition (2) of Γ_{n} and the best known results in Table 1 we present an upper bound for $\gamma\left(\Gamma_{n}\right)$ which includes Fibonacci numbers.

Theorem 3.3. If $n \geq 13$, then $\gamma\left(\Gamma_{n}\right) \leq 116 F_{n}-187 F_{n-1}$.
Proof. If we consider the fundamental decomposition (2) of Γ_{n} we have

$$
\Gamma_{n}=0 \Gamma_{n-1}+10 \Gamma_{n-2}
$$

which means that it is enough to find minimum dominating sets for $0 \Gamma_{n-1}$ and $10 \Gamma_{n-2}$. Thus,

$$
\begin{equation*}
\gamma\left(\Gamma_{n}\right) \leq \gamma\left(\Gamma_{n-1}\right)+\gamma\left(\Gamma_{n-2}\right) \tag{5}
\end{equation*}
$$

We know that $\gamma\left(\Gamma_{11}\right)=39$ and $\gamma\left(\Gamma_{12}\right) \leq 61$. Now set $b_{11}=39, b_{12}=61$ and $b_{n}=b_{n-1}+b_{n-2}$ for $n \geq 13$. Then using (5) one can easily see that $\gamma\left(\Gamma_{n}\right) \leq b_{n}$ for $n \geq 11$.

Now, let $S=\sum_{n \geq 0} b_{n+11} x^{n}$ be the generating function of the sequence b_{n}. We know that $b_{11}=39, b_{12}=61$ and $b_{n}=b_{n-1}+b_{n-2}$ for $n \geq 13$. Therefore S satisfies

$$
S-39-61 x=x(S-39)+x^{2} S
$$

which gives

$$
S=\frac{39+22 x}{1-x-x^{2}}
$$

Then using (1) we obtain that $b_{n+11}=39 F_{n+1}+22 F_{n}$ for $n \geq 0$, which is equivalent to

$$
b_{n}=116 F_{n}-187 F_{n-1}
$$

for all $n \geq 11$.
Using the fundamental decomposition of Γ_{n} we obtain the following result.

Lemma 3.4. If $n \geq 14$, then $\gamma_{t}\left(\Gamma_{n}\right) \leq 2 \gamma\left(\Gamma_{n-2}\right)+$ $\gamma_{t}\left(\Gamma_{n-3}\right)$.

Proof. We know that $\Gamma_{n}=0 \Gamma_{n-1}+10 \Gamma_{n-2}$ and $\Gamma_{n-1}=$ $0 \Gamma_{n-2}+10 \Gamma_{n-3}$. Then we can write

$$
\begin{align*}
\Gamma_{n} & =0\left(0 \Gamma_{n-2}+10 \Gamma_{n-3}\right)+10 \Gamma_{n-2} \\
& =00 \Gamma_{n-2}+010 \Gamma_{n-3}+10 \Gamma_{n-2} \tag{6}
\end{align*}
$$

where there is a perfect matching between $00 \Gamma_{n-2}$ and $10 \Gamma_{n-2}$. This matching guarantees that union of the dominating sets of $00 \Gamma_{n-2}$ and $10 \Gamma_{n-2}$ becomes a total dominating set for $00 \Gamma_{n-2} \cup 10 \Gamma_{n-2}$. Therefore, to find a total dominating set for Γ_{n}, we only need to find a total dominating set for $010 \Gamma_{n-3}$ by (6). Hence we have

$$
\gamma_{t}\left(\Gamma_{n}\right) \leq 2 \gamma\left(\Gamma_{n-2}\right)+\gamma_{t}\left(\Gamma_{n-3}\right) .
$$

Here we note that if one will obtain better upper bounds for $\gamma_{t}\left(\Gamma_{n}\right)$ then using Lemma 3.4 the bounds can be further improved for some cases. Now, using Theorem 3.3, Lemma 3.4 and the fundamental decomposition of Γ_{n} more than once we obtain the following result. We note that Theorem 3.5 presents an upper bound for the total domination number of Γ_{n}, using the values of domination number of Γ_{n-3} and Γ_{n-4}.

Theorem 3.5. If $n \geq 15$, then $\gamma_{t}\left(\Gamma_{n}\right) \leq 3 \gamma\left(\Gamma_{n-3}\right)+$ $2 \gamma\left(\Gamma_{n-4}\right) \leq 116 F_{n}-187 F_{n-1}$.

Proof. We first apply the fundamental decomposition to (6) one more time and obtain that

$$
\begin{aligned}
\Gamma_{n}= & 000 \Gamma_{n-3}+010 \Gamma_{n-3}+100 \Gamma_{n-3} \\
& +0010 \Gamma_{n-4}+1010 \Gamma_{n-4}
\end{aligned}
$$

where there are perfect matchings between $000 \Gamma_{n-3}$ and $010 \Gamma_{n-3} ; 000 \Gamma_{n-3}$ and $100 \Gamma_{n-3}$; and $0010 \Gamma_{n-4}$ and $1010 \Gamma_{n-4}$. These matchings guarantees that the union of the dominating sets becomes a total dominating set for Γ_{n}. Then we get

$$
\begin{equation*}
\gamma_{t}\left(\Gamma_{n}\right) \leq 3 \gamma\left(\Gamma_{n-3}\right)+2 \gamma\left(\Gamma_{n-4}\right) \tag{7}
\end{equation*}
$$

Then by using the sequence b_{n} defined in Theorem 3.3 and (7) for $n \geq 15$ we have

$$
\gamma_{t}\left(\Gamma_{n}\right) \leq 3 b_{n-3}+2 b_{n-4}=b_{n}
$$

which completes the proof.
Remark 3.6. It is noted in [1] that the bound obtained in Theorem 3.1 is better than the bound in (4) for $n \leq 33$. By using the properties of Fibonacci numbers, it is clear that our upper bound in Theorem 3.3 is better than (3) and moreover the upper bound in Theorem 3.5 is better than the bounds in (4), Theorem 3.1 and Remark 3.2.

We collect our results in Table 2 in which we present the known upper bounds of $\gamma_{t}\left(\Gamma_{n}\right)$ for $n \geq 13$. We include the upper bounds given in [1] (see Theorem 3.1) and Remark 3.2 in the second and third column respectively, and our results obtained in Lemma 3.4 and Theorem 3.5 in the last column of Table 2 . One can easily see that our bounds are better.

Table 2. Known upper bounds on $\gamma_{t}\left(\Gamma_{n}\right)$ for $13 \leq n \leq 33$.

	Theorem 3.1[1]	Remark 3.2	Our results
n	$\gamma_{t}\left(\Gamma_{n}\right) \leq$	$\gamma_{t}\left(\Gamma_{n}\right) \leq$	$\gamma_{t}\left(\Gamma_{n}\right) \leq$
13	101	101	101
14	174	166	166
15	283	267	261
16	457	433	422
17	740	700	683
18	1197	1133	1105
19	1937	1833	1788
20	3134	2966	2893
21	5071	4799	4681
22	8205	7765	7574
23	13276	12564	12255
24	21481	20329	19829
25	34757	32893	32084
26	56238	53222	51913
27	90995	86115	83997
28	147233	139337	135910
29	238228	225452	219907
30	385461	364789	355817
31	623689	590241	575724
32	1009150	955030	931541
33	1632839	1545271	1507265

4. Discussion and Conclusion

In this paper we deal with the domination number and total domination number of Fibonacci cubes. We obtain some upper bounds on the domination number of Γ_{n} for $n \geq 13$. Then using the fundamental decomposition of Γ_{n} we obtain the best known upper bounds on the total domination number of Γ_{n} for $n \geq 14$ and observe that these upper bounds for the domination number and total domination number of Γ_{n} coincides for $n \geq 15$. We compare our result with the ones in [1] in Table 2 and see that our bounds are better.

Finally we remark that if one obtains better upper bounds for the domination number or total domination number of Γ_{n}, then by combining these bounds with our results many improved bounds can be obtained.

Acknowledgment

I would like to thank Prof. Ömer Eğecioğlu and Prof. Çetin Kaya Koç for their hospitality during my visit to UCSB and Koç Lab (http://koclab.cs.ucsb.edu/). Prof. Eğecioğlu suggested me to work on the properties of Fibonacci cubes. The author would like to thank the anonymous reviwers for their valuable comments which improve the readability of the paper.

References

[1] Azarija, J., Klavžar, S., Rho, Y., Sim, S. 2016. On domination-type invariants of Fibonacci cubes and hypercubes. http://www.fmf.unilj.si/ klavzar/preprints/Total-dom-cubes-submit.pdf (Date of access: 20.07.2017).
[2] Hsu, W.-J. 1993. Fibonacci cubes-a new interconnection technology. Transactions on Parallel and Distributed Systems, 4(1) (1993), 3-12.
[3] Klavžar, S. 2013. Structure of Fibonacci cubes: a survey. Journal of Combinatorial Optimization, 25 (2013), 505-522.
[4] Klavžar, S., Mollard, M. 2012. Cube polynomial of Fibonacci and Lucas cube. Acta Applicandae Mathematicae, 117 (2012), 93-105.
[5] Gravier, S., Mollard, M., Špacapan, S., Zemljič, S.S. 2015. On disjoint hypercubes in Fibonacci cubes. Discrete Applied Mathematics, 190-191 (2015), 50-55.
[6] Saygı, E., Eğecioğlu, Ö. 2016. Counting disjoint hypercubes in Fibonacci cubes. Discrete Applied Mathematics, 215 (2016), 231-237.
[7] Mollard, M. 2017. Non covered vertices in Fibonacci cubes by a maximum set of disjoint hypercubes. Discrete Applied Mathematics, 219 (2017), 219-221.
[8] Saygı, E., Eğecioğlu, Ö. 2016. q-cube enumerator polynomial of Fibonacci cubes. Discrete Applied Mathematics, 226 (2017), 127-137.
[9] Klavžar, S., Mollard, M. 2014. Asymptotic properties of Fibonacci cubes and Lucas cubes. Annals of Combinatorics, 18(3) (2014), 447-457.
[10] Vesel, A. 2015. Linear recognition and embedding of Fibonacci cubes. Algorithmica 71(4) (2015), 10211034.
[11] Ashrafi, A.R., Azarija, J., Fathalikhani, K., Klavžar, S., Petkovšek, M. 2016. Vertex and Edge Orbits of Fibonacci and Lucas Cubes. Annals of Combinatorics, 20(2) (2016), 209-229.
[12] Pike, D. A., Zou, Y. 2012. The domination number of Fibonacci cubes. Journal of Combinatorial Mathematics and Combinatorial Computing, 80 (2012), 433444.
[13] Castro, A., Klavžar, S., Mollard, M., Rho, Y. 2011. On the domination number and the 2-packing number of Fibonacci cubes and Lucas cubes. Computers and Mathematics with Applications, 61 (2011), 26552660.
[14] Ilić, A., Milošević, M. 2017. The parameters of Fibonacci and Lucas cubes. Ars Mathematica Contemporanea, 12 (2017) 25-29.
[15] Vajda S. 1989. Fibonacci and Lucas numbers and the golden section. Halsted Press, New York (1989).
[16] Arnautov, V. I. 1974. Estimation of the exterior stability number of a graph by means of the minimal degree of the vertices (Russian). Prikl. Mat. i Programmirovanie, 11 (1974), 3-8.
[17] Payan, C. 1975. Sur le nombre d'absorption d'un graphe simple. Cahiers du Centre d'Etudes de Recherche Operationelle, 17 (1975) 307-317.
[18] Klavžar, S., Mollard, M., Petkovšek, M. 2011. The degree sequence of Fibonacci and Lucas cubes. Discrete Mathematics, 311 (2011), 1310-1322.

