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Abstract: In this experimental study, the effect of lipoic acid (LA) on lung damage caused by valproic acid 
(VPA) was investigated. The antioxidant, oxidative stress, and inflammation indicators such as glutathione 
(GSH), lipid peroxidation (LPO), catalase (CAT), superoxide dismutase (SOD), glutathione-S-transferase 

(GST), nitric oxide (NO), sialic acid (SA), myeloperoxidase (MPO), and tissue factor (TF) were examined. 
Sprague Dawley rats were used, and they were randomly divided into four groups as follows: Control group, 
LA group received 50 mg LA/kg/day for 15 days, VPA group received 500 mg VPA/kg/day for 15 days, and 
VPA+LA group received the same doses of VPA and LA for 15 days. On day 16, lung tissues were taken. VPA 

caused the decreases in GSH, SA and SOD values and the increases LPO, NO, and TF values. LA reversed the 
changes in GSH, SOD, and TF values. GST and CAT activities did not change significantly by the effect of VPA 
or LA. On the other hand, the inhibitory effect of VPA on MPO, which is an inflammatory marker, and the pro-

oxidant effects of LA causing the increases in both LPO and MPO values were observed in lung tissue. These 
regulations may help LA to overcome oxidative stress caused by VPA in the lung. Further studies are needed 
to confirm the mechanism underlying VPA-induced MPO inhibition in the lung. 
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1. INTRODUCTION 

 
Valproic acid (VPA) is a widely used antiepileptic drug 
for the treatment of various seizure and bipolar 
disorders. Although generally well tolerated, VPA 
induces oxidative stress, resulting in an inability to 
balance the generation of reactive oxygen species 

(ROS) with the body's capacity to detoxify these 
harmful compounds. As a result, cellular components 
such as lipids, proteins, and DNA can be damaged, 
contributing to deterioration of tissue and organ 

function (1). Oztay et al. (2), suggested that VPA-

induced oxidative stress may cause structural 
distortion and fibrotic changes in the rat lung. Lungs 
are susceptible to many environmental pollutants, 
toxicants, oxidants, and many infections that can 
cause oxidative damage. Several studies have 
demonstrated the role of ROS produced by lung 

epithelium and inflammatory cells in the 
pathogenesis of lung diseases, including acute 
respiratory syndrome, acute lung injury, chronic 
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obstructive pulmonary disease, pulmonary fibrosis, 
asthma, and lung cancer (3). 
 

α-lipoic acid (1,2-dithiolane-3-pentanoic acid, LA), a 
natural organo-sulfur compound, contains a disulfide 
bond as a part of a dithiolane ring with a five–carbon 
tail. LA can be found in plant and animal food sources 

such as tomatoes, spinach, broccoli, kidney, liver, 
and heart. It is also endogenously produced by the 
liver. It exists in cells as dihydrolipoic acid (DHLA), 
LA's reduced form. It is essential for mitochondrial 
aerobic metabolism. The fact that LA is soluble in 
both fat and water makes it special compared to 

other antioxidants. This means that it can act in the 
plasma membrane as well as in the cytoplasm (4). It 
is also the redox regulator of several proteins 
including, thioredoxin, myoglobin, the transcription 
factor nuclear factor kappa B (NF-κB), and prolactin, 
and helps recycle cellular antioxidants involving 
vitamin C, vitamin E, and glutathione (5,6). High 

electron density due to the special position of two 
sulfur atoms in the 1,2-dithiolane ring gives LA a high 
tendency to reduce other redox-sensitive molecules 
depending on environmental conditions (6). The 
antioxidant properties of both LA and DHLA consist 
of quenching ROS, regeneration of antioxidants, and 
chelation of redox metals. In recent decades, 

through its pharmacological effects, such as anti-
cancer, anti-oxidant, anti-inflammatory, and anti-
viral effects, numerous studies have reported the 
effects of LA in improving many diseases (4). 
 
This study was designed to investigate the potential 

protective effect of LA on the lungs of VPA-treated 
rats by measuring important markers of tissue 
oxidative stress and inflammation. 
 

2. EXPERIMENTAL SECTION 
 
2.1. Chemicals 

VPA was obtained from Merck (Darmstadt, Germany) 
and LA from Sigma (USA). All other chemicals used 
in the experiments were of analytical purity and were 
purchased from Merck (Darmstadt, Germany), 
Sigma-Aldrich (St. Louis, MO, USA), and Fluka 
(Buchs, Switzerland). 
 

2.2. Laboratory Animals and Experimental 
Design 
All the experiments in this study were approved by 
Marmara University Experimental Animals Ethics 
Committee (Decision No: 34.2015.mar). 
 

Thirty-two Sprague Dawley rats (six-month-old, 
female) were used in the study. The animals were 

housed in the standard cage with optimal 
temperature (20°C±2) and light/dark (12 h light/12 
h dark) conditions. All rats were fed orally with 
standard rat chow and fresh tap water. 
 

The animals were divided into four groups: Control 
group (n=7), LA given group (50 mg/kg/day, by 
intraperitoneal, n=8), VPA given group (500 
mg/kg/day, by intraperitoneal, n=7), and VPA+LA 
given group (in same doses and same way, n=10). 
LA was administered 1 h prior to VPA administration 
for 15 days. On day 16, the rats were sacrificed, and 

lungs were taken. Lung homogenates (10% w/v) 
were prepared in physiological saline (NaCl, 0.9%). 
 

2.3. Biochemical Analysis 
Lung homogenates were analyzed for glutathione 
(GSH), lipid peroxidation (LPO), superoxide 
dismutase (SOD), catalase (CAT), glutathione-S-

transferase (GST), nitric oxide (NO), sialic acid (SA), 
myeloperoxidase (MPO), and tissue factor (TF). 
 
2.3.1. Estimation of GSH (μg GSH per g tissue) 
GSH levels were determined by the method using 
metaphosphoric acid and 5,5′-dithiobis-2-

nitrobenzoic acid (DTNB) (7). The extinction 
coefficient of 1.36×104 M-1cm-1 was used for the 
calculation. The absorbance was measured 
spectrophotometrically at 412 nm. 
 
2.3.2. Estimation of LPO (nmol MDA per g tissue)  
Malondialdehyde (MDA) is an end product of the 

peroxidation of lipids. LPO levels were determined 
using thiobarbituric acid (TBA) assay (8). The pink 
colour obtained at the end of the reaction was 
measured with a spectrophotometer at 532 nm. 
 
2.3.3. Estimation of SOD (U SOD per g tissue) 
SOD activities were measured as the ability to 

increase the rate of photooxidation of riboflavin-
sensitized o-dianisidine (9). The absorbance was 
measured spectrophotometrically at 460 nm. 
 
2.3.4. Estimation of CAT (kU CAT per g tissue) 
CAT activities were determined based on the 

reduction of hydrogen peroxide (H2O2) to water 
(H2O) (10). The decrease in absorbance was 
measured spectrophotometrically at 240 nm. 
 

2.3.5. Estimation of GST (U GST per g tissue) 
GST activities were assayed by measuring the 
absorbance at 340 nm of the product obtained by 

conjugation of GSH with 1-chloro-2,4-dinitrobenzene 
(CDNB) (11). 
 
2.3.6. Estimation of NO (nmol NO per g tissue) 
In order to measure NO levels, nitrate was converted 
to nitrite using vanadium (III) chloride. The complex 
diazonium compound was obtained by reacting 

nitrite with sulfanilamide in an acidic medium. This 
was then coupled with N-(1-naphthyl) ethylenediam-
ine dihydrochloride, and the coloured complex 
formed was measured spectrophotom-etrically at 
540 nm (12). 
 

2.3.7. Estimation of SA (mg SA per g tissue) 
Sodium periodate was used to oxidize SA in 

concentrated phosphoric acid. Next, TBA was 
combined with the product of periodate oxidation. A 
pink chromophore was obtained, which was then 
extracted into cyclohexanone. The absorbance was 
measured spectrophotometrically at 549 nm (13). 

 
2.3.8. Estimation of MPO (U MPO per g tissue) 
MPO activity was measured by the method using 
phenol, 4-amino antipyrine (4-AAP), and H2O2. The 
absorbance was measured spectrophotometrically at 
510 nm (14). 
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2.3.9. Estimation of TF (Second) 
TF activities were determined by mixing lung 
homogenate with plasma, then adding calcium 

chloride and measuring the time for fibrin formation 
(15). There is an inverse relationship between the 
clotting time and the activity of the TF. 
 

2.4. Statistics 
Statistical analysis (GraphPad Prism 9.0, California, 
USA) was performed using analysis of variance 
(ANOVA) followed by Tukey's multiple comparison 
test. Data are presented as mean ± standard 
deviation (SD). P-value below 0.05 is considered 

significant. 
 
3. RESULTS AND DISCUSSION 
 
VPA is generally well tolerated but has been shown 
both clinically and experimentally to cause several 
adverse effects, including lung injury. Symptoms of 

VPA-induced pleural effusion or interstitial lung 
disease have been reported to resolve within days of 
discontinuing the drug (16,17). Oztay et al. proposed 
that VPA administration at a dose of 500 mg kg-1 day-

1 caused pulmonary toxicity via changes in both 
biochemical and inflammatory markers (2). Therefo-
re, we used a VPA dose of 500 mg kg-1 day-1 in the 

present study. VPA primarily damages tissue by 
inducing oxidative stress, which is then followed by 
inflammation and apoptosis (18). ROS in the lung are 
generated from both exogenous and endogenous 

sources, such as environmental gases and the 
mitochondrial electron transport system (19). VPA 
induces elevation of mitochondrial ROS (20). 
Excessive and uncontrolled oxidative stress leads to 
cell death, but at lower and less harmful levels it can 
act as a signal to redox signaling that helps restore 

cellular balance (21). 
 
The present study showed that the administration of 
VPA was associated with a decrease in the levels of 
GSH (p<0.05) and SA (p<0.0001), the activities of 
SOD (p<0.01) and MPO (p<0.0001), and an increase 
in the levels of MDA, is an end product of the LPO, 

(p<0.0001), NO (p<0.0001), and activity of TF 
(p<0.0001) compared to the control group (Figures 
1 and 2). 

 

 
 
Figure 1: Lung GSH and LPO levels and SOD, CAT, GST activities of the groups. C, control group; C+LA, 

lipoic acid given control group; VPA, valproic acid given group; VPA+LA, lipoic acid given valproic acid group, 
T, tissue; GSH, glutathione; MDA, malondialdehyde; LPO, lipid peroxidation; GST, glutathione-S-transferase; 
SOD, superoxide dismutase; CAT, catalase. Values are represented as mean±standard deviation. 
●p < 0.05, ●●p < 0.01, ●●●p < 0.001, ●●●●p < 0.0001 vs control group; □p < 0.05, □□□□p < 0.0001 vs C+LA 
group, △p < 0.05,  △△△△p < 0.0001 vs VPA group. 
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Figure 2: Lung NO, SA levels and MPO, TF activities of the groups 

C, control group; C+LA, lipoic acid given control group; VPA, valproic acid given group; VPA+LA, lipoic acid 
given valproic acid group, T, tissue; NO, nitric oxide; SA, sialic acid; MPO, myeloperoxidase; TF, tissue 

factor; Sec, second. Values are represented as mean±standard deviation. 
●●●p < 0.001, ●●●●p < 0.0001 vs control group; □p < 0.05, □□□□p < 0.0001 vs C+LA group,  

△p < 0.05,  △△△p < 0.001, △△△△p < 0.0001 vs VPA group. 

 

The two primary antioxidants in the anti-oxidative 
system are GSH and SOD. These antioxidants reduce 
the damaging effects of harmful free radicals. LPO is 
one of the biomarkers of oxidative stress status and 
indicates oxidative lipid degradation (22). Their 
levels are closely linked to how cells respond to 

oxidative stress. Impairment of the lung antioxidant 

system is linked to a reduction in GSH levels, SOD 
activities, and an elevation in LPO levels (23). This is 
supported by our findings. Besides SOD, CAT, and 
GST are the key antioxidant enzymes that eliminate 
free radicals from cells. GST is responsible for 
catalyzing the reaction between GSH and a variety of 
reactive electrophilic compounds to protect against 

oxidative stress. CAT prevents the conversion of 
H2O2 to hydroxyl radicals and reduces oxidative 
stress by catalyzing the conversion of H2O2 to water 
and oxygen. It has been reported that the activities 
of CAT, SOD, and GST were decreased in the lungs 
of VPA-treated rats compared to the control group 

(2). In contrast to these findings, in the present 
study, VPA did not alter CAT and GST activities. 
 

NO reacts with ROS products to produce 
peroxynitrite and can alter protein and lipid 
structure. NO has important neurotransmitter and 
regulatory roles when released at low levels. 

However, when combined with superoxide to form 
harmful peroxynitrite, high levels of NO (produced by 
the increased activity of inducible NO synthase 
(iNOS) during inflammation) have a negative effect 
(24). VPA administration has been reported to 
increase NO levels in brain tissue (25) and bovine 
aortic endothelial cells and mouse serum (26) in 

various VPA toxicity models. In our study, VPA also 

caused a significant increase in NO values in lung 
tissue compared to the control group.  SA is a major 
component of the secreted mucins of the airways and 
is highly expressed along the epithelial border lining 
the respiratory tract (27). For lung physiology and 
respiratory balance, this surface anionic shield may 

provide a repulsive structure, a hydration barrier and 

a protective barrier (28). SA has also been suggested 
to have antioxidant activity against hydroxyl radicals 
in mucin in the respiratory and gastrointestinal 
mucus layers (29). Higher levels of SA have also 
been linked with inflammation (30). So, there are 
conflicting studies on the effect of VPA on SA levels. 
While VPA administration increased SA levels in the 

small intestine (31), they did not change in the 
gastric tissue (29). In the present study, the 
damaged respiratory mucosa and the decrease in the 
activity of defense mechanisms may have caused to 
a reduction in SA levels. 
 

MPO plays an important role in inflammation and 
tissue damage (32). One of the major ROS, 
superoxide anion, is transformed into H2O2. Activated 

MPO converts this to the potent oxidant hypochlorite. 
As a marker of neutrophil recruitment and lung tissue 
damage, MPO activity is measured in the lung. MPO 
activity has been found to be significantly increased 

in the pancreatic, lung, and liver tissue of VPA-
treated rats (2,33,34). However, in contrast to these 
findings, there have also been studies showing that 
VPA, as a histone deacetylase inhibitor (HDACI), 
attenuated lung injury by inhibiting inflammatory 
cytokine production and NF-κB activation (35). In a 
model of rat intestinal ischemia-reperfusion study, 

VPA treatment caused a decrease in MPO activity, 
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and it has been suggested that VPA decreases 
neutrophil migration into the lungs (36). The 
reduction in MPO activity in the present study may 

be due to the anti-inflammatory effect of VPA 
through its HDACI action. HDACIs have been shown 
in the literature to have an anti-inflammatory effect 
(37, 38). TF is a transmembrane glycoprotein and 

acts as a cellular initiator of coagulation. The lung is 
one of the tissues that contain high levels of TF, along 
with the brain, uterus, heart, and placenta. Alveolar 
macrophages and airway epithelial cells express TF 
in the lung. The abnormal expression of TF is 
associated with thrombotic complications in a variety 

of diseases, including atherosclerosis, cancer, and 
inflammation. Alveolar TF production suggests that 
alveolar epithelium expresses TF when exposed to 
inflammatory cytokines (39–41). Additionally, it has 
been suggested that elevated levels of ROS may be 
an inducer of TF gene expression. The procoagulant 
activity of TF is strictly regulated to maintain 

hemostasis and avoid thrombosis (42). VPA is a 
cause of hematological problems, and coagulation 
abnormalities are frequently observed during VPA 
treatment (43). It has been shown that VPA 
increased TF activity in gingival tissue (44). In 
parallel with the findings of previous studies, this 
present study suggests that increased TF activity in 

the lung in response to inflammation and/or 
oxidative stress may provide extra hemostatic 
protection against tissue damage. 
 
LA is a powerful reductant and has the ability to 
scavenge free radicals. Administration of LA has been 

shown in several studies to reduce oxidative stress 
and restore depleted levels of other antioxidants in 
vivo. On the other hand, data show that LA may have 
pro-oxidant effects (6). The oxidative status of cells 

and physiological parameters may determine the 
ability of LA and/or DHLA to act as pro- or 
antioxidants. According to its chemical structure, LA 

functions as an oxidative molecule without 
generating endogenous ROS because of its oxidized 
dithiolane ring. DHLA may also produce thiol and 
disulfide radical anion and function as a pro-oxidant. 
In vitro and in vivo studies suggest that DHLA causes 
the production of ROS through the Fenton reaction 
by reducing ferric iron and the stimulation of the 

Ca2+-induced mitochondrial permeability transition 
(MPT) by the production of ROS, which depletes 
mitochondrial antioxidant capacity (45). 
 
In the current study, when the VPA group was 
treated with LA, the changes in GSH levels 

(p<0.0001) and SOD (p<0.05), MPO (p<0.0001), TF 
(p<0.001) activities were reversed by LA compared 

to VPA, whereas LPO levels were increased more 
(p<0.0001) (Figure 1 and 2). In addition, LA in 
combination with VPA had no effect on SOD, CAT 
activities, or NO, SA levels (p>0.05) (Figures 1 and 
2). In the C+LA group, the NO levels were 

significantly reduced (p<0.001) and SA levels and TF 
activity were significantly increased (p<0.001) 
compared to the control group (Figure 2). 
 
The antioxidant effects of LA may act either directly 
by restoring endogenous antioxidants such as GSH 
or indirectly by balancing ROS. It has been suggested 

that increasing the availability of cysteine is the 
mechanism by which LA can increase GSH levels 
(46). Similarly, Cadirci et al. (22) reported that 

decreased SOD activity and GSH amounts in septic 
lung tissue were increased by the administration of 
LA to rats. The both studies (46, 22) support our 
findings that GSH and SOD values were increased in 

LA-treated rats. Lung LPO levels were found to be 
significantly increased in LA+VPA treated rats in our 
study, which appears to contradict previous findings 
from a systematic review and meta-analysis 
suggesting that LA consumption significantly reduces 
MDA levels (47). It is possible that an induction of 

SOD activity is involved in the mechanism of LPO 
induction by LA. The elevated SOD activity and 
unaltered catalase activity in LA-exposed rats would 
be expected to result in the deposition of H2O2 and 
hence elevated LPO in the presence of ferrous ions 
as a consequence of the Fenton reaction. When 
exogenous LA enters the cell, it is reduced to DHLA 

with the use of NADPH by the cytosolic enzymes 
glutathione reductase and thioredoxin reductase. 
Although DHLA has been demonstrated to have both 
pro-oxidant and antioxidant effects, both LA and 
DHLA have been classified as strong antioxidants 
based on their unique characteristics. Ferric and 
ferrous iron are both chelated by DHLA in vitro, 

preventing oxidative damage to iron. However, LA 
also removes iron from ferritin and has the ability to 
convert Fe3+ to Fe2+, increasing the risk of oxidative 
damage. This is because iron is a redox-active metal. 
Through Fenton chemistry, it can significantly 
increase oxidative stress by producing hydroxyl 

radicals. (4,6,45). Briefly, LA may have caused lipid 
peroxidation by acting as a pro-oxidant and 
accelerating the formation of iron-dependent 
hydroxyl radicals in the lungs. Turkyilmaz et al. (25), 

showed that administration of LA in the VPA group 
increased CAT activity, decreased GST activity, and 
the change in SOD activity was insignificant in brain 

tissue. Differently from Turkyilmaz et al. (25), in the 
current study, the CAT and GST activities were not 
modified by LA in the C+LA and VPA+LA groups 
compared to the respective groups. These results 
suggested that H2O2 degradation processes were 
unchanged and may have increased the 
accumulation of superoxide anion and the formation 

of hydroxyl radicals. In the literature, it has been 
shown that LA induces apoptosis by increasing 
mitochondrial superoxide anion production in cancer 
cells (48). However, more research is needed to 
explain the mechanism behind these changes. 
 

Preclinical studies have shown that LA can reduce 
inflammation by inhibiting the iNOS/NO pathway (4). 

In another study, Oktay & Caliskan (49) found that 
LA reduced NO levels but had no effect on SA levels 
compared to the methotrexate group during 
methotrexate-induced oxidative stress in rat hearts. 
In the present study, LA reduced NO levels and 

increased SA levels in LA given control group. This 
may be due to the antioxidant effect of LA. However, 
it was not sufficient to reverse the NO and SA levels 
in the VPA+LA group compared to VPA. 
 
LA (25 mg/kg/day for 21 days) increased colon MPO 
activity in the mouse model of acute ulcerative colitis 
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(50), and LA at higher doses (100 mg/kg/day for 45 
days) may have a pro-oxidant effect on cardiac tissue 
in a rat-diabetic model (51).  In line with these 

observations, 15 days of LA (50 mg/kg/day) at 
proposed doses may be pro-inflammatory based on 
our available data. Future studies are recommended 
to clarify the effects of LA in a dose- and time-

dependent and oxidative stress-type-dependent 
manner. 
 
It is known that LA affects iron metabolism. Although 
findings from clinical studies are conflicting, LA has 
been shown to reduce serum iron levels. It has been 

suggested that this may be because DHLA chelates 
iron, preventing its use (52). Based on this, LA, which 
increases TF activity in the C+LA group, may be 
beneficial to keep normal blood clotting to prevent 
further bleeding when serum iron is low. Iron 
deficiency causes iron deficiency anemia, which may 
be associated with decreased thrombogenesis, 

aberrant platelet function, and elevated 
inflammatory levels, all of which raise the risk of 
bleeding (53). Moreover, LA inhibits platelet 
activation, and co-administration with vitamin E 
prolongs the clotting time (54). Accordingly, in the 
current study, LA decreased lung TF activity in VPA 
group, which may prevent lung tissues from the risk 

of thrombosis and coagulation problems.  
 
4. CONCLUSION 
 
In conclusion, the present data do not allow the 
conclusion that LA could prevent VPA-induced lung 

injury; the data are consistent with LA may 
contribute to the reduction of TF activity and increase 
in GSH levels, SOD, and MPO activities in VPA 
treatment. However, more studies are required to 

determine the mechanism underlying VPA-induced 
MPO inhibition in the lung. Also despite its dual 
modulation of oxidative stress and inflammation, LA 

may have beneficial effects on lung health. 
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