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Abstract. Let p(z) = anzn +
∑n

l=ν an−lz
n−l, where 1 ≤ ν ≤ n, be a poly-

nomial of degree n having all its zeros in |z| ≤ k ≤ 1. For polar derivative

Dαp(z), it is known that for each |α| ≤ 1 on |z| = 1,

|Dαp(z)| ≤
n

1 + kν

{
(|α|+ kν)∥p∥∞ −

1− |α|
kn−ν

min
|z|=k

|p(z)|
}
.

In this paper, we obtain the Lq mean extension and a refinement of the above

and other related results for the polar derivative of polynomials.

1. Introduction

Let Pn be the set of polynomials of degree n with complex coefficients. If p ∈ Pn,
denote by

∥p∥q :=
{ 1

2π

∫ 2π

0

|p(eiθ)|qdθ
}1/q

, 0 < q < ∞,

∥p∥∞ := max
|z|=1

|p(z)|.

For p ∈ Pn, Bernstein [1], proved that

∥p′∥∞ ≤ n∥p∥∞. (1)
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In the case q ≥ 1 the following inequality proved by Zygmund [2] and in the case
0 < q < 1, it is due to Arestov [3],

∥p′∥q ≤ n∥p∥q, 0 < q < ∞. (2)

Erdös conjectured and later Lax [4] proved that if p(z) having no zeros in |z| < 1,
then

∥p′∥∞ ≤ n

2
∥p∥∞. (3)

In the case that the polynomial has all its zeros in |z| ≤ 1, Turán [5] proved that

∥p′∥∞ ≥ n

2
∥p∥∞. (4)

As a generalization of inequality (3), it is proved that

∥p′∥q ≤ n

∥1 + z∥q
∥p∥q , for q > 0. (5)

In the case q ≥ 1 inequality (5) is proved by De-Brujin [6] and for the case 0 < q < 1,
it is due to Rahman and Schmeisser [7].
Malik [8] extended (3) and proved that if p(z) does not any zeros in |z| < k, where
k ≥ 1, then

∥p′∥∞ ≤ n

1 + k
∥p∥∞, (6)

whereas if p(z) has all its zeros in |z| ≤ k ≤ 1, then

∥p′∥∞ ≥ n

1 + k
∥p∥∞. (7)

It is proved by Govil and Rahman [9] that if p(z) does not vanish in |z| < k, where
k ≥ 1, then

∥p′∥q ≤ n

∥k + z∥q
∥p∥q , for q > 0. (8)

The above inequalities were generalized for two class of polynomials. First class is
lacunary type polynomials p(z) = a0 +

∑n
j=ν ajz

j , where 1 ≤ ν ≤ n, and second

class is polynomials of the form p(z) = anz
n +

∑n
j=ν an−jz

n−j , where 1 ≤ ν ≤ n.

As a generalization of inequality (6), it was shown by Qazi [10] that if p(z) =
a0 +

∑n
j=ν ajz

j and p(z) ̸= 0 in |z| < k, k ≥ 1, then

∥p′∥∞ ≤ n

1 + kν
∥p∥∞, (9)

Also, inequality (9) was extended by Gardner and Weems [11], they proved if
p(z) = a0 +

∑n
j=ν ajz

j and p(z) ̸= 0 in |z| < k, k ≥ 1, then

∥p′∥q ≤ n

∥kν + z∥q
∥p∥q , for q > 0. (10)
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On the other hand, for the class of polynomials of type p(z) = anz
n+

∑n
j=ν an−jz

n−j ,

where 1 ≤ ν ≤ n, which having all zeros in |z| ≤ k ≤ 1 it was proved by Aziz and
Shah [12] that

∥p′∥∞ ≥ n

1 + kν

{
∥p∥∞ +

1

kn−ν
min
|z|=k

|p(z)|
}
. (11)

For a polynomial p(z) of degree n, we define the so-called the polar derivative of
p(z) with respect to the point α as

Dαp(z) := np(z) + (α− z)p′(z).

The polar derivative Dαp(z) is a polynomial of degree at most n − 1 and it is
extension of the derivative p′(z) by the following sense

lim
α→∞

Dαp(z)

α
= p′(z)

Aziz and Rather [13] extended inequality (5) to the polar derivative of a polyno-
mial and proved that if p ∈ Pn and p(z) does not vanish in |z| < 1, then for α ∈ C
with |α| ≥ 1, and p ≥ 1,

∥Dαp∥q ≤ n
|α|+ 1

∥1 + z∥q
∥p∥q , for q ≥ 1. (12)

Inequality (10) is also generalized by Rather et al. [14] to the polar derivative of
lacunary type polynomial, and specifically proved that if p(z) = a0 +

∑n
j=ν ajz

j ,

where 1 ≤ ν ≤ n be a polynomial of degree n and p(z) ̸= 0 for |z| < k where k ≥ 1,
then

∥Dαp∥q ≤ n
|α|+ kν

∥kν + z∥q
∥p∥q , for |α| ≥ 1 and q > 0. (13)

Recently Dewan et al. [15] proved that if p(z) = anz
n+

∑n
l=ν an−lz

n−l, 1 ≤ ν ≤ n,
is a polynomial of degree n having all its zeros in |z| ≤ k ≤ 1, then for every
complex number α with |α| ≤ 1, on |z| = 1

|Dαp(z)| ≤
n

1 + kν

{
(|α|+ kν)∥p∥∞ − 1− |α|

kn−ν
min
|z|=k

|p(z)|
}
. (14)

In the first theorem we obtain the Lq mean extension and a refinement of the above
inequality (14), then by using of this theorem we prove the Lq mean extension
for lacunary type polynomials, which proposes a generalization and refinement of
inequalities (13) as well.

Theorem 1. Let p(z) = anz
n +

∑n
l=ν an−lz

n−l, be a polynomial of degree n, has
all its zeros in |z| ≤ k ≤ 1, then for every complex number α with |α| ≤ 1, q > 0,
θ ∈ R and 0 ≤ t ≤ 1 we have∥∥∥|Dαp(e

iθ)|+ nmtΛν,t(1− |α|)
kn(1 + Λν,t)

∥∥∥
q
≤ n(|α|+ Λν,t)

∥z + Λν,t∥q
∥p∥q, (15)
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where Λν,t =
n(|an|− tm

kn )k2ν+ν|an−ν |kν−1

ν|an−ν |+n(|an|− tm
kn )kν−1 , and m = min

|z|=k
|p(z)|.

Let q → ∞ and choosing t = 1 then inequality (15) reduce to a following result.

Corollary 1. If p(z) = anz
n +

∑n
l=ν an−lz

n−l is a polynomial of degree n, has all
its zeros in |z| ≤ k < 1, then for every complex number α with |α| ≤ 1,

∥Dαp∥∞ ≤ n(|α|+ Λν)

1 + Λν
∥p∥∞ − nΛν(1− |α|)

kn(1 + Λν)
min
|z|=k

|p(z)|, (16)

where Λν =
n(|an|− m

kn )k2ν+ν|an−ν |kν−1

ν|an−ν |+n(|an|− m
kn )kν−1 , and m = min

|z|=k
|p(z)|.

Remark 1. Corollary 1 is general and a refinement for inequality (14). To see
that, we must show

n(|α|+ Λν)

1 + Λν
∥p∥∞ − nΛν(1− |α|)

kn(1 + Λν)
min
|z|=k

|p(z)| <

n

1 + kν

{
(|α|+ kν)∥p∥∞ − 1− |α|

kn−ν
min
|z|=k

|p(z)|
}
.

Equivalently

(1− |α|)(kν − Λν)

kn(1 + kν)(1 + Λν)
min
|z|=k

|p(z)| < (1− |α|)(kν − Λν)

(1 + kν)(1 + Λν)
∥p∥∞

Since |α| ≤ 1 and from (30), we have Λν ≤ kν , the above inequality becomes

min|z|=k |p(z)|
kn

< ∥p∥∞ (17)

the inequality (17) is true by the Lemma 2, so we get the result.

If we take α = 0 in Corollary 1, we have

Corollary 2. If p(z) = anz
n +

∑n
l=ν an−lz

n−l is a polynomial of degree n, has all
its zeros in |z| ≤ k < 1, then for θ ∈ R, we have

|np(eiθ)− eiθp′(eiθ)| ≤ nΛν

1 + Λν
{∥p∥∞ − 1

kn
min
|z|=k

|p(z)|}. (18)

Suppose eiθ0 is such that |p(eiθ0)| = ∥p∥∞, then by using the inequality n∥p∥∞−
|eiθ0p′(eiθ0)| = |np(eiθ0)|−|eiθ0p′(eiθ0)| ≤ |np(eiθ0)−eiθ0p′(eiθ0)| in (18), it becomes
to following refinement and generalization of (11).

Corollary 3. If p(z) = anz
n +

∑n
l=ν an−lz

n−l is a polynomial of degree n, has all
its zeros in |z| ≤ k < 1, then

∥p′∥∞ ≥ n

1 + Λν
{∥p∥∞ +

Λν

kn
min
|z|=k

|p(z)|}. (19)
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Remark 2. Corollary 3 is general and refinement to inequality (11). To see that,
we using again the method used in Remark 1, it follows that inequality (19) is better
than inequality (11).

In the second case by using Theorem 1, we can prove the following theorem that
provides a refinement and generalization of (13) and related many results.

Theorem 2. Let p(z) = a0 +
∑n

j=ν ajz
j be a polynomial of degree n, does not

vanish in |z| < k, k ≥ 1, then for every complex number α with |α| ≥ 1, q > 0,
θ ∈ R and 0 ≤ t ≤ 1, we have∥∥∥|Dαp(e

iθ)|+ nmt(|α| − 1)

1 +Aν,t

∥∥∥
q
≤ n(|α|+Aν,t)

∥z +Aν,t∥q
∥p∥q, (20)

where Aν,t =
n(|a0|−tm)kν+1+ν|aν |k2ν

ν|aν |kν+1+n(|a0|−tm) , and m = min
|z|=k

|p(z)|.

Remark 3. By using inequality (30) from Lemma 2, we have Aν,t ≥ kν ≥ 1,
resulting (20) to be a generalization and refinement of (13).

Let q → ∞ and by choosing t = 1, the inequality (20) reduce to a following
result that recently proved by Dewan et al. [15].

Corollary 4. If p(z) = a0+
∑n

j=ν ajz
j be a polynomial of degree n, does not vanish

in |z| < k, k ≥ 1, then for every complex number α with |α| ≥ 1, we have

∥Dαp∥∞ ≤ n

1 +Aν
{(|α|+Aν)||p∥∞ − (|α| − 1) min

|z|=k
|p(z)|}, (21)

where Aν = n(|a0|−m)kν+1+ν|aν |k2ν

ν|aν |kν+1+n(|a0|−m) , and m = min
|z|=k

|p(z)|.

By dividing both sides of (20) by |α| and let |α| → ∞, we have the following
result that is an refinement and generalization of (10) .

Corollary 5. Let p(z) = a0 +
∑n

j=ν ajz
j be a polynomial of degree n, does not

vanish in |z| < k, k ≥ 1, then for q > 0, θ ∈ R and 0 ≤ t ≤ 1, we have∥∥∥|p′(eiθ)|+ nmt

1 +Aν,t

∥∥∥
q
≤ n

∥z +Aν,t∥q
∥p∥q. (22)

By dividing both sides of (21) by |α| and let |α| → ∞, we have

Corollary 6. If p(z) = a0+
∑n

j=ν ajz
j be a polynomial of degree n, does not vanish

in |z| < k, k ≥ 1, then

∥p′∥∞ ≤ n

1 +Aν
{(∥p∥∞ − min

|z|=k
|p(z)|}. (23)

Remark 4. Inequality (23) has been studied by Gardner et al. [16].
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2. Lemmas

The following lemmas are needed for proof of the theorems. The first lemma is
due to Aziz et al. [17].

Lemma 1. Let p(z) ∈ Pn and q(z) = znp( 1z ), then for each γ, 0 ≤ γ < 2π, and
q > 0, ∫ 2π

0

∫ 2π

0

|q′(eiθ) + eiγp′(eiθ)|qdθdγ ≤ 2πnq

∫ 2π

0

|p(eiθ)|qdθ.

Lemma 2. If p(z) =
∑n

i=0 aiz
i is a polynomial of degree n, having all its zeros in

|z| ≤ k ≤ 1, then
min
|z|=k

|p(z)| < kn max
|z|=1

|p(z)|, (24)

and in particular min
|z|=k

|p(z)| < kn|an|.

The above lemma is due to Zireh [18].

Lemma 3. The function

S(x) =
nxk2ν + ν|an−ν |kν−1

nxkν−1 + ν|an−ν |
for k ≤ 1 is a non-increasing function of x.

Proof. The proof follows by considering the first derivative test for S(x). □

The following lemma is due to Aziz and Rather [13].

Lemma 4. If p(z) = anz
n +

∑n
l=ν an−lz

n−l, has all its zeros in |z| ≤ k ≤ 1, and

q(z) = znp( 1z ), then on |z| = 1,

|q′(z)| ≤ Lν |p′(z)|, (25)

where

Lν =
n|an|k2ν + ν|an−ν |kν−1

ν|an−ν |+ n|an|kν−1
, (26)

and
ν

n
|an−ν

an
| ≤ kν . (27)

Lemma 5. If p(z) = anz
n +

∑n
l=ν an−lz

n−l, has all its zeros in |z| ≤ k ≤ 1, and

q(z) = znp( 1z ), then for 0 ≤ t ≤ 1 and |z| = 1, we have

|q′(z)| ≤ Λν,t|p′(z)| −
nmtΛν,t

kn
, (28)

where

Λν,t =
n(| an | − tm

kn )k
2ν + ν | an−ν | kν−1

ν | an−ν | +n(| an | − tm
kn )kν−1

(29)
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and

ν

n

|an−ν |
|an| − tm

kn

≤ kν . (30)

where m = min
|z|=k

|p(z)|.

Proof. Let m = min
|z|=k

|p(z)|. If m = 0, then inequality (28) reduce to inequality (25)

in Lemma 4, which is trivial. Therefore, we suppose that the polynomial p(z) having

all its zeros in |z| < k, hence for every β ∈ C with |β| < 1, we have |βmzn

kn | < |p(z)|
for |z| = k. Now the Rouche’s theorem implies that the polynomial p(z)− βmzn

kn , has

all its zeros in |z| < k < 1. By applying Lemma 4 to the polynomial p(z)− βmzn

kn ,
for |z| = 1 we get

|q′(z)| ≤ Sν |p′(z)−
βnmzn−1

kn
|, (31)

where

Sν =
n(| an − βm

kn |)k2ν + ν | an−ν | kν−1

ν | an−ν | +n(| an − βm
kn |)kν−1

.

By applying Lemma 2 we get | an |> m

kn
, then we can substituted | an − β m

kn | by

|an| − |β|m
kn , since we have that

| an − β m

kn
|≥| an | −| β | m

kn
. (32)

By applying Lemma 3 for (32) and taking t = |β|, we get

Sν ≤ Λν,t. (33)

Combining (31) and (33), one can obtain

|q′(z)| ≤ Λν,t|p′(z)−
βmnzn−1

kn
|. (34)

Again since |βmzn

kn | < |p(z)|, by choosing the suitable argument of β, we have

|p′(z)− βmnzn−1

kn
| = |p′(z)| − |βmnzn−1

kn
|, (35)

from (34) and (35) we get,

|q′(z)| ≤ Λν,t|p′(z)| −
nmtΛν,t

kn
.

To prove (30), we use (27) for the polynomial p(z)− βmzn

kn , as a result we have

ν

n

|an−ν |
|an − βm

kn |
≤ kν ,
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or

ν

n

|an−ν |
kν

≤ |an − βm

kn
|. (36)

This means ν
n

|an−ν |
kν is lower bound for |an− βm

kn | for every β, it implies that ν
n

|an−ν |
kν

is less than min
|β|≤1

|an − βm

kn
|, hence from (32) we have

ν

n

|an−ν |
kν

≤ |an| −
|β|m
kn

.

or

ν

n

|an−ν |
|an| − tm

kn

≤ kν .

□

The next lemma is due to Aziz et. al [19].

Lemma 6. Let A, B, C are positive real numbers which that B+C ≤ A, then for
any real γ,

|(A− C) + eiγ(B + C)| ≤ |B + eiγA|. (37)

We also need the following lemma is due to Rather et al. [14].

Lemma 7. If a, b are two non-negative real numbers which that a ≥ bc where c ≥ 1,
then for every x ≥ 1, q > 0 and 0 ≤ γ < 2π

(a+ bx)q
∫ 2π

0

|c+ eiγ |qdγ ≤ (c+ x)q
∫ 2π

0

|a+ beiγ |qdγ (38)

3. Proof of the theorems

Proof of the Theorem 1. By the assumptions, p(z) having all its zeros in
|z| ≤ k ≤ 1, therefore by Lemma 5, for |z| = 1, we have

|q′(z)| ≤ Λν,t

(
|p′(z)| − nmt

kn
)
.

This inequality can be rewritten as

|q′(z)|+ nmtΛν,t

kn(1 + Λν,t)
≤ Λν,t{|p′(z)| −

nmtΛν,t

kn(1 + Λν,t)
}. (39)

Taking A = |p′(z)|, B = |q′(z)| and C =
nmtΛν,t

kn(1+Λν,t)
in Lemma 6, and attend that

Λν,t ≤ kν ≤ 1, by (30), so B + C ≤ A− C ≤ A. Then for any real γ, we get∣∣∣{|p′(eiθ)|− nmtΛν,t

kn(1 + Λν,t)
}+ eiγ{|q′(eiθ)|+ { nmtΛν,t

kn(1 + Λν,t)
}
∣∣∣ ≤ ∣∣∣|q′(eiθ)|+ eiγ |p′(eiθ)|

∣∣∣.
(40)
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This implies for each q > 0, that∫ 2π

0

∣∣∣{| p′(eiθ)| − nmtΛν,t

kn(1 + Λν,t)
}+eiγ{|q′(eiθ)|+ nmtΛν,t

kn(1 + Λν,t)
}
∣∣∣qdθ

≤
∫ 2π

0

∣∣∣|q′(eiθ)|+ eiγ |p′(eiθ)|
∣∣∣qdθ, (41)

From every side of (41), we integrate with respect to γ from 0 to 2π, which gives∫ 2π

0

∫ 2π

0

∣∣∣{| p′(eiθ)| − nmtΛν,t

kn(1 + Λν,t)
}+ eiγ{|q′(eiθ)|+ nmtΛν,t

kn(1 + Λν,t)
}
∣∣∣qdθdγ

≤
∫ 2π

0

∫ 2π

0

∣∣∣eiγ |p′(eiθ)|+ |q′(eiθ)|
∣∣∣qdθdγ

=

∫ 2π

0

{∫ 2π

0

∣∣∣eiγ |p′(eiθ)|+ |q′(eiθ)|
∣∣∣qdγ}dθ

=

∫ 2π

0

{∫ 2π

0

∣∣∣eiγp′(eiθ) + q′(eiθ)
∣∣∣qdγ}dθ

=

∫ 2π

0

{∫ 2π

0

∣∣∣eiγp′(eiθ) + q′(eiθ)
∣∣∣qdθ}dγ.

From the Lemma 1 and above result, we conclude that∫ 2π

0

∫ 2π

0

∣∣∣{| p′(eiθ)| − nmtΛν,t

kn(1 + Λν,t)
}+ eiγ{|q′(eiθ)|+ nmtΛν,t

kn(1 + Λν,t)
}
∣∣∣qdθdγ

≤ 2πnq

∫ 2π

0

|p(eiθ)|qdθ.
(42)

For α ∈ C with |α| ≤ 1 and using the fact that

|np(z)− zp′(z)| = |q′(z)| for, |z| = 1,

we have

|Dαp(e
iθ)| − nmtΛν,t(|α| − 1)

kn(1 + Λν,t)
= |np(eiθ) + (α− eiθ)p′(eiθ)| − nmtΛν,t(|α| − 1)

kn(1 + Λν,t)

≤ |np(eiθ)− eiθp′(eiθ)|+ |α||p′(eiθ)| − nmtΛν,t(|α| − 1)

kn(1 + Λν,t)

= |q′(eiθ)|+ |α||p′(eiθ)| − nmtΛν,t(|α| − 1)

kn(1 + Λν,t)

=
{
|q′(eiθ)|+ nmtΛν,t

kn(1 + Λν,t)

}
+ |α|

{
|p′(eiθ)| − nmtΛν,t

kn(1 + Λν,t)

}
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By integrating both sides of above inequality with respect to θ from 0 to 2π, for
each q > 0, we have∫ 2π

0

{
|Dαp(e

iθ)| − nmtΛν,t(|α| − 1)

kn(1 + Λν,t)

}q

dθ

≤
∫ 2π

0

{
{|q′(eiθ)|+ nmtΛν,t

kn(1 + Λν,t)
}+ |α|{|p′(eiθ)| − nmtΛν,t

kn(1 + Λν,t)
}
}q

dθ

Multiply both sides of above inequality by∫ 2π

0

|eiγ +
1

Λν,t
|pdγ

we have{∫ 2π

0

|eiγ +
1

Λν,t
|qdγ

}∫ 2π

0

{
|Dαp(e

iθ)| − nmtΛν,t(|α| − 1)

kn(1 + Λν,t)

}q

dθ

≤
{∫ 2π

0

|eiγ +
1

Λν,t
|qdγ

}∫ 2π

0

{
{|q′(eiθ)|+ nmtΛν,t

kn(1 + Λν,t)
}+ |α|{|p′(eiθ)| − nmtΛν,t

kn(1 + Λν,t)
}
}q

dθ

(43)

By taking

a = |p′(eiθ)| − nmtΛν,t

kn(1 + Λν,t)
, b = |q′(eiθ)|+ nmtΛν,t

kn(1 + Λν,t)
, c =

1

Λν,t
, x =

1

|α|
,

the conditions of Lemma 7 are established (since the inequality (39) implies a > bc).
Then Lemma 7 implies that for every α with |α| ≤ 1, we have{
(|p′(eiθ)| − nmtΛν,t

kn(1 + Λν,t)
) +

1

|α|
(|q′(eiθ)|+ nmtΛν,t

kn(1 + Λν,t)
)
}q

∫ 2π

0

|eiγ +
1

Λν,t
|qdγ

≤
∣∣∣ 1

Λν,t
+

1

|α|

∣∣∣q ∫ 2π

0

∣∣∣{|p′(eiθ)| − nmtΛν,t

kn(1 + Λν,t)
}+ eiγ{|q′(eiθ)|+ nmtΛν,t

kn(1 + Λν,t)
}
∣∣∣qdγ

Again, integrating both sides of above inequality with respect to θ, we have∫ 2π

0

|eiγ +
1

Λν,t
|qdγ

∫ 2π

0

{
|p′(eiθ)| − nmtΛν,t

kn(1 + Λν,t)
+

1

|α|
(|q′(eiθ)|+ nmtΛν,t

kn(1 + Λν,t)
)
}q

dθ

≤
∣∣∣ 1

Λν,t
+

1

|α|

∣∣∣q ∫ 2π

0

∫ 2π

0

∣∣∣{|p′(eiθ)| − nmtΛν,t

kn(1 + Λν,t)
}+ eiγ{|q′(eiθ)|+ nmtΛν,t

kn(1 + Λν,t)
}
∣∣∣qdγdθ

Multiply both sides of above inequality by |α|q, we get∫ 2π

0

|eiγ +
1

Λν,t
|qdγ

∫ 2π

0

{
|q′(eiθ)|+ nmtΛν,t

kn(1 + Λν,t)
+ |α|(|p′(eiθ)| − nmtΛν,t

kn(1 + Λν,t)
)
}q

dθ

≤
∣∣∣ |α|
Λν,t

+ 1
∣∣∣q ∫ 2π

0

∫ 2π

0

∣∣∣{|p′(eiθ)| − nmtΛν,t

kn(1 + Λν,t)
}+ eiγ{|q′(eiθ)|+ nmtΛν,t

kn(1 + Λν,t)
}
∣∣∣qdγdθ

(44)
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By comparing second part of (43) and first part of (44) we obtain{∫ 2π

0

|eiγ +
1

Λν,t
|qdγ

}∫ 2π

0

{
|Dαp(e

iθ)| − nmtΛν,t(|α| − 1)

kn(1 + Λν,t)

}q

dθ

≤
∣∣∣ |α|
Λν,t

+ 1
∣∣∣q ∫ 2π

0

∫ 2π

0

∣∣∣{|p′(eiθ)| − nmtΛν,t

kn(1 + Λν,t)
}+ eiγ{|q′(eiθ)|+ nmtΛν,t

kn(1 + Λν,t)
}
∣∣∣qdγdθ

(45)

Now by comparing inequalities (45) and (42) we get{∫ 2π

0

|eiγ +
1

Λν,t
|qdγ

}∫ 2π

0

{
|Dαp(e

iθ)|−nmtΛν,t(|α| − 1)

kn(1 + Λν,t)

}q

dθ

≤
∣∣∣ |α|
Λν,t

+ 1
∣∣∣q2πnq

∫ 2π

0

|p(eiθ)|qdθ.

(46)

Multiply both sides of above inequality by (Λν,t)
q, we get{∫ 2π

0

|eiγ + Λν,t|qdγ
}∫ 2π

0

{
|Dαp(e

iθ)|−nmtΛν,t(|α| − 1)

kn(1 + Λν,t)
)
}q

dθ

≤
∣∣∣|α|+ Λν,t

∣∣∣q2πnq

∫ 2π

0

|p(eiθ)|qdθ.

(47)

Equivalently{ 1

2π

∫ 2π

0

|eiγ + Λν,t|qdγ
} 1

q
{ 1

2π

∫ 2π

0

∣∣∣|Dαp(e
iθ)|+ nmtΛν,t(1− |α|)

kn(1 + Λν,t)

∣∣∣qdθ} 1
q

≤ n||α|+ Λν,t|
{ 1

2π

∫ 2π

0

|p(eiθ)|qdθ
} 1

q

.

(48)

This completes the proof of Theorem 1. 2

Proof of the Theorem 2. By the hypothesis the polynomial p(z) = a0 +∑n
j=ν ajz

j , where 1 ≤ ν ≤ n does not any zeros in |z| < k, where k ≥ 1. Therefore,

the polynomial q(z) = znp( 1z ) = a0z
n+

∑n
j=ν ajz

n−j has all its zeros in |z| ≤ 1
k ≤ 1.

By applying Theorem 1 to q(z), and replacing 1
k in equation (15), we get for every

complex number α with |α| ≤ 1,∥∥∥|Dαq(e
iθ)|+ nknm1tΛ1,ν(1− |α|)

(1 + Λ1,ν)

∥∥∥
q
≤ n

(|α|+ Λ1,ν)

∥Λ1,ν + z∥q
∥q∥q, (49)

where Λ1,ν = n(|a0|−knm1t)k
−2ν+ν|aν |k1−ν

ν|aν |+n(|a0|−knm1t)k1−ν and m1 = min
|z|= 1

k

|q(z)|.
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On the other hand

m1 = min
|z|= 1

k

|q(z)| = min
|z|= 1

k

|znp(1
z
)| =

min|z|=k |p(z)|
kn

=
m

kn
.

Since q(z) = znp( 1z ), then |q(eiθ)| = |p(eiθ)| and for |Dαq(e
iθ)|,we have

|Dαq(e
iθ)| = |nq(eiθ) + (α− eiθ)q′(eiθ)| = |neinθp(eiθ) + (α− eiθ)q′(eiθ)|∣∣∣neinθp(eiθ) + (α− eiθ)

(
nei(n−1)θp(eiθ)− ei(n−2)θp′(eiθ)

)∣∣∣ =∣∣∣neinθp(eiθ) + (
nαei(n−1)θp(eiθ)− αei(n−2)θp′(eiθ)− neinθp(eiθ) + ei(n−1)θp′(eiθ)

)∣∣∣
=
∣∣∣nαei(n−1)θp(eiθ)− αei(n−2)θp′(eiθ) + ei(n−1)θp′(eiθ)

∣∣∣
=|αei(n−1)θ|

∣∣∣np(eiθ) + (
1

α
− eiθ)p′(eiθ)

∣∣∣ = |α||D 1
α
p(eiθ)|

By replacing m1 = m
kn , ∥q∥q = ∥p∥q and |Dαq(e

iθ)| = |α||D 1
α
p(eiθ)| in (49) we get∥∥∥|α||D 1

α
p(eiθ)|+ nmtΛ1,ν(1− |α|)

(1 + Λ1,ν)

∥∥∥
q
≤ n

(|α|+ Λ1,ν)

∥Λ1,ν + z∥q
∥p∥q,

Or

|α|
∥∥∥|D 1

α
p(eiθ)|+

nmt( 1
|α| − 1)

1
Λ1,ν

+ 1

∥∥∥
q
≤ n

|α|Λ1,ν(
1
|α| +

1
Λ1,ν

)

Λ1,ν∥ 1
Λ1,ν

+ z∥q
∥p∥q, (50)

where Λ1,ν = n(|a0|−tm)k−2ν+ν|aν |k1−ν

ν|aν |+n(|a0|−tm)k1−ν and m = min
|z|=k

|p(z)|. If we take Aν,t =

1
Λ1,ν

, γ = 1
α , then Aν,t ≥ kν ≥ 1 and |γ| ≥ 1, then the inequality (50) becomes the

following inequality∥∥∥|Dγ(p(e
iθ))|+ nmt(|γ| − 1)

1 +Aν,t

∥∥∥
q
≤ n

(|γ|+Aν,t)

∥Aν,t + z∥q
∥p∥q, (51)

where Aν,t =
n(|a0|−tm)k1+ν+ν|aν |k2ν

ν|aν |k1+ν+n(|a0|−tm) and m = min
|z|=k

|p(z)|. This completes the proof

of Theorem 2. 2
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