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Abstract 

In this work, the full characterization of 4-dimensional conformally flat spaces of neutral signature is given by using methods 
based on holonomy structure. Possible holonomy types are obtained for the spaces in question and several remarks are 
made. Various examples are presented related to this investigation.  
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I. INTRODUCTION 
Conformally flat spaces are one of the important research topics not only in differential geometry but also in 

physics. Such spaces are commonly used in general relativity, for example, describing Friedmann–Lemaître–

Robertson–Walker metric. The classification of conformally flat spaces has been a subject of interest for many 

years and so it is not possible to mention about all these works (among them see, e.g., [1-9]). Our goal in the 

present study is to provide a systematic examination of holonomy types in 4 −dimensional conformally flat spaces 

admitting a metric of signature (+, +, −, −) referred to as neutral signature. Such studies for Lorentz and positive 

definite signatures have been carried out by Hall and Lonie in [3] and by Hall in [4], respectively. Adding to these 

works, the present paper is intended to explore the problem further for neutral signature which is the most 

complicated metric signature as there are orthogonal null vectors that are independent and there are pairs of 

timelike 2 −spaces that are orthogonal. The holonomy algebras for 4 −dimensional spaces of neutral signature are 

known and the labelings given in [10] will be used in the present work.  

The rest of the paper is organized as in the following: Some basic notions of the study and the description of 

holonomy groups of 4 −dimensional spaces of signature (+, +, −, −) are recalled in Section II for further 

consideration. The main result of the paper is presented in Section III. To illustrate the results of the study, several 

examples are given in Section IV. Finally, further remarks and conclusion are discussed in Section V.  

II. PRELIMINARIES 
Let ℳ be a 4 −dimensional manifold such that it is smooth, connected, simply connected and equipped with a 

metric 𝑔 being smooth and having neutral signature (+, +, −, −). The Levi-Civita connection of 𝑔 will be 

symbolised by ∇. Let the notations 𝑊, 𝑅𝑖𝑒𝑚, 𝑅𝑖𝑐𝑐 and 𝑟 respectively represent the Weyl conformal curvature 

tensor, Riemann curvature tensor, Ricci tensor and scalar curvature of ℳ. We shall assume that 𝑅𝑖𝑒𝑚 is not 

identically zero on ℳ by saying that the structure (ℳ, 𝑔) is not flat. The Weyl curvature tensor of type (0,4) is 

given by   

 

                             𝑊𝑖𝑗𝑘ℎ = 𝑅𝑖𝑗𝑘ℎ +
1

2
(𝑔𝑗𝑘𝑅𝑖ℎ − 𝑔𝑗ℎ𝑅𝑖𝑘 + 𝑔𝑖ℎ𝑅𝑗𝑘 − 𝑔𝑖𝑘𝑅𝑗ℎ) +

𝑟

6
(𝑔𝑖𝑘𝑔𝑗ℎ − 𝑔𝑖ℎ𝑔𝑗𝑘),                   (1) 

 

where 𝑊𝑖𝑗𝑘ℎ, 𝑅𝑖𝑗𝑘ℎ ≡ 𝑔𝑖𝑚𝑅𝑚
𝑗𝑘ℎ and 𝑅𝑖𝑘 ≡ 𝑅𝑗

𝑖𝑗𝑘 are the components of 𝑊, 𝑅𝑖𝑒𝑚 and 𝑅𝑖𝑐𝑐, respectively. If 𝑊 

vanishes in dimℳ ≥ 4, then (ℳ, 𝑔) is named as conformally flat meaning that there is a neighbourhood 𝒱 of 

each 𝑝 ∈ ℳ on which 𝑔, restricted to 𝒱 is conformal to a flat metric.  
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If ℳ is Ricci-flat, in other words, if 𝑅𝑖𝑐𝑐 ≡ 0 on ℳ, 

one can observe from Equation (1) that 𝑊 ≡ 𝑅𝑖𝑒𝑚. For 

this reason, we shall study conformally flat spaces 

provided that ℳ is not Ricci-flat. Let 𝒯𝑝ℳ be the 

tangent space of ℳ at 𝑝 and 𝜐 ⋅ 𝜔 be the inner product 

of tangent vectors 𝜐, 𝜔 ∈ 𝒯𝑝ℳ. A non-zero tangent 

vector 𝜔 ∈ 𝒯𝑝ℳ is named as spacelike, timelike, null 

(or lightlike) if 𝜔 ⋅ 𝜔 > 0, 𝜔 ⋅ 𝜔 < 0, 𝜔 ⋅ 𝜔 = 0 hold, 

respectively. For neutral metric, we can set up a 

(pseudo)-orthonormal basis of 𝒯𝑝ℳ shown as 

{𝑥, 𝑦, 𝑠, 𝑡} which satisfies 𝑥 ⋅ 𝑥 = 𝑦 ⋅ 𝑦 = 1 (𝑥, 𝑦 being 

spacelike) and 𝑠 ⋅ 𝑠 = 𝑡 ⋅ 𝑡 = −1 (𝑠, 𝑡 being timelike). 

Besides, an associated null basis {𝑙, 𝑛, 𝐿, 𝑁} can              

be constructed in the way that 𝑙 =
1

√2
(𝑥 + 𝑡),                    

𝑛 =
1

√2
(𝑥 − 𝑡), 𝐿 =

1

√2
(𝑦 + 𝑠), 𝑁 =

1

√2
(𝑦 − 𝑠) where 

the relations 𝑙 ⋅ 𝑛 = 1 and 𝐿 ⋅ 𝑁 = 1 are satisfied and 

the other products between these null vectors are all 

zero. Moreover, a 2 −dimensional subspace 𝒰, named 

as a 2 −space, of 𝒯𝑝ℳ can be classified by the 

following items: (i) spacelike: every non-zero element 

of 𝒰 is timelike or every non-zero element of 𝒰 is 

spacelike (ii) timelike: 𝒰 involves precisely two, null 

1 −dimensional subspaces that are referred to as 

directions (iii) null: 𝒰 involves precisely one null 

direction (iv) totally null: every non-zero element of 𝒰 

must be null and so any two non-zero elements must be 

orthogonal. Now, let Λ𝑝ℳ be the space of all bivectors 

at the point 𝑝. A non-zero bivector 𝐹 with components 

𝐹𝑖𝑗(= −𝐹𝑗𝑖) has even rank which can be either 2 or 4. 

The case when the rank of 𝐹 equals 2, it is referred to 

as a simple bivector and in the other case, it is named 

as a non-simple bivector. In the former case it can be 

expressed as 𝐹𝑖𝑗 = 2𝜐[𝑖𝜔𝑗] for 𝜐, 𝜔 ∈ 𝒯𝑝ℳ in which 

square brackets surrounding indices are used to indicate 

the ordinary anti-symmetrisation of the indices. In that 

case, the blade of 𝐹, which will be written as 𝜐 ∧ 𝜔, is 

the 2 −space generated by 𝜐, 𝜔 ∈ 𝒯𝑝ℳ. If the blade of 

𝐹 is spacelike (in order of, timelike, null or totally null) 

2 −space at 𝑝 as defined above, then (the simple 

bivector) 𝐹 is named as spacelike (in order of, timelike, 

null or totally null). Note that 𝐹 is simple including     

0 ≠ 𝑣 ∈ 𝒯𝑝ℳ in its blade provided that 𝐹[𝑖𝑗𝑣ℎ] = 0.  

It is also remarked that one can define the curvature 

map denoted by 𝑓: Λ𝑝ℳ → Λ𝑝ℳ given by                   

𝐹 → 𝑅𝑖
𝑗𝑘ℎ𝐹𝑘ℎ, [11]. On the other hand, it is 

advantageous to express the decomposition of 𝑅𝑖𝑒𝑚 as 

follows (see, e. g., [11]):  

   𝑅𝑖𝑗𝑘ℎ = 𝑊𝑖𝑗𝑘ℎ + 𝐸𝑖𝑗𝑘ℎ +
𝑟

6
𝐺𝑖𝑗𝑘ℎ            (2) 

 where  

𝐸𝑖𝑗𝑘ℎ = 𝑅̃𝑖[𝑘𝑔ℎ]𝑗 + 𝑅̃𝑗[ℎ𝑔𝑘]𝑖 ,     𝐺𝑖𝑗𝑘ℎ = 𝑔𝑖[𝑘𝑔ℎ]𝑗 ,     

 𝑅̃𝑖𝑗 = 𝑅𝑖𝑗 −
𝑟

4
𝑔𝑖𝑗 = 𝐸𝑚

𝑖𝑚𝑗 .                          (3) 

 

It is clear from Equation (3) that the tensor with 

components are 𝑅̃𝑖𝑗 is tracefree and 𝐸 = 0 ⇔ 𝑅̃ = 0 ⇔

𝑅𝑖𝑗 =
𝑟

4
𝑔𝑖𝑗   meaning that (ℳ, 𝑔) is an Einstein 

manifold.  

Let Φ be the holonomy group of (ℳ, 𝑔) which is a Lie 

group formed by the collection of all linear 

isomorphisms on 𝒯𝑝ℳ arising from the parallel transfer 

of each tangent vector of 𝒯𝑝ℳ around a smooth, closed 

curve 𝑐 at 𝑝 (for details on holonomy group, see [12]).  

When the metric is of neutral signature, the Lie algebra 

of Φ is subalgebra of 𝑜(2,2), which will be denoted by 

𝜙. By using the matrix characterization of this algebra, 

one achieves a bivector representation of 𝜙 for this 

signature. The labelings that were tabulated in [10] are 

utilized in Table 1 containing exactly 23 types. All 

these holonomy types are shown in columns 1 and 3 

together with the generators in bivector representation 

respectively indicated in columns 2 and 4. The 

dimension of each holonomy type can easily be seen 

from its label. Note that these holonomy algebras are 

the ones arising for a metric connection and they are not 

all of the subalgebras of 𝑜(2,2). 

It is noted that one can define 3 −dimensional 

subspaces of Λ𝑝ℳ denoted by 𝑆
+

= {𝐹 ∈ Λ𝑝ℳ: 𝐹
∗

= 𝐹} 

and 𝑆
−

= {𝐹 ∈ Λ𝑝ℳ: 𝐹
∗

= −𝐹} where ∗ is the Hodge 

duality operator. The dual of 𝐹 ∈ Λ𝑝ℳ, shown                

as 𝐹
∗

, is described by 𝐹
∗

𝑖𝑗 =
1

2
𝜖𝑖𝑗𝑘ℎ𝐹𝑘ℎ with                

𝜖𝑖𝑗𝑘ℎ = √det𝑔 𝛿𝑖𝑗𝑘ℎ being the classical pseudo-    

tensor, 𝛿 being the standard alternating symbol.          

One has 𝐹
∗∗

= 𝐹 for neutral signature. In Table 1,                            

𝐵
+

= 〈𝑙 ∧ 𝑛 − 𝐿 ∧ 𝑁, 𝑙 ∧ 𝑁〉, 𝐵
−

= 〈𝑙 ∧ 𝑛 + 𝐿 ∧ 𝑁, 𝑙 ∧ 𝐿〉 

where the symbol 〈 〉 denotes a spanning set. 

Furthermore, 𝜂, 𝜁 ∈ ℝ and 𝜂 ≠ ±𝜁 are valid for types 

2(ℎ) and 3(𝑑) whilst for type 2(𝑗), both of them are 

non-zero. A basis of 𝑆
+

 is {𝑙 ∧ 𝑁, 𝑙 ∧ 𝑛 − 𝐿 ∧ 𝑁, 𝑛 ∧ 𝐿}. 

An essential concept in the theory of holonomy is the 

Ambrose-Singer theorem [13] which states that if one 

fixes 𝑝 ∈ ℳ and for arbitrary 𝑝′ ∈ ℳ calculates the 

range space of the curvature map, 𝑅𝑔(𝑓), and parallel 

transports the range space to 𝑝 throughout a curve 

𝛼: 𝑝′ → 𝑝 and carry on doing this for every 𝑝′ and 𝛼, 

the  collection  of  bivectors  acquired  at 𝑝 generates 𝜙.
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Table 1. Holonomy types relevant for neutral signature are indicated 

 

Then, 𝑅𝑔(𝑓) is a subspace of 𝜙 and the Riemann 

curvature tensor may always be expressed as a 

symmetrized sum of products of bivectors of 𝜙 (see, 

[11]). 

Finally, it will be useful to give a remark on parallel and 

recurrent vector fields. A vector field 𝑣 is said to be 

recurrent on an open and connected subset 𝒰 ≠ ∅ of 

ℳ if ∇𝑣 = 𝑞 ⊗ 𝑣 for some 1 −form 𝑞. If 𝑞 vanishes 

on 𝒰, in other words, the case when ∇𝑣 = 0 on 𝒰, 𝑣 is 

named as parallel on 𝒰. If 𝑣 is parallel, it is either non-

null everywhere or null everywhere.  

 

In the sense of holonomy theory, if 0 ≠ 𝑣 ∈ 𝒯𝑝ℳ is an 

eigenvector of all bivectors of 𝜙, then on some 

neighbourhood of 𝑝 ∈ ℳ, there exists a smooth vector 

field which is recurrent and whose value at 𝑝 is 𝑣 (for 

details, see, e.g., [11]). Further, if every eigenvalue of 

𝑣 is zero for all 𝐹 ∈ 𝜙, then it is eligible as a parallel 

vector field. Therefore, as ℳ is simply connected, all 

recurrent and parallel vector fields (if any) can be 

detected by considering Table 1 for every holonomy 

type (see [14]).  

 

For instance, for holonomy type 3(𝑐) with its one of the 

generators presented in Table 1, it can be checked that 

∇𝑠 = 0 (or ∇𝑦 = 0), in other words, 𝑠 (or 𝑦) causes a 

parallel vector field whilst for type 4(𝑐), 𝑙 turns out a 

recurrent vector field on 𝒰. 

 

 

III. THE MAIN RESULT 
Let us now look for the potential holonomy types for 

conformally flat spaces with a metric of neutral 

signature. Assume that (ℳ, 𝑔) is conformally flat (but 

it is neither flat nor Ricci-flat). For this case, one gets 

from Equation (1) that   

 

𝑅𝑖𝑗𝑘ℎ =
1

2
 (𝑔𝑗ℎ𝑅𝑖𝑘 − 𝑔𝑖ℎ𝑅𝑗𝑘 + 𝑔𝑖𝑘𝑅𝑗ℎ − 𝑔𝑗𝑘𝑅𝑖ℎ) 

    −
𝑟

6
(𝑔𝑖𝑘𝑔𝑗ℎ − 𝑔𝑖ℎ𝑔𝑗𝑘).                          (4) 

  

First of all, assume that ℳ contains a non-zero parallel 

vector field 𝑣. In this case, the Ricci identity implies 

that 𝑅𝑖𝑗𝑘ℎ𝑣ℎ = 0 and thus, 𝑅𝑗ℎ𝑣ℎ = 0. Contracting 

Equation (4) by 𝑣𝑗𝑣ℎ and using the Ricci identity, we 

obtain   

 

           
1

2
𝑅𝑖𝑘𝑣ℎ𝑣ℎ +

𝑟

6
(𝑣𝑖𝑣𝑘 − 𝑔𝑖𝑘𝑣ℎ𝑣ℎ) = 0.            (5) 

  

Case 1: If 𝑣 is null, then we get from Equation (5) that 

𝑟 = 0 and vice versa. Contracting Equation (4) by 𝑣ℎ, 

one can get the following equation:  

 

                                𝑅𝑖𝑘𝑣𝑗 = 𝑅𝑗𝑘𝑣𝑖 .                         (6) 

 

The condition (6) is equivalent to 𝑅𝑖𝑐𝑐 = 𝜆(𝑣 ⊗ 𝑣) for 

some nowhere zero function 𝜆: ℳ → ℝ, where the 

Segre type of 𝑅𝑖𝑐𝑐 is {(211)} with zero eigenvalue (for 

the Segre classification, see, e. g., [11, 14]). As 𝑟 = 0, 

Type Generators Type Generators 

1(𝑎) 𝑙 ∧ 𝑛 2(𝑗) 𝑙 ∧ 𝑁,  𝜂(𝑙 ∧ 𝑛 − 𝐿 ∧ 𝑁) + 𝜁(𝑙 ∧ 𝐿) 

1(𝑏) 𝑥 ∧ 𝑦 2(𝑘) 𝑙 ∧ 𝑦, 𝑙 ∧ 𝑛   (or 𝑙 ∧ 𝑠, 𝑙 ∧ 𝑛) 

1(𝑐) 𝑙 ∧ 𝑦   (or  𝑙 ∧ 𝑠) 3(𝑎) 𝑙 ∧ 𝑁, 𝑙 ∧ 𝑛, 𝐿 ∧ 𝑁 

1(𝑑) 𝑙 ∧ 𝑁 3(𝑏) 𝑙 ∧ 𝑁, 𝑙 ∧ 𝑛 − 𝐿 ∧ 𝑁, 𝑙 ∧ 𝐿 

2(𝑎) 
𝐵
+

 
3(𝑐) 𝑥 ∧ 𝑦, 𝑥 ∧ 𝑡, 𝑦 ∧ 𝑡   (or 𝑥 ∧ 𝑠, 𝑥 ∧ 𝑡, 𝑠 ∧ 𝑡) 

2(𝑏) 𝑙 ∧ 𝑛, 𝐿 ∧ 𝑁 3(𝑑) 𝑙 ∧ 𝑁, 𝑙 ∧ 𝐿, 𝜂(𝑙 ∧ 𝑛) + 𝜁(𝐿 ∧ 𝑁) 

2(𝑐) 𝑙 ∧ 𝑛 − 𝐿 ∧ 𝑁, 𝑙 ∧ 𝐿 + 𝑛 ∧ 𝑁 4(𝑎) 
𝑆
+

, 𝑙 ∧ 𝑛 + 𝐿 ∧ 𝑁 

2(𝑑) 𝑙 ∧ 𝑛 − 𝐿 ∧ 𝑁, 𝑙 ∧ 𝐿 4(𝑏) 
𝑆
+

, 𝑙 ∧ 𝐿 + 𝑛 ∧ 𝑁 

2(𝑒) 𝑥 ∧ 𝑦, 𝑠 ∧ 𝑡 4(𝑐) 
𝐵
+

, 𝐵
−

 

2(𝑓) 𝑙 ∧ 𝑁 + 𝑛 ∧ 𝐿, 𝑙 ∧ 𝐿 5 
𝑆
+

, 𝐵
−

 

2(𝑔) 𝑙 ∧ 𝑁, 𝑙 ∧ 𝐿 6 𝑜(2,2) 

2(ℎ) 𝑙 ∧ 𝑁,  𝜂(𝑙 ∧ 𝑛) + 𝜁(𝐿 ∧ 𝑁)   
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we also obtain from Equation (2) that 𝑅𝑖𝑒𝑚 = 𝐸.  

Moreover, as the tensor 𝐸 has the duality properties 

 ∗𝐸𝑖𝑗𝑘ℎ = −𝐸𝑖𝑗𝑘ℎ
∗ , we have  ∗𝑅𝑖𝑗𝑘ℎ = −𝑅𝑖𝑗𝑘ℎ

∗ . It then 

follows that if a bivector 𝐹 is in the range of the 

curvature map, so is its dual 𝐹∗. Plugging 𝑅𝑖𝑐𝑐 into 

Equation (4), a direct computation shows that 𝑅𝑖𝑒𝑚 can 

be written in terms of a pair of totally null bivectors 

whose blades contain 𝑣. More explicitly, for that case 

the causal character of the bivectors in 𝑅𝑖𝑒𝑚 is 

preserved by parallel transporting them from each     

𝑝′ ∈ ℳ to a fixed point 𝑝 ∈ ℳ and considering the 

Ambrose-Singer theorem (see Section II). Moreover, 

since 𝑣 is parallel, it remains as null under parallel 

translation and stays in the blades of these bivectors. By 

the aid of Table 1, it can be seen that Φ must be of type 

2(𝑔) admitting 𝑙 as a parallel vector field as this type is 

generated by the bivectors 𝑙 ∧ 𝑁 and 𝑙 ∧ 𝐿 for both of 

which 𝑙 is an eigenvector corresponding to the zero 

eigenvalue. 

 

Case 2: Assume that 𝑣 is non-null. Then 𝑣𝑘𝑣𝑘 ≠ 0 and 

it can be deduced from Equation (5) that 𝑅𝑖𝑐𝑐 takes the 

following form:  

         𝑅𝑖𝑗 =
𝑟

3
(𝑔𝑖𝑗 −

1

𝑣𝑘𝑣𝑘 𝑣𝑖𝑣𝑗)                    (7) 

 

where the Segre type of 𝑅𝑖𝑐𝑐 is {1(111)} and 𝑟 ≠ 0. 

Let 𝐹 be an arbitrary bivector at 𝑝 satisfying the 

condition 𝐹𝑖𝑗𝑣𝑗 = 0. In this case, putting Equation (7) 

into (4) and multiplying the resulting equation by 𝐹𝑘ℎ, 

we get that 𝑅𝑖𝑗𝑘ℎ𝐹𝑘ℎ =
𝑟

3
𝐹𝑖𝑗. It then follows that 𝐹 is 

an eigenbivector of the Riemann curvature tensor 

corresponding to eigenvalue 𝑟/3. Moreover, such 

bivectors must be simple and they form a 

3 −dimensional subspace of Λ𝑝ℳ such that the dual 

subspace to it is generated by three bivectors each of 

which annihilates 𝑅𝑖𝑒𝑚 and that they are independent, 

simple, and 𝑣 is in their blades. This yields that the rank 

of 𝑅𝑖𝑒𝑚 is 3 at 𝑝. Moreover, as the holonomy admits a 

parallel vector field 𝑣 which is non-null, the dimension 

of the holonomy algebra is at most 3. Combining these 

findings, it is achieved that dim𝜙 = 3. Hence, it can be 

observed from Table 1 that Φ must be of type 3(𝑐) as 

for this type the basis members, as being simple 

bivectors, are 𝐹1 ≡ 𝑥 ∧ 𝑦, 𝐹2 ≡ 𝑥 ∧ 𝑡, 𝐹3 ≡ 𝑦 ∧ 𝑡 (or 

𝐺1 ≡ 𝑥 ∧ 𝑠, 𝐺2 ≡ 𝑥 ∧ 𝑡, 𝐺3 ≡ 𝑠 ∧ 𝑡) and they have a 

common annihilator 𝑠 (or 𝑦) which is timelike (or 

spacelike) and parallel. Note that if 𝑅𝑖𝑐𝑐 takes the form 

(7), then such a manifold is known as quasi-Einstein 

manifold in the literature. 

 

Next, let ℳ contains a null vector field 𝑣 which is 

recurrent, more explicitly, for some 1 −form 𝑞, one has 

∇𝑣 = 𝑞 ⊗ 𝑣. From the Ricci identity, we get the 

following: 

 

 ∇𝑘∇𝑗𝑣𝑖 − ∇𝑗∇𝑘𝑣𝑖 = 𝑣ℎ𝑅ℎ𝑖𝑗𝑘  

                                           = 𝑣𝑖(∇𝑘𝑞𝑗 − ∇𝑗𝑞𝑘).        (8)        

By using the identity 𝑅ℎ[𝑖𝑗𝑘] = 0 and Equation (8), one 

gets that the bivector 𝐹𝑗𝑘 ≡ ∇𝑘𝑞𝑗 − ∇𝑗𝑞𝑘 is simple 

whose blade contains 𝑣. In this case, a contraction of 

Equation (4) with 𝑣𝑖𝑣𝑘 shows that 𝑟 ≡ 0 for (ℳ, 𝑔) 

and so 𝑅𝑖𝑒𝑚 = 𝐸 and the curvature range is dual 

invariant. From Table 1, potential holonomy types 

admitting (real or complex) recurrent vector fields are 

1(𝑎), 1(𝑏), 2(𝑎), 2(𝑏), 2(𝑐), 2(𝑑), 2(𝑒), 2(𝑓), 2(ℎ), 

2(𝑗), 2(𝑘), 3(𝑎), 3(𝑏), 3(𝑑) (𝜂 ≠ 0) and 4(𝑐). 

However, (ℳ, 𝑔) cannot be conformally flat for 1(𝑎) 

and 1(𝑏) as for these types 𝑟 ≠ 0 and the               

condition (4) forces 𝑅𝑖𝑒𝑚 to be zero. Moreover,                                     

𝐺 = 𝑙 ∧ 𝑛 − 𝐿 ∧ 𝑁 ∈ 𝑆
+

, 𝐻 = 𝑙 ∧ 𝑁 ∈ 𝑆
+

 generate the 

holonomy type 2(𝑎) yielding the recurrence of 𝑙 and 𝑁. 

But it was proven in [14] that (ℳ, 𝑔) is automatically 

Ricci-flat, i.e., 𝑅𝑖𝑐𝑐 ≡ 0. Thus, the condition (4) gives 

flatness and so 2(𝑎) is not possible for a conformally 

flat space according to our assumption. For holonomy 

types 2(𝑏) and 2(𝑒), the cross term in 𝑅𝑖𝑒𝑚 vanishes 

by considering the identity 𝑅𝑖[𝑗𝑘ℎ] = 0 and so, 𝑅𝑖𝑒𝑚 is 

of the form 𝑅𝑖𝑗𝑘ℎ = 𝜓𝐹𝑖𝑗𝐹𝑘ℎ + 𝜚𝐹
∗

𝑖𝑗𝐹
∗

𝑘ℎ for some 

smooth functions 𝜓, 𝜚 and a dual pair (𝐹, 𝐹
∗

). For these 

types, the condition (4) is satisfied if 𝜓 = −𝜚. For the 

type 2(𝑐) where 𝜙 is generated by 𝑙 ∧ 𝐿 + 𝑛 ∧ 𝑁 ∈ 𝑆
−

,

𝑙 ∧ 𝑛 − 𝐿 ∧ 𝑁 ∈ 𝑆
+

, conformal flatness is possible             

if the coefficient of cross term in 𝑅𝑖𝑒𝑚 is                          

not zero and other coefficients are zero. In this case, 

𝑅𝑖𝑗 = 𝜗(𝑙𝑖𝐿𝑗 + 𝐿𝑖𝑙𝑗 − 𝑛𝑖𝑁𝑗 − 𝑁𝑖𝑛𝑗) for a nowhere zero 

function 𝜗 and 𝑟 = 0 so that 𝑅𝑖𝑐𝑐 has a special Segre 

type denoted by {(𝑧𝑧)(𝑧̅𝑧̅)} (complex eigenvalues with 

degeneracies) occurring only for neutral signature. On 

the other hand, considering that 𝑙 and 𝐿 are recurrent for 

the type 2(𝑑) and applying Equations (4) and (8), it is 

obtained that (ℳ, 𝑔) could be conformally flat if the 

coefficient of cross term, say 𝜌, in 𝑅𝑖𝑒𝑚 is not zero and 

other coefficients are zero where 𝑅𝑖𝑐𝑐 is of the form 

𝑅𝑖𝑗 = −2𝜌(𝑙𝑖𝐿𝑗 + 𝐿𝑖𝑙𝑗) (Segre type {(22)} with 

eigenvalue zero). Analogously, for holonomy type 

2(𝑓), conformal flatness is possible so that 𝑅𝑖𝑐𝑐 is of 

type {(22)} having zero eigenvalue. Considering the 

generators from Table 1, it can be seen that holonomy 

type 2(ℎ) admits recurrent vector field(s) but it does 

not give rise to a conformally flat space as the 

conditions 𝜂 ≠ ±𝜁 and Equation (4) force 𝑅𝑖𝑒𝑚 to be 

zero. Similar comments can be made for types 2(𝑗) and 

2(𝑘). For types 3(𝑎), 3(𝑏) and 4(𝑐) admitting 

recurrent vector fields (which are 𝑙, 𝑁 for 3(𝑎), 𝑙 for 

3(𝑏) and 4(𝑐)), the condition (4) is satisfied when      

𝑟 = 0 as for these cases, by taking into account the 

generators presented in Table 1 it yields that if              

𝐹 ∈ Λ𝑝ℳ is in the range of the curvature map, so is its 

dual 𝐹∗. For 3(𝑑) (𝜂 ≠ 0), the condition (4) imposes 

𝑅𝑔(𝑓) to be generated by the bivectors 𝑙 ∧ 𝑁 and 𝑙 ∧ 𝐿 

which gives rise to the contradiction by using the 

Ambrose-Singer theorem. Furthermore, there can be 

conformally flat spaces which admit no parallel or 
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recurrent vector fields. The above argument shows that 

if the space is conformally flat with 𝑟 = 0, the range of 

𝑅𝑖𝑒𝑚 is dual invariant. Therefore, considering the 

Ambrose-Singer theorem one also gets potential types 

4(𝑎), 4(𝑏), 5 satisfying Equation (4) as the generators 

of these types are members of either 𝑆
−

 or 𝑆
+

. In 

conclusion, the following result is proven:  

 

Theorem 1. Let ℳ be a connected and simply 

connected 4 −dimensional space admitting a metric 𝑔 

of neutral signature. Suppose that (ℳ, 𝑔) is not Ricci-

flat. If (ℳ, 𝑔) is a conformally flat space, then the 

holonomy group  Φ of  ℳ is one of the types 2(𝑏), 2(𝑐), 

2(𝑑), 2(𝑒), 2(𝑓), 2(𝑔), 3(𝑎), 3(𝑏), 3(𝑐), 4(𝑎), 4(𝑏), 

4(𝑐), 5 or 6.  

 

It will be useful to interpret what is proved in      

Theorem 1 and compare the results achieved for the 

neutral signature with the case when 𝑔 has Lorentz 

signature (+, +, +, −). Certain remarks and 

interpretations can be given as follows:  

 

Remark 1.  For the Lorentz case, a bivector and its dual 

bivector must be independent, but this is not true for 

neutral signature (for example, one can consider the 

members of 𝑆
+

 and 𝑆
–

). This implies that for Lorentz 

signature, if the space is conformally flat with 𝑟 = 0, 

dim𝜙 must be even. Nevertheless, it is false for neutral 

signature as proved in Theorem 1. For instance, 

3 −dimensional types 3(𝑎) and 3(𝑏) yield recurrent 

vector fields and 𝜙 is dual invariant but it is not even-

dimensional for these types.  

 

Remark 2. It can be observed from Theorem 1 that 

even if no parallel or recurrent vector fields arise in the 

holonomy, (ℳ, 𝑔) could be conformally flat, e.g., the 

case when Φ is one of the types 4(𝑎), 4(𝑏) or 5.  

 

Remark 3. For a conformally flat space of dimension 

𝑛 ≥ 4, it is known that the Cotton tensor whose 

components are given by 

          

        𝐶𝑗𝑘ℎ = ∇ℎ𝑅𝑗𝑘 − ∇𝑘𝑅𝑗ℎ 

                     +
1

2(𝑛−1)
(∇𝑘𝑟 𝑔𝑗ℎ − ∇ℎ𝑟 𝑔𝑗𝑘)            (9) 

 

vanishes. The steps and calculations carried out in the 

proof of Theorem 1 indicated that 𝑟 is zero unless Φ is 

one of the holonomy types 3(𝑐) or 6. It then follows 

from Equation (9) that in cases where the potential 

holonomy types 2(𝑏), 2(𝑐), 2(𝑑), 2(𝑒), 2(𝑓), 2(𝑔), 

3(𝑎), 3(𝑏), 4(𝑎), 4(𝑏), 4(𝑐) and 5 satisfy the 

conformally flat condition (4), 𝑅𝑖𝑐𝑐 must be a Codazzi 

tensor, i.e., the condition ∇ℎ𝑅𝑗𝑘 = ∇𝑘𝑅𝑗ℎ holds.  

 

Finally, suppose that (ℳ, 𝑔) is a proper Einstein space, 

in other words, 𝑅𝑖𝑐𝑐 = 𝜉 𝑔 where 0 ≠ 𝜉 =
𝑟

4
, and      

𝐸 = 0 in Equation (3). Then, Segre type of 𝑅𝑖𝑐𝑐 is 

{(1111)}, 𝑟 is constant and ∇𝑅𝑖𝑐𝑐 = 0. In this case, it 

was proven in [14] that Φ could be one of the types 

2(𝑏), 2(𝑐), 2(𝑒), 2(𝑓), 3(𝑎), 3(𝑏), 4(𝑎), 4(𝑏), 4(𝑐), 

5 or 6. Moreover, if the space is also conformally flat, 

then it is clear from Equation (4) that ∇𝑅𝑖𝑒𝑚 = 0 and 

it has constant sectional curvature. Bringing together 

the aforementioned result and Theorem 1, the following 

corollary can be stated: 

 

Corollary 1. Let ℳ be a connected and simply 

connected 4 −dimensional proper Einstein space 

equipped with a neutral metric 𝑔. If (ℳ, 𝑔) is also a 

conformally flat space, then it has constant sectional 

curvature and possible holonomy types could be 2(𝑏), 

2(𝑐), 2(𝑒), 2(𝑓), 3(𝑎), 3(𝑏), 4(𝑎), 4(𝑏), 4(𝑐), 5 or 6.  

 

IV. EXAMPLES 
This section is devoted to give some examples of 

conformally flat 4 −dimensional spaces of neutral 

signature. 

Example 1. Consider the following metric on  ℳ = ℝ4 

with coordinates (𝑢, 𝑣, 𝑥, 𝑦):  

𝑑𝑠2 = 𝑎(𝑢)(𝑥2 + 𝜖𝑦2)𝑑𝑢2 + 2𝑑𝑢𝑑𝑣 + 𝑑𝑥2 + 𝜖𝑑𝑦2(10)        

where 𝑎 is a nowhere zero function. If 𝜖 = 1, the metric 

(10) has Lorentz signature which is known as the plane 

wave metric in the general relativity theory (see [11] 

pages 248–249) whilst it has neutral signature if          

𝜖 = −1 (see also [15]). It can be calculated that such a 

space is conformally flat and that the rank of 𝑅𝑖𝑒𝑚 is 

2. In addition, the vector field 
𝜕

𝜕𝑣
 is parallel and the 

Ricci tensor is given as 𝑅𝑖𝑐𝑐 = −2𝑎(𝑢)𝑑𝑢𝑑𝑢. 

Therefore, it has Segre type of {(211)} (with 

eigenvalue zero). In that case, the holonomy group of 

(ℳ, 𝑔) is 2(𝑔) (for 𝜖 = −1). 

Example 2. Consider now the product manifold      

ℳ = ℝ4 = ℝ2 × ℝ2 with the following metric  

            𝑑𝑠2 = 𝑔𝜇𝜈𝑑𝑥𝜇𝑑𝑥𝜈 + 𝑔′𝑎𝑏 𝑑𝑥𝑎′𝑑𝑥𝑏′          (11)        

where 𝜇, 𝜈 = 1,2 and 𝑎, 𝑏 = 3,4 and also, 𝑔𝜇𝜈 and 𝑔′𝑎𝑏 

denote the components of the metrics 𝑔 and 𝑔′ in the 

coordinates 𝑥𝜇 and 𝑥𝑎′ , respectively (in other words, 

the 𝑔𝜇𝜈 are independent of 𝑥3, 𝑥4 and the 𝑔′𝑎𝑏  are 

independent of 𝑥1, 𝑥2). Suppose that the 

2 −dimensional manifolds (ℝ2, 𝑔) and (ℝ2, 𝑔′) have 

constant curvatures and that the metrics 𝑔 and 𝑔′ both 

have Lorentz signatures (+, −). On the other hand, if 

we denote the metric given in Equation (11) by 𝑔̃, then 

𝑔̃ = 𝑔 × 𝑔′ and it has neutral signature. Now, one can 

set up a null basis {𝑙, 𝑛, 𝐿, 𝑁} in some neighbourhood of 

𝑝 ∈ ℳ so that 𝑙, 𝑛 are tangent to the manifold admitting 

the metric 𝑔, and 𝐿, 𝑁 are tangent to the manifold 

admitting the metric 𝑔′. In this case, 𝑅𝑖𝑒𝑚 can be 

expressed as follows: 

     𝑅𝑖𝑗𝑘ℎ = 𝛾(𝑙𝑖𝑛𝑗 − 𝑛𝑖𝑙𝑗)(𝑙𝑘𝑛ℎ − 𝑛𝑘𝑙ℎ) 

     +𝜆(𝐿𝑖𝑁𝑗 − 𝑁𝑖𝐿𝑗)(𝐿𝑘𝑁ℎ − 𝑁𝑘𝐿ℎ)             (12)        
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where 𝛾 = −𝜆 ≠ 0 and the simple bivectors 𝐻 ≡ 𝑙 ∧ 𝑛, 

𝐾 ≡ 𝐿 ∧ 𝑁 are dual pairs. It follows from Equation (12) 

that 𝑅𝑖𝑐𝑐 has Segre type {(11)(11)} and 𝑟 = 0 and that 

𝑊 ≡ 0. In this case, the bivectors 𝐻 and 𝐾 generate the 

range of the curvature map. Therefore, the holonomy of 

(ℝ4, 𝑔̃) is 2(𝑏) from Table 1. Besides, the simple 

bivectors 𝐻 and 𝐾 are parallel and their blades are also 

orthogonal.  

Example 3. Next, consider the following metric 

expressed in a coordinate system (𝑡, 𝜏, 𝜃, 𝜑):  

−𝑑𝑡2 + (1 − Λ𝜏2)−1𝑑𝜏2 + 𝜏2(𝑑𝜃2 − sin2𝜃𝑑𝜑2) (13)   

where Λ is a non-zero positive constant. Firstly, it is 

useful to note that the metric (13) is the neutral 

signature equivalent of the Einstein static universe 

metric in the theory of general relativity, that is, the 

case when (ℳ, 𝑔) is a space-time (see [11], page 249). 

For the metric (13), it is true that 𝑊 ≡ 0, more 

precisely, the space is conformally flat having a non-

zero, parallel vector field 
𝜕

𝜕𝑡
 which is timelike and also, 

𝑟 = 6Λ. It then follows that Φ is of holonomy type 

3(𝑐).  

 

V. CONCLUSION 
In this study, 4 −dimensional conformally flat spaces 

with a metric of neutral signature were described by the 

holonomy structure. Besides the remarks given in 

Section III, it is useful to briefly mention about the 

cases Lorentz and positive definite signatures as well. 

Regarding conformally flat space-times, it is found in 

[3] that if (ℳ, 𝑔) is conformally flat (but not flat), then 

it can be one of the holonomy types 𝑅7, 𝑅8, 𝑅10, 𝑅13, 

𝑅14 or 𝑅15 where the labelings (up to isomorphism) are 

tabulated in [16]. Several examples were also presented 

in [3]. It is useful to note that the standard Friedmann-

Robertson-Walker space-time is of holonomy type 𝑅15, 

the Einstein static universe metric yields the holonomy 

type 𝑅13 which are both conformally flat (for details, 

see, [3]).  

Finally, for positive definite signature, if (ℳ, 𝑔) is 

conformally flat (but not flat and not Ricci-flat), then 

the holonomy group Φ of ℳ is one of the types 𝑆2, 𝑆3, 

𝑆
+

4 or 𝑆6 where the labelings (up to isomorphism) are 

tabulated in [17]. 
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