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Numerical Calculations for the Length of the Transitory Zone in
Partially Filled Circular Pipes with Steep Slope

Highlights
«» The length of the transitory zone in circular open channels is investigated numerically.

«» Effect of several parameters such as the Reynolds number, Froude number and filling ratio at the pipe inlet;
as well as the pipe slope is investigated.

< Thetransitory length shows a tendency to decrease with the Reynolds number, contrary to the entrance length
in pipe flow.

«» Numerical calculations predict that uniform open channel flow is guaranteed approximately 110 and 60
diameters downstream the inlet, for smooth and corrugated circular pipes, respegtive‘lz. .

) 4

Graphical Abstract

The length of the transitory zone in partially filled circular smooth and corrugated pipes is investigated numerically.
Effect of several parameters such as the Reynolds number, Froude number and filling ratio at channel inlet; as well
as the channel slope is investigated.

Figure. Workflow adopted in the present study
Aim
It is aimed to numerically invesigate the effects of parameters such as Reynolds number, Froude number, filling rate
and channel slope on the length of the transitory zone in partially filled circular smooth and corrugated pipes.
Design & Methodology

Using the ANSYS Fluent solver, the two-phase flow in the pipe is solved by the Volume of Fluid method, and the length
of the transitory zone is calculated by obtaining the free surface profile.

Originality

It has been revealed that there is no consensus regarding the length of the transitory zone in the relevant literature.
It is thought that the current study will partially address the gap in this field.

Findings

Results of the numerical calculations show that uniform open channel flow is guaranteed roughly 110 and 60
diameters downstream the pipe entrance, for smooth and corrugated pipes, respectively.

Conclusion

Variation of the length of the transitory zone with the Reynolds and Froude numbers, filling ratio, and slope is
presented in tables and graphs, and the results are discussed.
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The author(s) of this article declare that the materials and methods used in this study do not require ethical committee
permission and/or legal-special permission.
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ABSTRACT

solved using the ANSYS Fluent solver, while interface between air and water is calcula
method. Effect of inlet conditions regarding the Froude and Reynolds numbers, chann

to the entrance length in pipe flow.

Keywords: Uniform open-channel flow, smooth pipe, corrugate ., CO

method.

(HAD) araciligiyla hesaplanmgtir.
kullanilarak ¢oziiliirken, hava ve

Anahtar Kelimeler: Uni
fluid yontemi.

streamwise from the channel inlet up to the
cross-section at’which uniform flow is established [1].
Establishment of uniform flow is necessary for some
discharge calculation methods; that is, employing a
uniform flow formula such as Manning or Chezy, or the
end-depth ratio (EDR). These methods require that the
relevant characteristics of a given channel (resistance
coefficient or EDR) are determined experimentally (or
analytically) in advance under the assumption of uniform
flow conditions, and then discharge is calculated again in
a control section where uniform flow is assumed to
prevail. Therefore, in such applications especially
involving artificial channels stream-wise extent of the
transitory zone must be known to determine the
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u Reynolds Ortalamali Navier-Stokes denklemleri ANSYS Fluent yazilimi
raylizey Volume of Fluid (VOF) yontemi kullanilarak hesaplanmistir. Froude ve

al akisy, piiriizsiiz boru, oluklu boru, hesaplamah akiskanlar dinamigi, volume of

minimum required channel length for flow to become
uniform.

A free surface flow with the depth and mean velocity not
changing in the flow direction is known as uniform flow,
a more strict and idealized definition of which dictating
that the velocity profile must be unchanged over a cross
section of flow [1]. In that respect, uniform flow relates
to fully developed flow in ducts and pipes. It is rather
simple to distinguish the laminar fully developed flow in
ducts by monitoring some features of the mean flow
variables, that is, constant values of the centerline
velocity and wall shear stress, and linear pressure
gradient, which result from an invariant velocity profile
corresponding to that of Hagen-Poiseuille flow [2]. For
fully developed turbulent flows in ducts, prevalence of a
logarithmic mean velocity distribution is taken into



consideration;  however, higher-order turbulence
statistics, which are too sensitive to inlet conditions, do
not develop simultaneously with the mean flow variables
[3]. It has been shown by previous experiments, that near
the bottom wall in an open channel flow the velocity
profile still complies with the logarithmic law of the wall
of a flat plate boundary layer to a large extent, however,
it shows somewhat different characteristics in the outer
region of the boundary layer, attributed to the free surface
which suppresses the turbulent stress in the wall-normal
direction and leads to anisotropic turbulence [4 - 7].

Information about the minimum required channel length
for uniform flow to establish, i.e., the transitory zone (Le
in the following), is scarce in the relevant literature.
Despite the aforementioned dissimilarities, Knight [8], in
his previous experimental work to obtain boundary shear
stress in partially full circular pipes under subcritical and
supercritical flow regime, assumed fully developed
circular open-channel flow for x/4R > 60 (R: hydraulic
radius), referring to that the fully developed turbulent
pipe flow would occur for x/D > 60 (D: pipe diameter).
Likewise, Nezu and Rodi [4] stated that their channel
length satisfied the necessary condition of x/4R > 60 to
have uniform flow in their experimental study, where
they investigated the fully developed turbulent velocity
profile in rectangular open channel flow and compared

them with the well-known logarithmic law of the wall®

Balachandar et al. [5] studied open-channel flow in
rectangular flume for a range of subcritical an
supercritical Froude numbers using a laser e
anemometer and measured the turbulent velocity profi
They assumed fully developed turbulent bounday layer
approximately 50-70 flow depth downstr
inlet.

Although they do not explicitly ref

pressure di v is characteristic of uniform
open ¢ 9]. Therefore, for accurate
calculatio ge, the approach flow must be

uniform. In e /Of supercritical approach flow, the
normal depth, B, is used as reference depth instead,
which still requires the establishment of uniform flow [9,
13]. Here, the EDR of a given overfall structure is already
known, so that hc and hn can be calculated by measuring

the flow depth at the brink. Table 1 presents some
proposed values of minimum length for subcritical
rectangular approach flow in a free overfall, in terms of
hc, which reveals the disagreement on L. Bauer and Graf
[14] conducted experiments to investigate EDR in a free
overfall with approaching flow of mild slope, i. e.,
subcritical flow, where they reported that an approach
channel of 20h; length, as proposed by Carstens and
Carter [10], was not enough to achieve uniform flow
conditions, and therefore, they failed to establish uniform
flow due to insufficient channel length. To the authors’
knowledge, Rajaratnam and Muralidhar [15] and Bos
[11] are the only work proposing a nmynimum required
length for achieving uniform flow artially filled

circular pipes: Rajaratham and idhar [15]
conducted an experimental erfall in
horizontal and sloping, “ct and applied

momentum analysis on
for the EDR. They st

an expression

R "method with subcritical
tes the energy head at any
m flow zone. Bos [11] proposed

ame” Froude number dependence of flow
acht length in rectangular open channels has
stigated by some previous studies. Results of
perimental study conducted by Kirkgdz and
Atticlioglu [16] indicated that, the length of developing
flow zone is a decreasing linear function of another
dimensionless parameter, Re/Fr (calculated in the region
of uniform flow), in case of subcritical flow in
rectangular channels (for 0.3 < Fr < 0.7 and 28000 < Re
< 137000). They specified the onset location of
developed flow qualitatively, observing the velocity
profiles and flow depth. Contrarily, Ranga Raju et al. [17]
stated that L. does not depend on the Froude number,
according to results of their numerical calculations for
subcritical rectangular open-channel flow; but it does on
the Reynolds number in an exponential fashion and flow
aspect ratio in case of smooth flow, and only on the
relative roughness and aspect ratio in case of rough flow
(for 0.1 < Fr < 0.6 and 5100 < Re < 30600). Numerical
simulations conducted by Bonakdari et al. [18] on
turbulent flow in smooth and rough rectangular open
channels demonstrated that L. is inversely proportional to
the Reynolds number, while the Froude number does not
seem to influence Le both in smooth and rough
rectangular channels. A previous experimental study by

Table 1. Some proposed values of minimum length required for uniform flow to be established in subcritical rectangular
approach channel of a free overfall

Minimum required length of

Reference
approach channel[m]
Subramanya [9] 15hc
Carstens and Carter [10] 20h¢
Bos [11] 12hc
Ferro [12] 55h¢



Wilkerson et al. [19] indicated that L. does not depend on
the Reynolds and Froude numbers for rough channels
with rectangular cross-section. The reason for the
contradiction about the dependence on the Froude and
Reynolds numbers between different studies is unclear.

It is important to have uniform — or, so-called fully
developed — flow for studying turbulent velocity profile,
or measuring the flow rate in open channel flows.
However, the literature review presented above reveals
that there is not a systematic investigation on the required
length for uniform flow to establish, Le, in circular open
channels, although it is well established for pressurized
flow in ducts. The novelty of this study is that it attempts
to close this gap by proposing a method to estimate Le of
subcritical and supercritical open channel flows in
circular smooth and corrugated pipes for various
combinations of some dynamic parameters such as
Froude and Reynolds numbers, flow depth and filling
ratio at the inlet, using the methods of computational
fluid dynamics. As a geometrical parameter, the effect of
slope is also investigated. This study also differs from
previous studies in that control parameters such as the
Reynolds and Froude numbers are calculated at the
channel inlet section rather than in the uniform flow
region. Contrary to the entrance length in pipe flow, the
transitory zone in circular open channels promises much

more difficulty; since, owing to the existence of f&@

surface, there are additional variables such as flow de
and the Froude number which may possibly have effec
Using computational fluid dynamics has the ad
over experimental methods, that it is possible
both Reynolds and Froude number
simultaneously between distinct cases
flow by employing imaginary fluids.

2. NUMERICAL METHOD,
2.1. Governing Equations
Computational fluid dypanjics (CFB

hés emerged since
ow are non-linear
heir general solution
ay. Moreover, even when
e simplified by linearizing

arjous assumptions, analytical

methods used in research, development and design
studies in the discipline of fluid mechanics and has
become increasingly used for academic and industrial
purposes in parallel with the rapid increase in the
processing power of computers used in calculations.
Numerical solution methods, which constitute the subject
of CFD, deal with solving the governing equations,
which include partial derivatives and are written
primarily for continuum, by converting them into a
system of algebraic equations expressed on a discrete
domain to comply with certain constraints.

It is a reasonable simplification to assume that the open
channel flow in underground drainage systems is a two-
phase flow consisting of immiscible water and air phases.
Specific numerical methods which are used to capture
discontinuities (e.g. shock waves) can also be used to
capture the interface of immiscible fluids. Hyman [20]
mainly classified these methods as interface tracking,
volume tracking and moving mesh methods. In interface
tracking methods, the position of marker points
representing the free surface is calculated by a height
function or parametric curve interpolation. In volume
tracking methods, not only the free surface but also the
entire volume occupied by the selecteg phase or phases
is determined by marking. The MAC
method is one of those methods,

[22] method, which‘is

on the MAC m is method, in addition

to the contuyi m equations, the advection
equation fraction is solved, which is given
by Eq. (

a_F

(k=1,2,3) 1)

e fraction is represented by step function
is equal to unity for cells containing a selected
dWphaSe in the domain, and zero otherwise. The three-
sional, incompressible and unsteady conservation
gefations of mass and momentum (i.e., the Navier-
Stokes equations) are given in Egs. (2) in conservative
form with index notation, as follows:

d(pug) _

ok i=k=1,2,3) (13
apuy) | dpwup) _ _ 9%u;
at ax,  ox; tofitu ax? (2b)

Here u; and x; represent components of the velocity (m/s)
and position (m) vectors, respectively. t is time (s), p and
u are the density (kg/m3) and dynamic viscosity (kg/ms)
of the fluid, respectively, p is the pressure (N/m?), and f;
expresses components of the conservative force (N/m3)
acting on the unit fluid volume.

2.2. Interpolation Methods for the Volume Fraction

In the VOF method, regions where the volume fraction
function (F) takes a value between 0 and 1 indicate the
free surface. The F function takes the value 1 on one side
of the cells representing the interface and 0 on the other
side. There is indeed discontinuity for the volume
fraction at the interface, and therefore, discretization of
the convective acceleration term (u, dF /0dx;) in the
transport equation of the volume fraction (Eqg. (1))
requires the development of improved interpolation
methods since the conventional upwind and central
difference methods yield extremely diffusive, oscillatory
and unconstrained results [23]. For this purpose,
nonlinear high-resolution methods obtained by applying
a limiter to interpolation methods of at least second-order



accuracy can be used to capture regions of discontinuity
[24]. HRIC (High Resolution Interface Capturing)
method is one of these interpolation methods, where the
limiting criterion is achieved by applying the Normalized
Variable (NV) approach [25].

In Fig. 1, comparison of some interpolation methods
available in the commercial ANSYS Fluent 15 code are
presented, where contours of the volume fraction in a free
fall are given. Regions of dark color indicate the free
surface where the volume fraction takes values between
0 and 1. In case of the First Order Upwind (FOU)
interpolation is used, the free surface is quite thick due to
numerical diffusion (Fig. 1a). On the other hand, a
relatively sharper free surface is obtained with Second
Order Upwind (SOU) interpolation (Figure 1b). Fig. 1c
shows that the CICSAM (Compressive Interface
Capturing Scheme for Arbitrary Meshes) method [26],
being another high-resolution interpolation method,
produces a very sharp free surface, however, oscillations
occur near the free surface. The HRIC method calculates
a free surface that has a similar level of sharpness with
much less deformation than that obtained by the
CICSAM method (Fig. 1d). Here, all the other
parameters such as the numerical grid and time step are
the same for all four numerical solutions presented.

B

C.

not include the free surface. An angle parameter, «a,
which depends on h and R and given by Eq. (4) below, is
also introduced:

a = cos™! (1 - %) 4)

A, P and b can be related to R and «, as given by Egs. (5),
(6) and (7):

A = R?(a — sina cos ) (5)
P = 2aR (6)
b =2Rsina )

The hydraulic radius, Ry, is defined as the ratio of the

cross-sectional area of the flow to thegvetted perimeter,

i. e, Rn = AP. Thus, substitution of Eq and (6) in the

definition of Ry, yields Eq. (8):
(a—sin a cos @)

Rh =R 2a ..

The filling ratio of the pj

®)

e Reynolds number
Ry, and the cross-
, which is given by Eq. (9):

(]
Re = "—‘Lﬁ ©9)
where p a nsity and dynamic viscosity of the

ion

Figure 1. Contours of volume fraction obtained by the interpolation methods: a) FOU, b) SOU, ¢) CICSAM, and d) HRIC

2.3. Data Reduction

The geometrical parameters related to a partially full
circular pipe are shown in Fig. 2. Accordingly, A and P
denote the cross-sectional area of the flow (the hatched
area), and the wetted perimeter (shown with a thick arc
along the bottom part of the pipe), respectively; while D
and R are the inner diameter and radius of the pipe, h is
the flow depth, and b is the width of the free surface. It
should be noted here that the wetted perimeter, P, does

The Froude number is defined by Eq. (10) below:
U

= Torm

Here g is the gravitational acceleration, and hy is the
hydraulic mean depth, which is the ratio of the cross-
sectional area of flow, A, to the width of the free surface,
b; and can be expressed in terms of R and «, as given by
Eq. (11):

(10)



(a—sin a cos a)

h, =R (11)

2sina

2.4. Solution Domain, Numerical Grid and Boundary
Conditions

The smooth and corrugated pipes considered in this study
are shown in Fig. 3a and 3b, respectively. Inner
configuration of the corrugated pipe and the related
parameters are also shown in Fig. 3b. Accordingly, r and
L denote amplitude and wavelength of corrugations,
respectively; and D is the pipe diameter. In all the
numerical calculations regarding the corrugated pipe, the
ratio of r/L and r/D is kept constant at 0.1 and 0.01,
respectively.

Y

T e e e S e

a partially filled circular pipe
The solution domain consists of a pipe and a re

allowed to form a free overfall (Fig. 4a).
including an overfall instead of a pipe
convergence of the former in the numeri

Only half of the physical domai

numerical solutions since is

symmetric with respect to t ipe lengths
niform flow

in Fig. 4a. At the
dition is applied for

e-2 represent the gas and
. At the bottom face of the

a.

employed, which sets pressure to zero gauge at the
boundary. Symmetry boundary condition is assigned to
the center-plane, which forces wall-normal gradients of
all flow variables to be zero and corresponds to a slip-
wall, i. e., tangential velocity is not zero. Finally, no-slip
wall boundary condition is employed at the rest of the
boundaries, leading all the velocity components to be
zero. Hexahedral elements are generated for the
numerical grid, where finer elements are created adjacent
to the walls involving the flow of the liquid phase to
resolve regions of high velocity gradient near the wall
better (Fig. 4b).

2.5. Comparison of Turbulence Mo

Preliminary numerical calculations ha
to compare results obtained i

f the pipe. Parameters
tions are presented in Table

the symmetry plane) are presented
5b, respectively, for three different

dhal average velocity at the pipe inlet, y is the
al coordinate, where y = 0 coincides with the
channel bed, and hy is the flow depth at the pipe entrance.
The deviation between the velocity distributions obtained
for the turbulence models considered in smooth open
channel flow is less than 1% (Fig. 5a). The fact that
similar results are obtained with the RSM (Reynolds
Stress Model), which does not involve an eddy viscosity
approach unlike the k-¢ realizable and k-« SST models,
can be explained by the relative simplicity of the problem
addressed. The large number of equations of the RSM
model (7 additional equations) is a disadvantage, since
there is a negligible difference in the velocity profiles.
Although the k-¢ realizable and k-« SST models do not
have a significant advantage over each other for the flow
problem considered among the other turbulence models

>

Figure 3. Geometry of a) smooth, and b) corrugated pipes along with the relevant geometrical parameters



compared, the k- SST turbulence model is used in
numerical solutions of the smooth open channel flow.

For open channel flow in corrugated pipe, a deviation of
at most 10% is observed in the velocity distribution on
symmetry plane obtained using different turbulence
models for y/hg < 0.2 (Fig. 5b). It can be concluded that
the reason for this difference is that the flow separation
that occurs in the flow over corrugations is a problem that
is difficult to predict by turbulence models. It has been
reported that the k- SST model gives good results in
boundary layer separation problems with an adverse
pressure gradient [27], and therefore k-« SST turbulence
model has been used in the corrugated channel flow
calculations, as well.

wall

pressure outlet

velocity inlet
(phase-1,

velocity inlet
(phase-2)

a.

threshold values of the volume fraction gradient on the
free surface (using the flow parameters adopted for near-
wall mesh independence study). A comparison of the
calculated free surface profiles for adaptive and non-
adaptive grids are presented in Fig. 7, where x is the
coordinate along the axis parallel to the channel bed and
x = 0 corresponds to the pipe entrance. The difference
between two profiles is less than 1%, therefore, since
using an adaptive grid increases the number of elements
and therefore the calculation time, a non-adaptive grid is
employed in the numerical calculations discussed here.

\

b.

Figure 4. lllustration of a) the solution domain and the boundary conditions, as well as b) the numerical grid

2.6. Mesh Independence Study

A mesh independence study is conducted by e ining
the effect of the grid density near the wadl, as we

the air-water interface. Comparison of thiheg different
near-wall grids is done for y* =5, ere y*is
a dimensionless wall distanc y inner wall
variables in the turbulent bo uy/v,
y: wall-normal distance, gu,: elocity, u, =

mesh independe

2, Up = 0.693 eo = 1.98x10°. Velocity
profiles plg ction of the circular pipe are
presente deviation between the velocity
distributio y employing three different grids

near the wal und 1% at most in smooth channel
flow, and less tHan 5% in corrugated channel flow.

“9=”Validation of the Numerical Method

An outline of the numerical scheme adopted in this study
is as follows: Time-dependent, incompressible three-
dimensional Reynolds Averaged Navier-Stokes (RANS)
equations are solved iteratively, with the assumption of
constant fluid properties. Multiphase flow is modeled
using the Volume of Fluid (VOF) method, where gas-
liquid interface is captured by solving a transport
equation for volume fraction. The VOF method is
applicable only when two fluids are immiscible and form
a distinct interface in-between. Since discontinuities in
volume fraction take place at the interface; a non-linear
high-resolution scheme, that is, the High-Resolution
Interface Capturing (HRIC) method, is employed to be
able to handle partial derivatives in the transport equation
for volume fraction. Menter’s k — w turbulence model
with Shear Stress Transport (SST) formulation is used

Table 2. Parameters related to the numerical solutions using different turbulence models

D (m) ho/D Fro Uo (m/s) S Reo L (m)
k-¢ realizable
k- SST 0.2 0.5 0.7 0.693 0.01 3.5x104 1
RSM

Accurate calculation of flow depth depends on capturing
the free surface with adequate sharpness. For this
purpose, an additional calculation is conducted by using
an adaptive grid where the elements are locally refined
around the free surface, depending on some certain

where k is turbulence kinetic energy, and w is its specific
dissipation [27]. Being one of the eddy-viscosity
turbulence models, the k— w SST turbulence model is not
capable of capturing the secondary flows, which are well
known to affect the flow field in open channels.
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Figure 5. Comparison of the velocity profiles at the pipe exit for three different turbulence models for a) smooth, and b)
corrugated pipe (on symmetry plane)
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Figure 6. Comparison of velocity profiles using three different near-wall grid densities for a) smooth, and b) corrugated
pipes

Iculations, isotropic turbulence
flow is modeled using wall
sume a logarithmic velocity profile
near the wall, siffiCe it is computationally too expensive to
resolve the whole boundary layer for such a large
domain. Second and first order upwind schemes are used
for discretization of the nonlinear convective terms in the
momentum and turbulence equations, respectively.
Pressure-velocity coupling is achieved by the SIMPLE
(Semi Implicit Method for Pressure-Linked Equations)
algorithm. A gravitational field is imposed on the domain
that corresponds to the given slope of the pipe. Solution
is assumed to be converged once the maximum

percentage change in normal depth (hy) is less than
0.05% per second.

The numerical method employed in this study is
validated using a previous experimental study conducted
by Kirkgéz and Ardiglioglu [16], where turbulent
velocity profiles in a rectangular open channel flow are
presented. For comparison purposes, open-channel flow
in a smooth rectangular channel of 0.3 m width and 10 m
length is solved numerically. Parameters related to the
validation study are presented in Table 3. Fig. 8a shows
axial velocity profiles at a cross-section of uniform flow,
on the symmetry plane. Experimental velocity data at the
free surface was not available in [16], which might be due
to free-surface waves interrupting laser beams emanating

from the Laser Doppler Anemometer (LDA) system [4].

Since a pointwise comparison is a difficult task between
the numerical and experimental velocity profiles, integral
quantities such as the thicknesses of displacement (6* =



and momentum

Jy (1= 2/ttnar)dy) 0=
foh(u/umax)(l — U/ Upq)dy) are considered, where
the relative error is less than 6% and 15%, respectively
for the former and the latter (denoted by &5+ and &4 in Fig.
8a). When the velocity and vertical coordinate are
normalized by mean flow variables such as the maximum
axial velocity, umax, and the flow depth, h, respectively
(Fig. 8b); as well as by the wall variables (Fig. 8c), a good
collapse of the profiles becomes evident, while both sets
of data follow the logarithmic law of the wall quite well.
It can therefore be said that the numerical and
experimental velocity profiles are similar. The reason for
the deviation between the profiles presented in Fig. 8a
may be the inlet velocity profile, which is uniform for the
numerical calculations, and unclear for the experimental

In Fig. 9a, velocity distributions along the vertical mid-
plane of the pipe at various longitudinal locations are
presented for a numerical solution conducted for open
channel flow in smooth pipe, while Fig. 9b provides a
detailed view of the same set of velocity profiles focused
on the region near the free surface. As seen in Fig. 9b, the
velocity profiles keep developing, albeit with a
decreasing rate, in the streamwise direction, and even
over a long distance of approximately 140D, the point
values of velocity do not remain perfectly constant at
different locations, as required by the ideal definition of
uniform open-channel flow. Therefore, objectively
determining L. by observing the deyelopment of the
velocity profiles is challenging. Inst if present, the
limiting value to which the section-av velocity or
depth converges can ser\‘e a j tterion for

study described in [16]. identifying Le. ®
—Fixed grid
1 - --Adaptive grid[]
09
[=]
=
—
=08}
0.7
{]6 1 Il 1 1 1 1 1 1 1
0 05 1 15 2 25 3 35 4 45 5
z/D

Figure 7. Free surface profiles obtained

by using adaptive and non-adaptive grid

Table 3. Parameters related to the validation study [16]

Flow rate, Q Flow depth, h Flow width, b Froude number, Reynolds number,
[m?s] [m] [m] Fr[] Re []
0.006 0.075 0.3 0.31 1.2x10*

ISCUSSION

esented in the literature regarding
the required ce from the channel entrance to
achieve unifornf flow, that is, Le, pertain to rectangular
cross-section channels, and similar results have not been
provided for open-channel flow in circular pipes. For this
purpose, numerical calculations have been conducted for
open channel flow in both smooth and corrugated circular
pipes to examine the variation of L., depending on the
inlet conditions. The parameters considered here are the
inlet Froude and Reynolds numbers (Fro and Rep), the
filling ratio at the inlet (ho/D), and the pipe slope (S). This
study also differs from previous studies in that control
parameters such as the Reynolds and Froude numbers are
calculated at the channel inlet section rather than in the
uniform flow region.

In Fig. 10, the variation of the flow depth, h, in the
streamwise direction on the symmetry plane is presented
for the case of which the velocity profiles are plotted in
Fig. 9. The curve h = h(x) asymptotically approaches a
constant value h = h, = 0.119 m up to a certain distance
upstream the overfall, where the subscript “n” denotes
uniform flow condition, and h;, is the normal depth.

Definition of quantities exhibiting asymptotic behavior is
generally based on a limiting value, considering to what
degree that limit is approached. For example, boundary
layer thickness is defined as the perpendicular distance
from the wall at which the velocity reaches 99% of the
free-stream velocity [28]. Similarly, Durst et al. [29]
defined the entrance length in laminar pipe flow as the
distance at which the centerline velocity reaches 99% of
its fully developed value. However, a similar criterion
has not been proposed in the literature for the length of
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Figure 8. Comparison of the numerical and experimental a) velocity profiles at a uniform open-channel cross-section, b)
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wall variables, along with the logarithmic law of the wall

the transitory zone (L.)
and Ardiclioglu [16]
development length by

¥ open- ngf flow. Kirkgoz
dfthat they gletermined the flow

velocity profiles at

y Ead et al. [30] for uniform

study does provide information regarding the
streamwise distance over which the flow evolves to
uniform flow.

Since determining the onset of uniform flow based on the
criterion of an invariant velocity profile is not a practical
method, this study considers the limit value of flow depth
approached in the streamwise direction, which is the
normal depth, h,,; and the corresponding normal velocity,
Un. Thus, in this study, the length of the transitory zone,
L., refers to the distance between the pipe inlet and the
downstream location where the conditions of either U =
0.98U,, (for subcritical inlet) or U = 1.02U, (for
supercritical inlet) is satisfied for the cross-sectional

average velocity, U, provided that the velocity profile at
the pipe entrance is uniform.

Table 4 and 5 present results for variation in the
dimensionless length of the transitory zone (Le/D) with
several parameters specified at the pipe inlet such as the
filling ratio (ho/D), the Froude number (Fro), Reynolds
number (Reg), average velocity (Uo); as well as slope (S)
and diameter (D) for open channel flow in circular
smooth and corrugated pipes, respectively. Comparing
the values of L¢/D for the smooth pipe cases S1, S8, S9
and S10 indicates that there is an uncertainty of
approximately 5% in the numerical solutions, since no
change with the pipe diameter (D) is expected while all
the other parameters are kept constant. Smaller values of
Le/D are observed compared to those of the smooth case,
which can be explained by the well-known fact, that
turbulent boundary layer becomes fully developed in a
shorter distance on a rough surface than it does on a
smooth one [28].
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view
3.1. Effect of the Reynolds and Froude Numbers latter copifadicts 'thY)e numerical results obtained by

Fig. 11a shows results of the numerical solutions related ~ Bonakdari'@gal. [18] for rough rectangular channels, as
to the dimensionless length of the transitory zone (Ls/D)  the ecrease in flow development length
in smooth circular pipe for three different values of nolds number. Nevertheless, Ranga Raju et
Reynolds number (Reo), and Froude numbers of Fro= 088 ved no variation with the Reynolds and
2.3 and 2.6. Accordingly, the variation of Le/D with Re bers in their numerical study for rough
has quite different functional forms for the Frguds gular channel.

numbers considered. It can be observed that a g 12a illustrates variation of L./D with the Froude
proportionality between L¢/D and Repexists for number (Fro) for three different values of the Reynolds
and partly for Fro = 2.6 (Fig. 11a). This is number, Rey, in circular smooth pipe. It can be seen that
the results of the experimental and numéngal stu while variation in Le/D is negligible for Fro< 2.3 and Reg
Kirkgoz and Ardiclioglu [16] and B tal. [18], = 3.5x10% there is a significant increase in L¢/D, as Fro
i dition  rises to 2.6. For Rep = 10° and 3.5x10°, however, there is
(Fro = 0.8), variation in L¢/D i igibls, since it does  an inflection point at around Fro = 2, where L¢/D has its
numerical  minimum value, where L./D decreases for Fro < 2 and
solutions, which is found tdibe 5% 0. indicatesthat  increases with a relatively much steeper slope for Fro> 2.
present data for Fro 2.3 in corru@dted pipe seem to  Thus, it can be concluded that data representing the
hile change in Le/D  variation of Lo/D with Froude number almost collapse
.8 and Fro = 1.6. The  ontoasingle curve at high Reynolds numbers (Reo>105).
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Figure 10. Streamwise variation of the flow depth in open channel flow in smooth pipe




Table 4. Variation of the dimensionless transitory length (Le/D) with inlet conditions for open-channel flow in
circular smooth pipe

Case D(m) hoD Fro Uo(m/s) S Reo Le/D
S1 0.8 0.693 64
S2 16 1.404 63

0.2 0.5 0.01 3.5x104
S3 2.3 1.981 63
S4 2.6 2.282 91
S5 0.8 0.693 70
S6 0.2 0.5 2.3 2.019 0.01 3.5%10° 2
S7 2.6 2.282 87
S8 0.1 0.490 62
S9 0.4 0.5 0.8 0.981 0.01 3.5x104 68
S10 0.6 1.201 66
S11 0.2 0.438 59
0.2 0.8 0.01 3.5x104
S12 0.7 0.841 78
S13 0.002 7
S14 0.005 29
0.2 0.5 0.8 0.693 3.5x10%
S15 0.02 62
S16 0.04 63
S17 0.8 0.693 68
S18 18 1.580 66
S19 2.0 1.756 51
0.2 0.5 0.01 1.0x10°
S20 2.3 1.981 57
S21 2.6 2.282 108
S22 3.0 2.633 134

around Fro= 1.6 (Fig:
present study fo

ough channels with
pal studies of Ranga Raju
. [18] for open channel flow

Values of Le/D for pipe inlet filling ratios of ho/D = 0.2,
0.5 and 0.7 (Fro = 0.8 and Rep = 3.5x10%) are plotted in
Fig. 13a for open channel flow in smooth circular pipe.
Considering only the data presented herein, it can be
stated that variation of Le/D with ho/D is a non-linear
increasing function. As for the corrugated pipe, variation
of Le/D can be approximated by a linear function with
positive slope, instead (Fig. 13b). Further numerical
calculations are needed to investigate the effect of the
filling ratio for different values of Fro and Req.

3.3. Effect of Slope

A plot of the dimensionless length of the transitory zone
(Le/D) versus pipe slope (S) can be seen in Fig. 14a for
slopes of S = 0.002, 0.005, 0.01, 0.02, 0.03 and 0.04 in
smooth circular pipe. According to the results for smooth
pipe, the variation of Le¢/D is not larger than the
uncertainty level of 5% for 0.01 < S<0.04 and it can be
assumed to be constant within this range of slope for Frg
= 0.8 and Rep = 3.5x10% However, there is a rapid
change in L¢/D for S < 0.01, which can be approximated
by a linear function with a steep slope. For open channel
flow in corrugated pipe, L¢/D falls rapidly for S < 0.005
and then approaches asymptotically to a constant value
(Fig. 14b). Overshoot and undershoot in the curves
representing the variation of Le/D is evident for smooth
and corrugated circular pipes, respectively.



Table 5. Variation of the dimensionless transitory length (Le/D) with inlet conditions for open-channel flow in circular
corrugated pipe

Case D(@mM) hoD Fro Uo(mls) S Reo Le/D
C1 0.8 0.693 21
C2 1.0 0.878 19
0.2 0.5 0.01 3.5x10%
C3 1.6 1.404 4
C4 2.3 1.981 48
C5 0.8 0.693 21
C6 1.6 1.404 4
0.2 0.5 0.01 1.0x10°
Cc7 2.3 1.981 43
Cs8 3.0 2.971 53
C9 0.1 0.490 15
C10 0.4 0.5 0.8 0.981 0.01 3.5x10% 21
Ci11 0.6 1.201 22
C12 0.002 54
C13 0.005 10
0.2 0.5 0.8 0.693 3.5x10*
Cl4 0.02 25
C15 0.04 24
. . 50 — . : : ; :
) /ON Q“ --Fr, = 0.8
tor— 7 ‘ Ty [ Fro =16
¢ .""-~-..~___" 40} -4 Fl"g = 2.3/
80r
e *
J— 301
Q s} o Q
\E ‘I__\“ ‘-_‘_-_‘
~ \ ~N e °
407 20
20 H-®Fry = 0.8 1 10f
-l FI‘O = 23 A ‘~.\
4-Fry = 2.6 - 1
0 ‘ ! ' = 0 - . - : * :
0 1 2 3 4 4 6 8 10 12 14
Re() x10° Re() x10*
a. b.

Figure 11. Variation of Le/D with Reynolds number at three different Froude numbers for open channel flow in a) smooth
and b) corrugated pipe
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4. CONCLUSION

Numerical calculations are conducted to be able to assesgp The

variation of the length of the transitory zone (Le/D)
present study show that, considering that variati

entry length with Reynolds number is

observed only for va
0.001. Aside from the

than in the SgiforpPflow region. In fact, the numerical
results present@”herein should be regarded just as a
rough estimation for the length of the transitory zone;
since both the turbulence model and the grid used, as well
as the wall functions employed, are not capable of
capturing the transition of boundary layer from laminar
to turbulent in the developing flow region.

DECLARATION OF COMPETING INTEREST
The authors declare that they have no known competing
financial interests or personal relationships that could
have appeared to influence the work reported in this
paper.

ATRaWOF ETHICAL STANDARDS

this article declare that the materials and
ed in this study do not require ethical
permission and/or legal-special permission.

AUTHORS’ CONTRIBUTIONS

Kenan KAYA: Validation, Investigation, Data Curation,
Formal Analysis, Writing-original draft, Writing —
review & editing, Visualization.

Oktay OZCAN: Supervision, Conceptualization,
Methodology, Writing — original draft, Visualization,
Data curation.

REFERENCES

[1] Chow, V. T., “Open-channel hydraulics”, McGraw-Hill,
New York, (1959).

[2] Shah, R. K., and London, A. L., “Laminar Flow Forced
Convection in Ducts: A Source Book for Compact Heat
Exchanger Analytical Data”, Academic Press, New
York, (1978).

[3] Patel, R. P., “A note on fully developed turbulent flow
down a circular pipe”, Aeronaut. J., 78(758-759), 93-97,
(1974).

[4] Nezu, I. and Rodi, W., “Open-channel flow

measurements with a laser doppler anemometer”, J.
Hydraul. Eng., 112(5), 335-355, (1986).

[5] Balachandar, R., Blakely, D., Tachie, M., and Putz, G.,
“A study on turbulent boundary layers on a smooth flat
plate in an open channel”, J. Fluids Eng., 123(2), 394-
400, (2001).

[6] Das, S., Balachandar, R., and Barron, R. M., “Generation
and characterization of fully developed state in open



channel flow”, Journal of Fluid Mechanics, 934, A35,
(2022).

[71 Tominaga, A., Nezu, I., Ezaki, K., and Nakagawa, H.,
“Three-dimensional turbulent structure in straight open
channel flows”, J. Hydraul. Res., 27(1), 149-173, (1989).

[8] Knight, D. W., “Boundary shear in circular pipes running
partially full”, J. Hydraul. Eng., 126(4), 263-275, (2000).

[9] Subramanya, K., “Flow in open channels”, McGraw-Hill,
New Delhi, India, (1994).

[10] Carstens, M. R. and Carter, R. W., “Discussion on
“Hydraulics of free overfall” by A. Fathy and M. A.
Shaarawi. Proc. Amer. Soc. Civil Eng., 91(HY3), 149-
163, (1955).

[11] Bos, M. G., “Discharge measurement structures”, 3rd
Ed., Publication 20, Int. Institute for Land Reclamation
and Improvement/ILRI, Wageningen, The Netherlands,
(1989).

[12] Ferro, V., “Flow Measurement with Rectangular Free
Overfall”, J. Irrig. Drain. Eng., 118(6): 956-964, (1992).

[13] Tokyay, N. D., and Yildiz, D., “Characteristics of free
overfall for supercritical flows”, Can. J. Civ. Eng., 34(2),
162-169, (2007).

[14] Bauer, S.W., and Graf, W.H., “Free overfall as flow
measuring device”, Journal of Irrigation and Drainage
Division, ASCE, 97(1), 73-83, (1971).

[15] Rajaratnam, N., and Muralidhar, D., “End depth for

circular channels”, Journal of the Hydraulics Divisiorb

90(2), 99-119, (1964). Y
[16] Kirkgoz, M. S. and Ardiclioglu, M. “Velocity profiles
developing and developed open channel flow}
Hydraul. Eng., 123(12), 1099-1105, (1997).
[17] Ranga Raju, K. G., Asawa, G. L. and Mishr
“Flow-Establishment Length in Rectangular Cha

“Developing turbulent flows in r
parametric study”, J. Appl. RegfWater
53-58, (2014).

&

[19] Wilkerson, G., Sharma, S. and Sapkota, D., “Length for
Uniform Flow Development in a Rough Laboratory
Flume”, J. Hydraul. Eng., 145(1), 06018018, (2019).

[20] Hyman, J. M. “Numerical Methods for Tracking
Interfaces”, Physica D, 12(1-3): 396-407., (1984).
[21] McKee, S., Tome, M. F., Ferreira, V. G., Cuminato, J. A,

Castelo, A., Sousa, F. S. and Mangiavacchi, N. “The MAC
Method”, Comput. Fluids, 37: 907-930., (2008).

[22] Hirt, C. W., and Nichols, B. D., “Volume of Fluid Method
for the Dynamics of Free Boundaries”, J. Comput. Phys.,
39: 201-225., (1981).

[23] Hirsch, C., “Numerical Computation of Internal and
External Flows”, John Wiley & Sons, (1988).

[24] Harten, A., “High Resolution Sch¢ for Hyperbolic
Conservation Laws”, J. Comput. Ph (3): 357-393,
(1983).

[25] Muzaferija, S., Peric §®,

Entry”, Proceedin
Naval Hydrody
(1998).

diction of Two Fluid Systems
es”, PhD Thesis, Imperial College of
nd Medicine, London, England,

Book Company, New York, (1979).

Purst, F., Ray, S., Unsal, B. and Bayoumi, O. A., “The
Development Lengths of Laminar Pipe and Channel
Flows”, J. Fluids Eng., 127(6): 1154-1160, (2005).

[30] Ead, S. A., Rajaratnam, N., Katopodis, C. and Ade, F.,
“Turbulent Open-Channel Flow in Circular Corrugated

Culverts”, J. Hydraul. Eng., 126(10): 750-757, (2000).



