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Numerical Calculations for the Length of the Transitory Zone in 

Partially Filled Circular Pipes with Steep Slope 

  

Highlights 

❖ The length of the transitory zone in circular open channels is investigated numerically. 

❖ Effect of several parameters such as the Reynolds number, Froude number and filling ratio at the pipe inlet; 

as well as the pipe slope is investigated. 

❖ The transitory length shows a tendency to decrease with the Reynolds number, contrary to the entrance length 

in pipe flow. 

❖ Numerical calculations predict that uniform open channel flow is guaranteed approximately 110 and 60 

diameters downstream the inlet, for smooth and corrugated circular pipes, respectively. 

 

Graphical Abstract 

The length of the transitory zone in partially filled circular smooth and corrugated pipes is investigated numerically. 

Effect of several parameters such as the Reynolds number, Froude number and filling ratio at channel inlet; as well 

as the channel slope is investigated. 

 

 

Figure. Workflow adopted in the present study 
Aim 

It is aimed to numerically invesigate the effects of parameters such as Reynolds number, Froude number, filling rate 

and channel slope on the length of the transitory zone in partially filled circular smooth and corrugated pipes. 

Design & Methodology 

Using the ANSYS Fluent solver, the two-phase flow in the pipe is solved by the Volume of Fluid method, and the length 

of the transitory zone is calculated by obtaining the free surface profile. 

Originality 

It has been revealed that there is no consensus regarding the length of the transitory zone in the relevant literature. 

It is thought that the current study will partially address the gap in this field. 

Findings 

Results of the numerical calculations show that uniform open channel flow is guaranteed roughly 110 and 60 

diameters downstream the pipe entrance, for smooth and corrugated pipes, respectively. 

Conclusion 

Variation of the length of the transitory zone with the Reynolds and Froude numbers, filling ratio, and slope is 

presented in tables and graphs, and the results are discussed. 
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permission and/or legal-special permission. 

 

 

 



 

 

Numerical Calculations for the Length of the 

Transitory Zone in Partially Filled Circular Pipes with 

Steep Slope 
Araştırma Makalesi / Research Article 

Kenan KAYA1*, Oktay ÖZCAN2 
1Department of Mechanical Engineering, Istanbul Aydin University, 34295, Istanbul, Turkey 

2 Department of Aeronautical Engineering, Faculty of Engineering and Architecture, Istanbul Gelisim University, 34310, 

Istanbul Turkey 

(Geliş/Received : 23.07.2024 ; Kabul/Accepted : 03.03.2025 ; Erken Görünüm/Early View : 27.04.2025 ) 

 

ABSTRACT 

Three-dimensional turbulent free-surface flow through smooth and corrugated circular pipes with steep slope is simulated by means 

of Computational Fluid Dynamics (CFD). For this purpose, the three-dimensional Reynolds Averaged Navier-Stokes equations are 

solved using the ANSYS Fluent solver, while interface between air and water is calculated using the Volume of Fluid (VOF) 

method. Effect of inlet conditions regarding the Froude and Reynolds numbers, channel slope and filling ratio on the length of flow 

development is investigated while both sub-critical and super-critical inlet conditions are considered. Results of the numerical 

calculations show that uniform open channel flow is guaranteed roughly 110 and 60 diameters downstream the pipe inlet, for 

smooth and corrugated pipes, respectively. The transitory length shows a tendency to decrease with the Reynolds number, contrary 

to the entrance length in pipe flow. 

Keywords: Uniform open-channel flow, smooth pipe, corrugated pipe, computational fluid dynamics, volume of fluid 

method. 

Kısmen Dolu Yüksek Eğimli Dairesel Borularda Geçiş 

Bölgesi Uzunluğunun Sayısal Olarak Hesaplanması 

ÖZ 

Yüksek eğimli pürüzsüz ve oluklu dairesel borulardaki üç boyutlu türbülanslı serbest yüzey akışı Hesaplamalı Akışkanlar Dinamiği 

(HAD) aracılığıyla hesaplanmıştır. Bu amaçla üç boyutlu Reynolds Ortalamalı Navier-Stokes denklemleri ANSYS Fluent yazılımı 

kullanılarak çözülürken, hava ve su arasındaki arayüzey Volume of Fluid (VOF) yöntemi kullanılarak hesaplanmıştır. Froude ve 

Reynolds sayıları, kanal eğimi ve doluluk oranına ilişkin giriş koşullarının akış gelişim uzunluğuna etkisi araştırılmış, kritik-altı ve 

kritik-üstü giriş koşulları göz önünde bulundurulmuştur. Sayısal çözüm sonuçları, dairesel pürüzsüz ve oluklu borular için boru 

girişinden akım altı yönünde yaklaşık 110 ve 60 çap mesafede üniform açık kanal akışının garanti edilebileceğini göstermektedir. 

Anahtar Kelimeler: Üniform açık kanal akışı, pürüzsüz boru, oluklu boru, hesaplamalı akışkanlar dinamiği, volume of 

fluid yöntemi. 

 

1. INTRODUCTION 

Transitory zone, or transitory reach, is defined as the 

streamwise distance from the channel inlet up to the 

cross-section at which uniform flow is established [1]. 

Establishment of uniform flow is necessary for some 

discharge calculation methods; that is, employing a 

uniform flow formula such as Manning or Chezy, or the 

end-depth ratio (EDR). These methods require that the 

relevant characteristics of a given channel (resistance 

coefficient or EDR) are determined experimentally (or 

analytically) in advance under the assumption of uniform 

flow conditions, and then discharge is calculated again in 

a control section where uniform flow is assumed to 

prevail. Therefore, in such applications especially 

involving artificial channels stream-wise extent of the 

transitory zone must be known to determine the 

minimum required channel length for flow to become 

uniform. 

A free surface flow with the depth and mean velocity not 

changing in the flow direction is known as uniform flow, 

a more strict and idealized definition of which dictating 

that the velocity profile must be unchanged over a cross 

section of flow [1]. In that respect, uniform flow relates 

to fully developed flow in ducts and pipes. It is rather 

simple to distinguish the laminar fully developed flow in 

ducts by monitoring some features of the mean flow 

variables, that is, constant values of the centerline 

velocity and wall shear stress, and linear pressure 

gradient, which result from an invariant velocity profile 

corresponding to that of Hagen-Poiseuille flow [2]. For 

fully developed turbulent flows in ducts, prevalence of a 

logarithmic mean velocity distribution is taken into 
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consideration; however, higher-order turbulence 

statistics, which are too sensitive to inlet conditions, do 

not develop simultaneously with the mean flow variables 

[3]. It has been  shown by previous experiments, that near 

the bottom wall in an open channel flow the velocity 

profile still complies with the logarithmic law of the wall 

of a flat plate boundary layer to a large extent, however, 

it shows somewhat different characteristics in the outer 

region of the boundary layer, attributed to the free surface 

which suppresses the turbulent stress in the wall-normal 

direction and leads to anisotropic turbulence [4 - 7]. 

Information about the minimum required channel length 

for uniform flow to establish, i.e., the transitory zone (Le 

in the following), is scarce in the relevant literature. 

Despite the aforementioned dissimilarities, Knight [8], in 

his previous experimental work to obtain boundary shear 

stress in partially full circular pipes under subcritical and 

supercritical flow regime, assumed fully developed 

circular open-channel flow for x/4R > 60 (R: hydraulic 

radius), referring to that the fully developed turbulent 

pipe flow would occur for x/D > 60 (D: pipe diameter). 

Likewise, Nezu and Rodi [4] stated that their channel 

length satisfied the necessary condition of x/4R ≥ 60 to 

have uniform flow in their experimental study, where 

they investigated the fully developed turbulent velocity 

profile in rectangular open channel flow and compared 

them with the well-known logarithmic law of the wall. 

Balachandar et al. [5] studied open-channel flow in a 

rectangular flume for a range of subcritical and 

supercritical Froude numbers using a laser Doppler 

anemometer and measured the turbulent velocity profile. 

They assumed fully developed turbulent boundary layer 

approximately 50-70 flow depth downstream the channel 

inlet. 

Although they do not explicitly refer to Le, it might also 

be useful to cite some previous studies which have 

proposed a minimum length for subcritical approach flow 

in a free overfall, which is used as a flow measuring 

device by employing the EDR method [9-12]. According 

to this method, discharge is calculated employing an 

energy equation derived from the Bernoulli equation, that 

involves the critical depth, hc, and assumes hydrostatic 

pressure distribution, which is characteristic of uniform 

open channel flow [9]. Therefore, for accurate 

calculation of discharge, the approach flow must be 

uniform. In case of supercritical approach flow, the 

normal depth, hn, is used as reference depth instead, 

which still requires the establishment of uniform flow [9, 

13]. Here, the EDR of a given overfall structure is already 

known, so that hc and hn can be calculated by measuring 

the flow depth at the brink. Table 1 presents some 

proposed values of minimum length for subcritical 

rectangular approach flow in a free overfall, in terms of 

hc, which reveals the disagreement on Le. Bauer and Graf 

[14] conducted experiments to investigate EDR in a free 

overfall with approaching flow of mild slope, i. e., 

subcritical flow, where they reported that an approach 

channel of 20hc length, as proposed by Carstens and 

Carter [10], was not enough to achieve uniform flow 

conditions, and therefore, they failed to establish uniform 

flow due to insufficient channel length. To the authors’ 

knowledge, Rajaratnam and Muralidhar [15] and Bos 

[11] are the only work proposing a minimum required 

length for achieving uniform flow in partially filled 

circular pipes: Rajaratnam and Muralidhar [15] 

conducted an experimental study on free overfall in 

horizontal and sloping circular pipes and applied 

momentum analysis on the flow to obtain an expression 

for the EDR. They stated that a minimum pipe length of 

20H0 is required upstream of the pipe exit for discharge 

measurement using the EDR method with subcritical 

approach flow, where H0 denotes the energy head at any 

section within the uniform flow zone. Bos [11] proposed 

a minimum pipe length of 6D for proper application of 

EDR method in horizontal circular channels but did not 

mention sloped circular pipes. 

Reynolds and Froude number dependence of flow 

development length in rectangular open channels has 

been investigated by some previous studies. Results of 

the experimental study conducted by Kirkgöz and 

Ardiçlioğlu [16] indicated that, the length of developing 

flow zone is a decreasing linear function of another 

dimensionless parameter, Re/Fr (calculated in the region 

of uniform flow), in case of subcritical flow in 

rectangular channels (for 0.3 < Fr < 0.7 and 28000 < Re 

< 137000). They specified the onset location of 

developed flow qualitatively, observing the velocity 

profiles and flow depth. Contrarily, Ranga Raju et al. [17] 

stated that Le does not depend on the Froude number, 

according to results of their numerical calculations for 

subcritical rectangular open-channel flow; but it does on 

the Reynolds number in an exponential fashion and flow 

aspect ratio in case of smooth flow, and only on the 

relative roughness and aspect ratio in case of rough flow 

(for 0.1 < Fr < 0.6 and 5100 < Re < 30600). Numerical 

simulations conducted by Bonakdari et al. [18] on 

turbulent flow in smooth and rough rectangular open 

channels demonstrated that Le is inversely proportional to 

the Reynolds number, while the Froude number does not 

seem to influence Le both in smooth and rough 

rectangular channels. A previous experimental study by 

Table 1. Some proposed values of minimum length required for uniform flow to be established in subcritical rectangular 

approach channel of a free overfall 

Reference 
Minimum required length of 

approach channel[m] 

Subramanya [9] 15hc 

Carstens and Carter [10] 20hc 

Bos [11] 12hc 

Ferro [12] 55hc 

 



 

 

Wilkerson et al. [19] indicated that Le does not depend on 

the Reynolds and Froude numbers for rough channels 

with rectangular cross-section. The reason for the 

contradiction about the dependence on the Froude and 

Reynolds numbers between different studies is unclear. 

It is important to have uniform – or, so-called fully 

developed – flow for studying turbulent velocity profile, 

or measuring the flow rate in open channel flows. 

However, the literature review presented above reveals 

that there is not a systematic investigation on the required 

length for uniform flow to establish, Le, in circular open 

channels, although it is well established for pressurized 

flow in ducts. The novelty of this study is that it attempts 

to close this gap by proposing a method to estimate Le of 

subcritical and supercritical open channel flows in 

circular smooth and corrugated pipes for various 

combinations of some dynamic parameters such as 

Froude and Reynolds numbers, flow depth and filling 

ratio at the inlet, using the methods of computational 

fluid dynamics. As a geometrical parameter, the effect of 

slope is also investigated. This study also differs from 

previous studies in that control parameters such as the 

Reynolds and Froude numbers are calculated at the 

channel inlet section rather than in the uniform flow 

region. Contrary to the entrance length in pipe flow, the 

transitory zone in circular open channels promises much 

more difficulty; since, owing to the existence of free 

surface, there are additional variables such as flow depth 

and the Froude number which may possibly have effect. 

Using computational fluid dynamics has the advantage 

over experimental methods, that it is possible to satisfy 

both Reynolds and Froude number similarity 

simultaneously between distinct cases of open-channel 

flow by employing imaginary fluids. 

 

2. NUMERICAL METHOD 

2.1. Governing Equations 

Computational fluid dynamics (CFD) has emerged since 

the governing equations of fluid flow are non-linear 

partial differential equations and their general solution 

cannot be obtained analytically. Moreover, even when 

the equations in question are simplified by linearizing 

them employing various assumptions, analytical 

solutions are quite difficult for problems with complex 

geometry. CFD is a relatively new method that has 

developed in addition to the analytical and experimental 

methods used in research, development and design 

studies in the discipline of fluid mechanics and has 

become increasingly used for academic and industrial 

purposes in parallel with the rapid increase in the 

processing power of computers used in calculations. 

Numerical solution methods, which constitute the subject 

of CFD, deal with solving the governing equations, 

which include partial derivatives and are written 

primarily for continuum, by converting them into a 

system of algebraic equations expressed on a discrete 

domain to comply with certain constraints. 

It is a reasonable simplification to assume that the open 

channel flow in underground drainage systems is a two-

phase flow consisting of immiscible water and air phases. 

Specific numerical methods which are used to capture 

discontinuities (e.g. shock waves) can also be used to 

capture the interface of immiscible fluids. Hyman [20] 

mainly classified these methods as interface tracking, 

volume tracking and moving mesh methods. In interface 

tracking methods, the position of marker points 

representing the free surface is calculated by a height 

function or parametric curve interpolation. In volume 

tracking methods, not only the free surface but also the 

entire volume occupied by the selected phase or phases 

is determined by marking. The MAC (Marker and Cells) 

method is one of those methods, where a transport 

equation is solved to determine the position of the marker 

particles once a single set of equations for the field 

variables such as velocity and pressure are solved for all 

phases [21]. In this study, the Volume of Fluid (VOF) 

[22] method, which is a volume tracking method based 

on the MAC method, is used. In this method, in addition 

to the continuity and momentum equations, the advection 

equation for the volume fraction is solved, which is given 

by Eq. (1): 

𝜕𝐹

𝜕𝑡
+ 𝑢𝑘

𝜕𝐹

𝜕𝑥𝑘
= 0                                (𝑘 = 1, 2, 3)              (1) 

Here the volume fraction is represented by step function 

F, which is equal to unity for cells containing a selected 

fluid phase in the domain, and zero otherwise. The three-

dimensional, incompressible and unsteady conservation 

equations of mass and momentum (i.e., the Navier-

Stokes equations) are given in Eqs. (2) in conservative 

form with index notation, as follows: 

𝜕(𝜌𝑢𝑘)

𝜕𝑥𝑘
= 0                                        (𝑖 = 𝑘 = 1, 2, 3)     (1a) 

𝜕(𝜌𝑢𝑖)

𝜕𝑡
+

𝜕(𝜌𝑢𝑖𝑢𝑘)

𝜕𝑥𝑘
= −

𝜕𝑝

𝜕𝑥𝑖
+ 𝜌𝑓𝑖 + 𝜇

𝜕2𝑢𝑖

𝜕𝑥𝑘
2              (2b) 

Here ui and xi represent components of the velocity (m/s) 

and position (m) vectors, respectively. t is time (s), ρ and 

μ are the density (kg/m3) and dynamic viscosity (kg/ms) 

of the fluid, respectively, p is the pressure (N/m2), and fi 

expresses components of the conservative force (N/m3) 

acting on the unit fluid volume. 

2.2. Interpolation Methods for the Volume Fraction 

In the VOF method, regions where the volume fraction 

function (F) takes a value between 0 and 1 indicate the 

free surface. The F function takes the value 1 on one side 

of the cells representing the interface and 0 on the other 

side. There is indeed discontinuity for the volume 

fraction at the interface, and therefore, discretization of 

the convective acceleration term (𝑢𝑘 𝜕𝐹 𝜕𝑥𝑘⁄ ) in the 

transport equation of the volume fraction (Eq. (1)) 

requires the development of improved interpolation 

methods since the conventional upwind and central 

difference methods yield extremely diffusive, oscillatory 

and unconstrained results [23]. For this purpose, 

nonlinear high-resolution methods obtained by applying 

a limiter to interpolation methods of at least second-order 



 

 

accuracy can be used to capture regions of discontinuity 

[24]. HRIC (High Resolution Interface Capturing) 

method is one of these interpolation methods, where the 

limiting criterion is achieved by applying the Normalized 

Variable (NV) approach [25]. 

In Fig. 1, comparison of some interpolation methods 

available in the commercial ANSYS Fluent 15 code are 

presented, where contours of the volume fraction in a free 

fall are given. Regions of dark color indicate the free 

surface where the volume fraction takes values between 

0 and 1. In case of the First Order Upwind (FOU) 

interpolation is used, the free surface is quite thick due to 

numerical diffusion (Fig. 1a). On the other hand, a 

relatively sharper free surface is obtained with Second 

Order Upwind (SOU) interpolation (Figure 1b). Fig. 1c 

shows that the CICSAM (Compressive Interface 

Capturing Scheme for Arbitrary Meshes) method [26], 

being another high-resolution interpolation method, 

produces a very sharp free surface, however, oscillations 

occur near the free surface. The HRIC method calculates 

a free surface that has a similar level of sharpness with 

much less deformation than that obtained by the 

CICSAM method (Fig. 1d). Here, all the other 

parameters such as the numerical grid and time step are 

the same for all four numerical solutions presented. 

2.3. Data Reduction 

The geometrical parameters related to a partially full 

circular pipe are shown in Fig. 2. Accordingly, A and P 

denote the cross-sectional area of the flow (the hatched 

area), and the wetted perimeter (shown with a thick arc 

along the bottom part of the pipe), respectively; while D 

and R are the inner diameter and radius of the pipe, h is 

the flow depth, and b is the width of the free surface. It 

should be noted here that the wetted perimeter, P, does 

not include the free surface. An angle parameter, 𝛼, 

which depends on h and R and given by Eq. (4) below, is 

also introduced: 

𝛼 = cos−1 (1 −
ℎ

𝑅
)                 (4) 

A, P and b can be related to R and 𝛼, as given by Eqs. (5), 

(6) and (7): 

𝐴 = 𝑅2(𝛼 − sin 𝛼 cos 𝛼)                 (5) 

𝑃 = 2𝛼𝑅                  (6) 

𝑏 = 2𝑅 sin 𝛼                  (7) 

The hydraulic radius, Rh, is defined as the ratio of the 

cross-sectional area of the flow to the wetted perimeter, 

i. e., Rh = A⁄P. Thus, substitution of Eqs. (5) and (6) in the 

definition of Rh yields Eq. (8): 

𝑅ℎ = 𝑅
(𝛼−sin 𝛼 cos 𝛼)

2𝛼
                 (8) 

The filling ratio of the pipe is defined as ratio of the flow 

depth, h, to the pipe diameter, D. The Reynolds number 

is based on the hydraulic radius, 𝑅ℎ, and the cross-

sectional average velocity, U, which is given by Eq. (9): 

Re =
𝜌𝑈𝑅ℎ

𝜇
                 (9) 

where 𝜌 and 𝜇 are density and dynamic viscosity of the 

fluid, respectively. 

The Froude number is defined by Eq. (10) below: 

Fr =
𝑈

√𝑔ℎ𝑚
                (10) 

Here 𝑔 is the gravitational acceleration, and hm is the 

hydraulic mean depth, which is the ratio of the cross-

sectional area of flow, A, to the width of the free surface, 

b; and can be expressed in terms of R and 𝛼, as given by 

Eq. (11): 

 

a. 

 

b. 

 

c. 

 

d. 

Figure 1. Contours of volume fraction obtained by the interpolation methods: a) FOU, b) SOU, c) CICSAM, and d) HRIC 



 

 

ℎ𝑚 = 𝑅
(𝛼−sin 𝛼 cos 𝛼)

2 sin 𝛼
               (11) 

 

2.4. Solution Domain, Numerical Grid and Boundary 

Conditions 

The smooth and corrugated pipes considered in this study 

are shown in Fig. 3a and 3b, respectively. Inner 

configuration of the corrugated pipe and the related 

parameters are also shown in Fig. 3b. Accordingly, r and 

L denote amplitude and wavelength of corrugations, 

respectively; and D is the pipe diameter. In all the 

numerical calculations regarding the corrugated pipe, the 

ratio of r/L and r/D is kept constant at 0.1 and 0.01, 

respectively. 

 
Figure 2. Illustration of the geometrical parameters related to 

a partially filled circular pipe 

The solution domain consists of a pipe and a rectangular 

box at the downstream end of the pipe where the flow is 

allowed to form a free overfall (Fig. 4a). The reason for 

including an overfall instead of a pipe exit is the better 

convergence of the former in the numerical calculations. 

Only half of the physical domain is considered in the 

numerical solutions since time-averaged flow is 

symmetric with respect to the center plane. Pipe lengths 

vary from 100D to 200D to achieve uniform flow. 

Boundary conditions are also presented in Fig. 4a. At the 

pipe inlet, velocity inlet boundary condition is applied for 

both fluid phases which dictates a fixed uniform velocity 

profile. Here Phase-1 and Phase-2 represent the gas and 

liquid phases, respectively. At the bottom face of the 

rectangular box, where the free-falling jet stream exits 

the domain, pressure outlet boundary condition is 

employed, which sets pressure to zero gauge at the 

boundary. Symmetry boundary condition is assigned to 

the center-plane, which forces wall-normal gradients of 

all flow variables to be zero and corresponds to a slip-

wall, i. e., tangential velocity is not zero. Finally, no-slip 

wall boundary condition is employed at the rest of the 

boundaries, leading all the velocity components to be 

zero. Hexahedral elements are generated for the 

numerical grid, where finer elements are created adjacent 

to the walls involving the flow of the liquid phase to 

resolve regions of high velocity gradient near the wall 

better (Fig. 4b). 

2.5. Comparison of Turbulence Models 

Preliminary numerical calculations have been conducted 

to compare results obtained by using three different 

turbulence models, i. e., k-ε realizable, k-ω SST, and 

Reynolds Stress Model (RSM). For this purpose, the free-

surface flow of water in smooth and corrugated circular 

pipes of 1 m length is solved numerically, where water is 

in free fall at the downstream end of the pipe. Parameters 

related to the preliminary solutions are presented in Table 

2, where subscript “0” refers to value of that parameter 

evaluated at the pipe inlet. 

Axial velocity profiles at the outlet section of smooth and 

corrugated pipes (on the symmetry plane) are presented 

in Fig. 5a and 5b, respectively, for three different 

turbulence models. Here, u represents the velocity 

component parallel to the channel bed, U0 denotes cross-

sectional average velocity at the pipe inlet, y is the 

vertical coordinate, where y = 0 coincides with the 

channel bed, and h0 is the flow depth at the pipe entrance. 

The deviation between the velocity distributions obtained 

for the turbulence models considered in smooth open 

channel flow is less than 1% (Fig. 5a). The fact that 

similar results are obtained with the RSM (Reynolds 

Stress Model), which does not involve an eddy viscosity 

approach unlike the k-ε realizable and k-ω SST models, 

can be explained by the relative simplicity of the problem 

addressed. The large number of equations of the RSM 

model (7 additional equations) is a disadvantage, since 

there is a negligible difference in the velocity profiles.  

Although the k-ε realizable and k-ω SST models do not 

have a significant advantage over each other for the flow 

problem considered among the other turbulence models 

 

a. 

 

b. 

Figure 3. Geometry of a) smooth, and b) corrugated pipes along with the relevant geometrical parameters 



 

 

compared, the k-ω SST turbulence model is used in 

numerical solutions of the smooth open channel flow. 

For open channel flow in corrugated pipe, a deviation of 

at most 10% is observed in the velocity distribution on 

symmetry plane obtained using different turbulence 

models for y/h0 < 0.2 (Fig. 5b). It can be concluded that 

the reason for this difference is that the flow separation 

that occurs in the flow over corrugations is a problem that 

is difficult to predict by turbulence models. It has been 

reported that the k-ω SST model gives good results in 

boundary layer separation problems with an adverse 

pressure gradient [27], and therefore k-ω SST turbulence 

model has been used in the corrugated channel flow 

calculations, as well. 

2.6. Mesh Independence Study 

A mesh independence study is conducted by examining 

the effect of the grid density near the wall, as well as at 

the air-water interface. Comparison of three different 

near-wall grids is done for y+ = 5, 10 and 30, where y+ is 

a dimensionless wall distance defined by inner wall 

variables in the turbulent boundary layer (𝑦+ = 𝑢𝜏𝑦 𝜈⁄ , 

𝑦: wall-normal distance, 𝑢𝜏: friction velocity, 𝑢𝜏 =
𝜏𝑤 𝜌⁄ , 𝜏𝑤: wall shear stress, 𝜌: fluid density, 𝜈: fluid 

kinematic viscosity). Other parameters related to the 

mesh independence study are D = 0.2 m, L = 1 m, Fr0 = 

2, U0 = 0.693 m/s, S = 0 and Re0 = 1.98×105. Velocity 

profiles plotted at the exit section of the circular pipe are 

presented in Fig. 6. The deviation between the velocity 

distributions obtained by employing three different grids 

near the wall is around 1% at most in smooth channel 

flow, and less than 5% in corrugated channel flow. 

Accurate calculation of flow depth depends on capturing 

the free surface with adequate sharpness. For this 

purpose, an additional calculation is conducted by using 

an adaptive grid where the elements are locally refined 

around the free surface, depending on some certain 

threshold values of the volume fraction gradient on the 

free surface (using the flow parameters adopted for near-

wall mesh independence study). A comparison of the 

calculated free surface profiles for adaptive and non-

adaptive grids are presented in Fig. 7, where x is the 

coordinate along the axis parallel to the channel bed and 

x = 0 corresponds to the pipe entrance. The difference 

between two profiles is less than 1%, therefore, since 

using an adaptive grid increases the number of elements 

and therefore the calculation time, a non-adaptive grid is 

employed in the numerical calculations discussed here. 

 

 

2.7. Validation of the Numerical Method 

An outline of the numerical scheme adopted in this study 

is as follows: Time-dependent, incompressible three-

dimensional Reynolds Averaged Navier-Stokes (RANS) 

equations are solved iteratively, with the assumption of 

constant fluid properties. Multiphase flow is modeled 

using the Volume of Fluid (VOF) method, where gas-

liquid interface is captured by solving a transport 

equation for volume fraction. The VOF method is 

applicable only when two fluids are immiscible and form 

a distinct interface in-between. Since discontinuities in 

volume fraction take place at the interface; a non-linear 

high-resolution scheme, that is, the High-Resolution 

Interface Capturing (HRIC) method, is employed to be 

able to handle partial derivatives in the transport equation 

for volume fraction. Menter’s k – ω turbulence model 

with Shear Stress Transport (SST) formulation is used 

where k is turbulence kinetic energy, and ω is its specific 

dissipation [27]. Being one of the eddy-viscosity 

turbulence models, the k – ω SST turbulence model is not 

capable of capturing the secondary flows, which are well 

known to affect the flow field in open channels. 

 

a. 

 

b. 

Figure 4. Illustration of a) the solution domain and the boundary conditions, as well as b) the numerical grid 

Table 2. Parameters related to the numerical solutions using different turbulence models 

 D (m) h0/D Fr0 U0 (m/s) S Re0 L (m) 

k-ε realizable 

0.2 0.5 0.7 0.693 0.01 3.5×104 1 k-ω SST 
RSM 

 



 

 

Therefore, in numerical calculations, isotropic turbulence 

is assumed. Near-wall flow is modeled using wall 

functions, which assume a logarithmic velocity profile 

near the wall, since it is computationally too expensive to 

resolve the whole boundary layer for such a large 

domain. Second and first order upwind schemes are used 

for discretization of the nonlinear convective terms in the 

momentum and turbulence equations, respectively. 

Pressure-velocity coupling is achieved by the SIMPLE 

(Semi Implicit Method for Pressure-Linked Equations) 

algorithm. A gravitational field is imposed on the domain 

that corresponds to the given slope of the pipe. Solution 

is assumed to be converged once the maximum 

percentage change in normal depth (ℎ𝑁) is less than 

0.05% per second. 

The numerical method employed in this study is 

validated using a previous experimental study conducted 

by Kırkgöz and Ardıçlıoğlu [16], where turbulent 

velocity profiles in a rectangular open channel flow are 

presented. For comparison purposes, open-channel flow 

in a smooth rectangular channel of 0.3 m width and 10 m 

length is solved numerically. Parameters related to the 

validation study are presented in Table 3. Fig. 8a shows 

axial velocity profiles at a cross-section of uniform flow, 

on the symmetry plane. Experimental velocity data at the 

free surface was not available in [16], which might be due 

to free-surface waves interrupting laser beams emanating 

from the Laser Doppler Anemometer (LDA) system [4]. 

Since a pointwise comparison is a difficult task between 

the numerical and experimental velocity profiles, integral 

quantities such as the thicknesses of displacement (𝛿∗ =

 

a. 

 

b. 

Figure 5. Comparison of the velocity profiles at the pipe exit for three different turbulence models for a) smooth, and b) 

corrugated pipe (on symmetry plane) 

 

 

a. 

 

b. 

Figure 6. Comparison of velocity profiles using three different near-wall grid densities for a) smooth, and b) corrugated 

pipes 



 

 

∫ (1 − 𝑢 𝑢𝑚𝑎𝑥⁄ )𝑑𝑦
ℎ

0
) and momentum (𝜃 =

∫ (𝑢 𝑢𝑚𝑎𝑥⁄ )(1 − 𝑢 𝑢𝑚𝑎𝑥⁄ )𝑑𝑦
ℎ

0
) are considered, where 

the relative error is less than 6% and 15%, respectively 

for the former and the latter (denoted by 𝜀𝛿∗ and 𝜀𝜃 in Fig. 

8a). When the velocity and vertical coordinate are 

normalized by mean flow variables such as the maximum 

axial velocity, umax, and the flow depth, h, respectively 

(Fig. 8b); as well as by the wall variables (Fig. 8c), a good 

collapse of the profiles becomes evident, while both sets 

of data follow the logarithmic law of the wall quite well. 

It can therefore be said that the numerical and 

experimental velocity profiles are similar. The reason for 

the deviation between the profiles presented in Fig. 8a 

may be the inlet velocity profile, which is uniform for the 

numerical calculations, and unclear for the experimental 

study described in [16]. 

 

3. RESULTS AND DISCUSSION 

Majority of the data presented in the literature regarding 

the required distance from the channel entrance to 

achieve uniform flow, that is, Le, pertain to rectangular 

cross-section channels, and similar results have not been 

provided for open-channel flow in circular pipes. For this 

purpose, numerical calculations have been conducted for 

open channel flow in both smooth and corrugated circular 

pipes to examine the variation of Le, depending on the 

inlet conditions. The parameters considered here are the 

inlet Froude and Reynolds numbers (Fr0 and Re0), the 

filling ratio at the inlet (h0/D), and the pipe slope (S). This 

study also differs from previous studies in that control 

parameters such as the Reynolds and Froude numbers are 

calculated at the channel inlet section rather than in the 

uniform flow region. 

In Fig. 9a, velocity distributions along the vertical mid-

plane of the pipe at various longitudinal locations are 

presented for a numerical solution conducted for open 

channel flow in smooth pipe, while Fig. 9b provides a 

detailed view of the same set of velocity profiles focused 

on the region near the free surface. As seen in Fig. 9b, the 

velocity profiles keep developing, albeit with a 

decreasing rate, in the streamwise direction, and even 

over a long distance of approximately 140D, the point 

values of velocity do not remain perfectly constant at 

different locations, as required by the ideal definition of 

uniform open-channel flow. Therefore, objectively 

determining Le by observing the development of the 

velocity profiles is challenging. Instead, if present, the 

limiting value to which the section-averaged velocity or 

depth converges can serve as a decisive criterion for 

identifying Le. 

In Fig. 10, the variation of the flow depth, h, in the 

streamwise direction on the symmetry plane is presented 

for the case of which the velocity profiles are plotted in 

Fig. 9. The curve ℎ = ℎ(𝑥) asymptotically approaches a 

constant value h = hn = 0.119 m up to a certain distance 

upstream the overfall, where the subscript “n” denotes 

uniform flow condition, and hn is the normal depth. 

Definition of quantities exhibiting asymptotic behavior is 

generally based on a limiting value, considering to what 

degree that limit is approached. For example, boundary 

layer thickness is defined as the perpendicular distance 

from the wall at which the velocity reaches 99% of the 

free-stream velocity [28]. Similarly, Durst et al. [29] 

defined the entrance length in laminar pipe flow as the 

distance at which the centerline velocity reaches 99% of 

its fully developed value. However, a similar criterion 

has not been proposed in the literature for the length of 

Table 3. Parameters related to the validation study [16] 

Flow rate, Q 

[m3/s] 

Flow depth, h 

[m] 

Flow width, b 

[m] 

Froude number, 

Fr [-] 

Reynolds number, 

Re [-] 

0.006 0.075 0.3 0.31 1.2×104 

 

 

Figure 7. Free surface profiles obtained by using adaptive and non-adaptive grid 



 

 

the transitory zone (Le) in open-channel flow. Kirkgoz 

and Ardiclioglu [16] stated that they determined the flow 

development length by comparing velocity profiles at 

different cross-sections. However, as seen in Fig. 9, using 

this method would not be reliable in this case. The 

velocity profiles presented by Ead et al. [30] for uniform 

open-channel flow in a corrugated pipe also exhibit a 

similar variation to that shown in Fig. 10. Moreover, that 

study does not provide information regarding the 

streamwise distance over which the flow evolves to 

uniform flow. 

Since determining the onset of uniform flow based on the 

criterion of an invariant velocity profile is not a practical 

method, this study considers the limit value of flow depth 

approached in the streamwise direction, which is the 

normal depth, ℎ𝑛; and the corresponding normal velocity, 

Un. Thus, in this study, the length of the transitory zone, 

Le, refers to the distance between the pipe inlet and the 

downstream location where the conditions of either 𝑈 =
0.98𝑈𝑛 (for subcritical inlet) or 𝑈 = 1.02𝑈𝑛 (for 

supercritical inlet) is satisfied for the cross-sectional 

average velocity, U, provided that the velocity profile at 

the pipe entrance is uniform. 

Table 4 and 5 present results for variation in the 

dimensionless length of the transitory zone (Le/D) with 

several parameters specified at the pipe inlet such as the 

filling ratio (h0/D), the Froude number (Fr0), Reynolds 

number (Re0), average velocity (U0); as well as slope (S) 

and diameter (D) for open channel flow in circular 

smooth and corrugated pipes, respectively. Comparing 

the values of Le/D for the smooth pipe cases S1, S8, S9 

and S10 indicates that there is an uncertainty of 

approximately 5% in the numerical solutions, since no 

change with the pipe diameter (D) is expected while all 

the other parameters are kept constant. Smaller values of 

Le/D are observed compared to those of the smooth case, 

which can be explained by the well-known fact, that 

turbulent boundary layer becomes fully developed in a 

shorter distance on a rough surface than it does on a 

smooth one [28]. 

 

a. 

 

b. 

 

c. 

Figure 8. Comparison of the numerical and experimental a) velocity profiles at a uniform open-channel cross-section, b) 

velocity profiles nondimensionalized by mean flow variables umax and h, and c) velocity profiles nondimensionalized by the 

wall variables, along with the logarithmic law of the wall 



 

 

3.1. Effect of the Reynolds and Froude Numbers 

Fig. 11a shows results of the numerical solutions related 

to the dimensionless length of the transitory zone (Le/D) 

in smooth circular pipe for three different values of 

Reynolds number (Re0), and Froude numbers of Fr0 = 0.8, 

2.3 and 2.6. Accordingly, the variation of Le/D with Re0 

has quite different functional forms for the Froude 

numbers considered. It can be observed that an inverse 

proportionality between Le/D and Re0
 exists for Fr0 = 2.3, 

and partly for Fr0 = 2.6 (Fig. 11a). This is consistent with 

the results of the experimental and numerical studies of 

Kirkgoz and Ardiclioglu [16] and Bonakdari et al. [18], 

respectively. However, for sub-critical inlet condition 

(Fr0 = 0.8), variation in Le/D is negligible; since it does 

not exceed the uncertainty level of the numerical 

solutions, which is found to be 5%. Fig. 11b indicates that 

present data for Fr0 = 2.3 in corrugated pipe seem to 

follow a line with negative slope, while change in Le/D 

with Re0 is negligible for Fr0 = 0.8 and Fr0 = 1.6. The 

latter contradicts with the numerical results obtained by 

Bonakdari et al. [18] for rough rectangular channels, as 

they claim a linear decrease in flow development length 

with the Reynolds number. Nevertheless, Ranga Raju et 

al. [17] observed no variation with the Reynolds and 

Froude numbers in their numerical study for rough 

rectangular channel. 

Fig. 12a illustrates variation of Le/D with the Froude 

number (Fr0) for three different values of the Reynolds 

number, Re0, in circular smooth pipe. It can be seen that 

while variation in Le/D is negligible for Fr0 < 2.3 and Re0 

= 3.5×104, there is a significant increase in Le/D, as Fr0 

rises to 2.6. For Re0 = 105 and 3.5×105, however, there is 

an inflection point at around Fr0 = 2, where Le/D has its 

minimum value, where Le/D decreases for Fr0 < 2 and 

increases with a relatively much steeper slope for Fr0 > 2. 

Thus, it can be concluded that data representing the 

variation of Le/D with Froude number almost collapse 

onto a single curve at high Reynolds numbers (Re0 ≥105).  

 

a. 

 

b. 

Figure 9. Streamwise development of axial velocity profiles in open channel flow in smooth pipe: a) general, and b) detailed 

view 

 

Figure 10. Streamwise variation of the flow depth in open channel flow in smooth pipe 



 

 

The functional form of Le/D in corrugated pipe is similar 

to that of smooth pipe, whereas the inflection point is 

around Fr0 = 1.6 (Fig. 12b). Contrary to the results of the 

present study for smooth and rough channels with 

circular cross-section, numerical studies of Ranga Raju 

et al. [17] and Bonakdari et al. [18] for open channel flow 

in smooth and rough rectangular channels imply no 

Froude number dependence. 

3.2. Effect of the Filling Ratio 

Values of Le/D for pipe inlet filling ratios of h0/D = 0.2, 

0.5 and 0.7 (Fr0 = 0.8 and Re0 = 3.5×104) are plotted in 

Fig. 13a for open channel flow in smooth circular pipe. 

Considering only the data presented herein, it can be 

stated that variation of Le/D with h0/D is a non-linear 

increasing function. As for the corrugated pipe, variation 

of Le/D can be approximated by a linear function with 

positive slope, instead (Fig. 13b). Further numerical 

calculations are needed to investigate the effect of the 

filling ratio for different values of Fr0 and Re0. 

 

 

3.3. Effect of Slope 

A plot of the dimensionless length of the transitory zone 

(Le/D) versus pipe slope (S) can be seen in Fig. 14a for 

slopes of S = 0.002, 0.005, 0.01, 0.02, 0.03 and 0.04 in 

smooth circular pipe. According to the results for smooth 

pipe, the variation of Le/D is not larger than the 

uncertainty level of 5% for 0.01 ≤ S ≤ 0.04 and it can be 

assumed to be constant within this range of slope for Fr0 

= 0.8 and Re0 = 3.5×104.  However, there is a rapid 

change in Le/D for S < 0.01, which can be approximated 

by a linear function with a steep slope. For open channel 

flow in corrugated pipe, Le/D falls rapidly for S < 0.005 

and then approaches asymptotically to a constant value 

(Fig. 14b). Overshoot and undershoot in the curves 

representing the variation of Le/D is evident for smooth 

and corrugated circular pipes, respectively. 

  

Table 4. Variation of the dimensionless transitory length (Le/D) with inlet conditions for open-channel flow in 

circular smooth pipe 

Case D (m) h0/D Fr0 U0 (m/s) S Re0 Le/D 

S1 

0.2 0.5 

0.8 0.693 

0.01 3.5×104 

64 

S2 1.6 1.404 63 

S3 2.3 1.981 63 

S4 2.6 2.282 91 

S5 

0.2 0.5 

0.8 0.693 

0.01 3.5×105 

70 

S6 2.3 2.019 2 

S7 2.6 2.282 87 

S8 0.1 

0.5 0.8 

0.490 

0.01 3.5×104 

62 

S9 0.4 0.981 68 

S10 0.6 1.201 66 

S11 
0.2 

0.2 
0.8 

0.438 
0.01 3.5×104 

59 

S12 0.7 0.841 78 

S13 

0.2 0.5 0.8 0.693 

0.002 

3.5×104 

7 

S14 0.005 29 

S15 0.02 62 

S16 0.04 63 

S17 

0.2 0.5 

0.8 0.693 

0.01 1.0×105 

68 

S18 1.8 1.580 66 

S19 2.0 1.756 51 

S20 2.3 1.981 57 

S21 2.6 2.282 108 

S22 3.0 2.633 134 

 



 

 

    

Table 5. Variation of the dimensionless transitory length (Le/D) with inlet conditions for open-channel flow in circular 

corrugated pipe 

Case D (m) h0/D Fr0 U0 (m/s) S Re0 Le/D 

C1 

0.2 0.5 

0.8 0.693 

0.01 3.5×104 

21 

C2 1.0 0.878 19 

C3 1.6 1.404 4 

C4 2.3 1.981 48 

C5 

0.2 0.5 

0.8 0.693 

0.01 1.0×105 

21 

C6 1.6 1.404 4 

C7 2.3 1.981 43 

C8 3.0 2.971 53 

C9 0.1 

0.5 0.8 

0.490 

0.01 3.5×104 

15 

C10 0.4 0.981 21 

C11 0.6 1.201 22 

C12 

0.2 0.5 0.8 0.693 

0.002 

3.5×104 

54 

C13 0.005 10 

C14 0.02 25 

C15 0.04 24 

 

 

a. 

 

b. 

Figure 11. Variation of Le/D with Reynolds number at three different Froude numbers for open channel flow in a) smooth 

and b) corrugated pipe 



 

 

   

 

a. 

 

b. 

Figure 13. Variation of Le/D with pipe filling ratio (h0/D) at Fr0 = 0.8 and Re0 = 3.5×104, for open channel flow in a) smooth 

and b) corrugated pipe 

 

a. 

 

b. 

Figure 12. Variation of Le/D with Froude number at different Reynolds numbers for open channel flow in a) smooth and b) 

corrugated pipe 



 

 

4. CONCLUSION 

Numerical calculations are conducted to be able to assess 

variation of the length of the transitory zone (Le/D) for 

open channel flow in smooth and corrugated circular 

pipes with parameters such as the Reynolds and Froude 

numbers, filling ratio and pipe slope. Results of the 

present study show that, considering that variation of the 

entry length with Reynolds number is an increasing 

function for turbulent pipe flow; the situation for open 

channel generally seems to be quite the opposite, as the 

transitory length exhibits a tendency to decrease with the 

Reynolds number. Furthermore, it is concluded that Le/D 

dramatically changes with the Froude number, as well as 

with the filling ratio. Significant variation in Le/D is 

observed only for values of channel slope smaller than 

0.001. Aside from the distinct cross-sectional geometry 

of the channel, a significant distinction of the present 

study from the previous studies cited herein is 

specification of the related parameters, such as the 

Reynolds and Froude numbers, at the channel inlet, rather 

than in the uniform flow region. In fact, the numerical 

results presented herein should be regarded just as a 

rough estimation for the length of the transitory zone; 

since both the turbulence model and the grid used, as well 

as the wall functions employed, are not capable of 

capturing the transition of boundary layer from laminar 

to turbulent in the developing flow region. 
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