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ABSTRACT 
Purpose: In this study, efficient solution algorithms are proposed for a problem which simultaneously 
optimizes capacity planning and scheduling decisions in reservation systems. The problem is especially 
important for systems involving appointments/reservations, such as hotel or seat reservations in tourism, 
operation and treatment reservations in healthcare systems, or port logistics operations.  
Methodology: The optimization problem studied involves concurrent decisions of scheduling and dynamic 
capacity determination, with an objective of maximizing the net return gained from the served appointments. 
A randomized constructive heuristic exploiting problem’s structural characteristics is proposed together with 
effective improvement procedures. Extensive computational experimentation is conducted in order to test 
algorithm performance. 
Findings: The developed approach performs excellently in both solution quality and time. With up to 200 
reservations, the heuristic technique outperforms CPLEX in terms of solution time and quality. The 
algorithm's performance remains unchanged as the size of the problem increases.  
Originality: This study presents the first heuristic approach to solving this significant problem. Through 
optimization of resource utilization and scheduling, substantial positive social and economic impact on a 
number of business sectors can be obtained. The efficient problem-solving techniques developed will pave 
the way for future research. 
Keywords: Scheduling with Time Windows, Capacity Planning, Reservation Systems, Optimization. 
JEL Codes: C44, C54, C61. 

Mevsimsel Rezervasyon Sistemlerinde Kaynak Planlama ve Çizelgeleme İçin Etkin 
Çözüm Algoritmaları 
ÖZET 
Amaç: Bu çalışmada, rezervasyon sistemlerinde eş zamanlı kapasite planlama ve çizelgeleme kararlarını 
optimize eden bir problem için etkin çözüm algoritmaları önerilmektedir. Problem özellikle turizmde otel 
veya koltuk rezervasyonları, sağlık sistemlerinde operasyon ve tedavi rezervasyonları ya da liman lojistik 
operasyonları gibi randevu/rezervasyon ile çalışan sistemler için önemlidir. 
Yöntem: İncelenen optimizasyon problemi, işleme alınan rezervasyonlara ait net getirinin maksimize 
edilmesi amacıyla, çizelgeleme ve dinamik kapasite belirleme kararlarının eş zamanlı olarak verilmesini 
içermektedir. Problemin yapısal özelliklerini kullanan rastgele bir inşa edici sezgisel yöntem ile etkili 
iyileştirme algoritmaları önerilmiştir. Algoritma performansını test etmek amacıyla kapsamlı hesaplamalı 
deneyler gerçekleştirilmiştir. 
Bulgular: Geliştirilen yaklaşım hem çözüm kalitesi hem de zaman açısından mükemmel performans 
göstermektedir. Sezgisel yöntem 200 rezervasyona kadar CPLEX'e göre çözüm süresi ve kalitesi açısından 
üstündür. Algoritmanın performansı, problemin büyüklüğü ile değişmemektedir.  
Özgünlük: Bu çalışma, bu önemli problem için sezgisel çözümler öneren ilk çalışmadır. Kaynak kullanımı 
ve çizelgelemenin optimizasyonu yoluyla birçok sektörde önemli sosyal ve ekonomik katkılar elde edilebilir. 
Geliştirilen hızlı ve etkili problem çözme teknikleri ileri araştırmaların önünü açacaktır. 
Anahtar Kelimeler: Zaman Pencereli Çizelgeleme, Kapasite Planlama, Rezervasyon Sistemleri, 
Optimizasyon. 
JEL Kodları: C44, C54, C61. 
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1. INTRODUCTION  
Scheduling optimization problems, which lie in the field of management science, include several 
characteristics of tasks to be processed (priority relationships, setup times etc.), and features of resources 
to be used for processing these tasks (identical or different resources), in addition to a variety of objective 
functions (minimizing resources’ remaining idle times, minimizing waiting times of tasks, maximizing total 
return etc.). Because of its wide range of applications and practical significance, this area of optimization 
has received extensive research. In conventional scheduling, the decision maker is free to choose the start 
times of tasks; however, in interval scheduling (IS), these start times are set as parameters. Reservation 
systems are used to manage and allocate limited resources by handling and processing booking requests. 
These systems are employed in various sectors, including airline ticketing and gate assignment, healthcare 
systems, classroom scheduling, port operations, and hotel accommodations. Such systems require 
periodic/seasonal reservations. Hence, the IS problem has significant practical applications in these fields, 
as well as manufacturing operations such as maintenance and shift scheduling. 

In this study, an optimization problem for simultaneously optimizing capacity determination and reservation 
scheduling decisions is considered. The problem is critical and necessary for optimizing the use of 
resources in order to deliver efficient services to a larger customer base. The problem is applicable to all 
reservation systems aiming to maximize the net "return" obtained from reservations handled. The concept 
of "return" can be defined as a material "operating profit" for some systems, whereas it can represent a 
physical "benefit", "weight" or "priority" for others. Defining the problem in such a flexible manner allows the 
decision makers to be able to adapt the problem for different contexts. The problem was introduced to the 
literature under the name of Combined Reservation Scheduling (CRS) problem by Eliiyi (2021). An integer 
programming model was developed for the optimal solution of the problem. The model was implemented 
in IBM ILOG CPLEX environment, and its computational performance was assessed under different 
scenarios through extensive numerical experiments. The results of the experiments were analyzed and the 
managerial implications were discussed in depth. The complex nature of the and the NP-Hardness of the 
problem were proven theoretically. It was not possible to solve the problem optimally as problem size 
increased, and the need for effective and efficient heuristic solutions for large problem instances were 
stated. 

In this respect, this study is unique and practically significant, as it is the first in literature to tackle efficient 
solutions for this practically important problem. We propose fast, high-quality and easy-to-implement 
solutions in a problem environment where appointment requests and cancellations can occur. In such a 
dynamic environment, repetitive quick and effective solutions are mandatory. Therefore, fast and high-
quality solutions will benefit the decision makers from a practical point of view. We develop heuristic solution 
approaches with inherent characteristics specific to the nature of the problem, which can produce effective 
solutions quickly. The effectiveness and efficiency of the developed algorithms are measured through 
extensive numerical experiments. For assessing the performance of the developed algorithms, the obtained 
solutions are compared with the existing optimal solutions in literature, whereas lower and upper bounds 
are proposed and used for measurement purposes for larger instances of the problem. 

The remainder of this paper is structured as follows: Section 2 provides a comprehensive review of existing 
research on scheduling with time windows. In Section 3, we introduce our proposed solution approach, 
including three improvement algorithms. Section 4 presents a detailed analysis of the computational 
experiments conducted to assess algorithm performance. Finally, Section 5 offers concluding remarks and 
outlines potential opportunities for future research. 

2. LITERATURE REVIEW 
The IS problem entails two key decisions: Determining whether to accept or reject an incoming request or 
task/job/reservation, and if accepted, assigning the most suitable resource or machine to process the task. 
A typical IS setting includes n tasks that are available to be processed on m parallel resources, where the 
time window of task j is specified by a ready time (rj) and a deadline (dj). Tactical and operational IS 
problems differ in their objectives and scope. Tactical IS problems associate a fixed cost (ck) with each 
resource k, and  focus on minimizing total costs or resource utilization while processing all tasks. 
Conversely, operational IS problems operate within a fixed resource constraint, aiming to maximize the 
total value or quantity of processed jobs. In operational IS, each job (j) is assigned a weight (wj) representing 
its priority or value (e.g. profit). The number of resources m is a predetermined parameter in operational IS, 
while it serves as an upper limit in the tactical problem. 

When a job's processing time equals its deadline minus its ready time (pj = dj - rj for every j), resulting in no 
flexibility in scheduling, the problem is classified as a Fixed Job Scheduling (FJS) problem. In this study, 
we focus on scheduling n non-preemptive jobs, each with a given processing time (pj) and an interval for 
the start time as [rj, bj], where bj ≥ rj for every j. The problem involves time windows that are larger than the 
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processing times, i.e., each reservation request entering the system at its rj should start its processing latest 
on its standby limit bj, otherwise it will be wasted in terms of return. This variant called as Variable Job 
Scheduling (VJS), also known as parallel machine scheduling with time windows (Gabrel, 1995), is a 
generalization of Fixed Job Scheduling (FJS). The start and end of the reservation, the standby limit, and 
the anticipated profit are all immediately established and specified upon receipt of a request. A request may 
be considered a fresh one if it is canceled or modified before to processing. Therefore, the problem's 
parameters can be treated as deterministic and updated as needed. The goal of a Tactical VJS (TVJS) 
problem is to minimize the total cost of resources required to process all jobs. On the other hand, an 
Operational VJS (OVJS) problem aims to maximize the total weight of a job subset that can be processed 
using a fixed number of machines. 

Numerous studies have noted the wide range of applications for IS in manufacturing and service operations. 
Kolen and Kroon (1992) used tactical and operational FJS to study applications related to allocating aircraft 
to gates and capacity planning for maintenance staff. Wolfe and Sorensen (2000) examined the scheduling 
of satellites using operational FJS, whereas Fischetti et al. (1987, 1989, 1992) studied bus driver scheduling 
as an application of the tactical FJS. Additional application areas mentioned are printed circuit board 
production (Spieksma, 1999), data transmission (Faigle et al., 1999), and class scheduling (Kolen and 
Kroon, 1991). Some variations include limitations on eligibility (Eliiyi and Azizoglu, 2009), availability (Kolen 
and Kroon, 1993), machine running time restrictions (Fischetti et al., 1992; Eliiyi and Azizoglu, 2011), or 
differing machine speeds (Azizoglu and Bekki, 2008). In addition to theory and complexity results, reviews 
of possible applications of FJS were given by Kovalyov et al. (2007) and Kolen et al. (2007). 

Although IS problems have been widely acknowledged as FJS in the literature, VJS has not received the 
attention it deserves, with just a small number of academics concentrating on it following the landmark 
study by Gertsbakh and Stern (1978). Using identical machines, these authors stated the fundamental 
TVJS problem and gave an approximate solution. In the context of data transmission for low-orbit satellites, 
Gabrel (1995) employed the operational FJS model and claimed that the suggested model and algorithms 
can be modified to address OVJS. The operational FJS problem with identical weights and eligibility 
limitations was handled. The problem's lower and upper bounds are established, and the computational 
results were shown. 

There is not much research on OVJS in the literature. A greedy randomized adaptive search strategy 
(GRASP) and a heuristic based on dynamic programming were presented by Rojanasoonthon et al. (2003) 
and Rojanasoonthon and Bard (2005). Bard and Rojanasoonthon (2006) created a branch and price 
algorithm for a similar problem. The computational results showed that the suggested method could solve 
fairly big instances to optimality. Garcia and Lozano (2005) investigated the two-stage OVJS problem in 
the context of manufacturing ready-mix concrete. Each task had an ideal start time, and the goal was to 
maximize the total weight of the processed jobs while minimizing the overall weighted deviation from ideal 
start times. To solve the problem, they suggested using the tabu search heuristic, and the outcomes 
showed good performance in terms of both time and solution quality. 

Eliiyi et al. (2009) addressed berth allocation in a container port by using a nested eligibility structure to 
solve the OVJS problem. Two resource types corresponded to small and large berths for allocating vessels, 
and two job classes represented two different vessel sizes. The authors developed an integer programming 
model and showed that the problem is NP-hard. To produce near-optimal solutions, a construction heuristic 
based on constraint graphs was developed. The solutions were boosted using improvement algorithms 
including the genetic algorithm. They showed that the problem-specific improvement heuristic outperformed 
the genetic algorithm. 

An alternative methodology involves handling each reservation request independently and in real-time. This 
dynamic approach captures snapshots of the reservation system's current state for each incoming request, 
allowing for immediate decision-making. The approach is commonly suggested in the literature for 
managing fluctuating demand and reservations, particularly in the context of communications networks, 
where changes happen often and planning horizons are generally shorter (Barshan et al., 2016; Steiger et 
al., 2004). Unlike adversarial online interval scheduling, which makes no assumptions about task 
parameters, stochastic variations of this problem assume that task parameters follow a specific distribution 
(Yu and Jacobson, 2020). 

The most crucial element in calculating potential profit in a reservation system is the number of resources 
as it establishes the array of requests that can be served. A reservation system's capacity needs to be 
carefully considered in this regard. While prior research has employed TVJS for capacity planning, the 
tactical problem ignores potential cancellations or new requests during the planning period and 
necessitates a long-term projection of reservations, which may not be accessible. Additionally, capacity 
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modification requirements are disregarded by TVJS, which is a serious problem for systems exhibiting 
seasonal demand as in hotel and vehicle rental reservations (Eliiyi, 2021). 

The problem considered in this study offers versatility in capacity planning. It can determine optimal 
capacity expansion for existing systems or establish initial capacity and scheduling for new ones. By 
addressing the number and assignment of additional resources, it also allows to manage seasonal demand 
fluctuations. This approach can be applied dynamically across various timeframes, from seasons to days 
or even hours, assuming reservations within a specific period remain fixed. 

3. SOLUTION ALGORITHMS FOR THE CRS PROBLEM 
To ensure clarity and completeness, the mathematical model proposed by Eliiyi (2021) is presented before 
detailing the newly developed construction and improvement algorithms for the CRS problem. 

3.1. The CRS Model 
The problem defined by Eliiyi (2021) includes 𝑛𝑛 reservations/tasks to be served on at most 𝑚𝑚 available 
resources. Each resource incurs a fixed usage cost 𝑐𝑐𝑘𝑘, while each incoming reservation has a specified 
ready time (arrival time) 𝑟𝑟𝑗𝑗 and a standby limit 𝑏𝑏𝑗𝑗�> 𝑟𝑟𝑗𝑗�, representing the maximum allowable waiting period 
before the reservation is considered lost. The fixed usage cost of each resource could be considered as 
the total cost or rental fee for the whole planning period, which is to be paid in full regardless of the duration 
of usage. The standby limit enables customers to set a flexible window of days for their booking in [𝑟𝑟𝑗𝑗, 𝑏𝑏𝑗𝑗). 

The service time (reservation duration) and the return are denoted in the model by 𝑝𝑝𝑗𝑗 and 𝑤𝑤𝑗𝑗, respectively. 
These problem parameters are nonnegative integers and deterministic. If a reservation request is cancelled 
or changed before it is processed, it is considered a new one, and the parameters are updated as 
necessary. The planning horizon is divided into 𝑇𝑇 time intervals of equal length to facilitate mathematical 
modeling; namely {𝑡𝑡1, … , 𝑡𝑡𝑇𝑇}. 𝑃𝑃𝑎𝑎 is the set of tasks ready to be processed in time interval [𝑡𝑡𝑎𝑎, 𝑡𝑡𝑎𝑎+1), where 
𝑎𝑎 = 1, … ,𝑇𝑇 − 1 (𝑃𝑃𝑎𝑎 = �𝑗𝑗|𝑟𝑟𝑗𝑗 ≤ 𝑡𝑡𝑎𝑎, 𝑏𝑏𝑗𝑗 + 𝑝𝑝𝑗𝑗 − 1 ≥ 𝑡𝑡𝑎𝑎�).  

Set 𝑆𝑆𝑗𝑗 is defined as the set of intervals of task 𝑗𝑗 (𝑆𝑆𝑗𝑗 = �𝑟𝑟𝑗𝑗 , … , 𝑏𝑏𝑗𝑗 + 𝑝𝑝𝑗𝑗 − 1�).  

The decision variables are: 

𝑥𝑥𝑗𝑗𝑘𝑘𝑎𝑎: �1, if task 𝑗𝑗 is served on resource 𝑘𝑘 in time interval 𝑎𝑎
0, otherwise  

𝑦𝑦𝑗𝑗𝑘𝑘: �1, if task 𝑗𝑗 is served on resource 𝑘𝑘
0, otherwise  

𝑧𝑧𝑘𝑘: �1, if resource 𝑘𝑘 is used
0, otherwise  

As defined by Eliiyi (2021), decision variable 𝑥𝑥𝑗𝑗𝑘𝑘𝑎𝑎 equals 1 if task j is served by resource k during time 
interval [𝑡𝑡𝑎𝑎, 𝑡𝑡𝑎𝑎+1). This definition allows for a task to be served by multiple resources across different time 
intervals. To prevent preemption, the second decision variable, 𝑦𝑦𝑗𝑗𝑘𝑘, is introduced. This variable equals 1 if 
all intervals of task j are served by resource k. The third decision variable, 𝑧𝑧𝑘𝑘, is used to calculate resource 
fixed costs. If a resource is utilized for any task, its corresponding variable becomes 1, activating its fixed 
cost in the objective function. 

The CRS model determines the number and cost of resources will be used in total, in addition to the subset 
of served reservation requests: 

CRS: 

Maximize∑ ∑ 𝑤𝑤𝑗𝑗𝑦𝑦𝑗𝑗𝑘𝑘𝑚𝑚
𝑘𝑘=1

𝑛𝑛
𝑗𝑗=1 − ∑ 𝑐𝑐𝑘𝑘𝑧𝑧𝑘𝑘𝑚𝑚

𝑘𝑘=1                        (1) 

s.t. 

∑ 𝑥𝑥𝑗𝑗𝑘𝑘𝑎𝑎𝑎𝑎∈𝑆𝑆𝑗𝑗 = 𝑝𝑝𝑗𝑗𝑦𝑦𝑗𝑗𝑘𝑘,      𝑗𝑗 = 1, … ,𝑛𝑛;𝑘𝑘 = 1, … ,𝑚𝑚                 (2) 

∑ 𝑦𝑦𝑗𝑗𝑘𝑘 ≤ 1𝑚𝑚
𝑘𝑘=1 ,       𝑗𝑗 = 1, … ,𝑛𝑛                   (3) 

∑ 𝑥𝑥𝑗𝑗𝑘𝑘𝑎𝑎𝑗𝑗∈𝑃𝑃𝑎𝑎 ≤ 1,       𝑎𝑎 = 1, … ,𝑇𝑇 − 1;  𝑘𝑘 = 1, … ,𝑚𝑚       (4) 

𝑝𝑝𝑗𝑗𝑥𝑥𝑗𝑗𝑘𝑘𝑎𝑎 − 𝑝𝑝𝑗𝑗𝑥𝑥𝑗𝑗,𝑘𝑘,𝑎𝑎+1 + ∑ 𝑥𝑥𝑗𝑗𝑘𝑘𝑗𝑗 ≤ 𝑝𝑝𝑗𝑗
𝑏𝑏𝑗𝑗+𝑝𝑝𝑗𝑗−1
𝑗𝑗=𝑎𝑎+2 ,   𝑗𝑗 = 1, … ,𝑛𝑛;𝑘𝑘 = 1, … ,𝑚𝑚; 𝑎𝑎 ∈ 𝑆𝑆𝑗𝑗               (5) 

𝑦𝑦𝑗𝑗𝑘𝑘 ≤ 𝑧𝑧𝑘𝑘 ,        𝑗𝑗 = 1, … ,𝑛𝑛;𝑘𝑘 = 1, … ,𝑚𝑚                 (6) 

𝑥𝑥𝑗𝑗𝑘𝑘𝑎𝑎 ,𝑦𝑦𝑗𝑗𝑘𝑘 , 𝑧𝑧𝑘𝑘 ∈ {0,1},      𝑗𝑗 = 1, … ,𝑛𝑛;𝑎𝑎 = 1, … ,𝑇𝑇 − 1; 𝑘𝑘 = 1, … ,𝑚𝑚          (7) 
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The objective function in Equation 1 maximizes the net total return from the served reservations. The 
constraints in Equation 2 and Equation 3 together force all intervals of a task to be assigned to a single 
resource, while the constraints in Equation 4 dictates each resource to process at most one task in an 
interval. If a reservation is served, each time interval of it should be served in order by the same resource, 
as ensured by constraint set Equation 5. Constraint set in Equation 6 binds the two decision variables in 
the model whereas constraints in Equation 7 defines the sign constraints. 

Eliiyi (2021) also proposed an upper bound on the number of resources as 𝑚𝑚 = Max𝑎𝑎{|𝑃𝑃𝑎𝑎|}, and proved 
that the problem is NP-hard. Through computational experimentation, the author concluded that the 
assumption of deterministic parameters provides tractability and ease-of-use. However, repetitive solutions 
of the problem, which are necessary in a dynamic environment including cancellations and changes, call 
for fast and high-quality heuristics. 

3.2. A Randomized Heuristic for the CRS Problem 
Eliiyi et al. (2009) have shown that a problem-specific heuristic designed for the OVJS problem with general 
weights generates better solutions in less CPU times than a genetic algorithm. Although their study is on 
the operational variant of VJS, our heuristic approach for the combined problem uses similar ideas for 
generating near-optimal solutions at its inner loop, as will be explained shortly. First, we provide some 
definitions that are employed in our heuristic algorithm.  

Let sj (rj ≤ sj ≤ bj, ∀j) denote the realized start time at which reservation j is processed, if it is processed at 
all. We define the concepts of overlap and overlap amount via the following definitions. 

Definition 1: Two reservations i and j such that si ≤ sj overlap in time if si = sj or si < sj < si+pi. In this case, 
reservations i and j are defined as overlapping reservations. 

Definition 2: The overlap amount(i,j) between two overlapping reservations i and j such that si ≤ sj is 
computed as in Equation 8.  

 

𝑜𝑜𝑜𝑜𝑜𝑜𝑟𝑟𝑜𝑜𝑎𝑎𝑝𝑝 𝑎𝑎𝑚𝑚𝑜𝑜𝑎𝑎𝑛𝑛𝑡𝑡(𝑖𝑖, 𝑗𝑗)  = �
𝑠𝑠𝑖𝑖 + 𝑝𝑝𝑖𝑖 − 𝑠𝑠𝑗𝑗 , if 𝑠𝑠𝑖𝑖 + 𝑝𝑝𝑖𝑖 ≤ 𝑠𝑠𝑗𝑗 + 𝑝𝑝𝑗𝑗

𝑝𝑝𝑗𝑗, otherwise           (8)

        
. 

The solution procedure proposed below has a nested structure, which will be explained in detail. The outer 
(main) loop is used for trying out different capacity levels for determining a near-optimal capacity: 

The CRS Algorithm: 

(S0) Z0 = 0. The resources are sorted in ascending order of their fixed costs, i.e. c1 ≤ c2 ≤  ... ≤ cm. 

(S1) For all possible capacity levels (k = 1,..., m): 

 Run AlgorithmCRS(k) for capacity level k. Let the resulting objective function value be Zk.  

 If Zk < Zk-1 then go to (S2),  

 Else, proceed with the next capacity level.   

(S2) Output Zk-1 as the best solution obtained. 

This primary algorithm progressively introduces resources into the solution, starting with those having the 
lowest fixed costs. The main loop (S1) repeatedly calls AlgorithmCRS(k), which constitutes the inner loop, 
to solve the CRS problem with n jobs and k machines. The algorithm terminates adding resources (at a 
capacity level of k-1) when introducing a new one results in a decreased net marginal return (Zk < Zk-1). To 
ensure capacity expansion even at the breakeven point (Zk = Zk-1), the stopping condition explicitly excludes 
equality. In other words, among the solutions having the same objective function, the algorithm favors 
solutions having a higher capacity and processing a larger number of incoming reservation requests. This 
characteristic of the algorithm allows for serving more reservations, which is in line with practice and 
expedites customer satisfaction. 

Next, we describe AlgorithmCRS(k). This inner loop involves randomized decisions for the start times and 
the assignment of the reservations to the resources. 

AlgorithmCRS(k): 

(S0) Zk = 0, i = 0.  

(S1)  i ← i+1.  
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 For each reservation j (j = 1,..., n): 

Compute overlap index(j) as follows: 

1. Assume all n reservations start processing at their ready times (si = ri, i = 1,..., n). Compute 
overlap amount(i,j) between reservation j and every other reservation i under this assumption. Let 
𝑜𝑜1𝑗𝑗 = ∑ 𝑜𝑜𝑜𝑜𝑜𝑜𝑟𝑟𝑜𝑜𝑎𝑎𝑝𝑝 𝑎𝑎𝑚𝑚𝑜𝑜𝑎𝑎𝑛𝑛𝑡𝑡(𝑖𝑖, 𝑗𝑗)𝑖𝑖 .     

2. Assume all n reservations start processing at their standby limits (si = bi, i = 1,..., n). Compute 
overlap amount(i,j) between reservation j and every other reservation i under this assumption. Let 
𝑜𝑜2𝑗𝑗 = ∑ 𝑜𝑜𝑜𝑜𝑜𝑜𝑟𝑟𝑜𝑜𝑎𝑎𝑝𝑝 𝑎𝑎𝑚𝑚𝑜𝑜𝑎𝑎𝑛𝑛𝑡𝑡(𝑖𝑖, 𝑗𝑗)𝑖𝑖 . 

3. Generate a random start time si (such that ri ≤ si ≤ bi) for each reservation i, i = 1,..., n. 
Compute overlap amount(i,j) between reservation j and every other reservation i under this 
assumption. Let 𝑜𝑜3𝑗𝑗 = ∑ 𝑜𝑜𝑜𝑜𝑜𝑜𝑟𝑟𝑜𝑜𝑎𝑎𝑝𝑝 𝑎𝑎𝑚𝑚𝑜𝑜𝑎𝑎𝑛𝑛𝑡𝑡(𝑖𝑖, 𝑗𝑗)𝑖𝑖 . 

4. overlap index(j) = (𝑜𝑜1𝑗𝑗 + 𝑜𝑜2𝑗𝑗 + 𝑜𝑜3𝑗𝑗) 𝑤𝑤𝑗𝑗⁄ . 

 Re-index the reservations in ascending order of their overlap index values.  

 For each reservation (with new index) j (j = 1,..., n) do: 

Chose one of the below methods randomly to assign reservation j to the next resource (among k 
resources). Continue until all reservations are assigned or no resources are available:  

1. Search forward between [rj , bj] to assign the reservation at the earliest available time.  

2. Search backward between [rj , bj] to assign the reservation at the latest available time. 

3. Search forward between [t , bj] to assign the reservation at the earliest available time, where 
t is a random number between [rj , bj].  

4. Search backward between [rj , t] to assign the reservation at the latest available time, where 
t is a random number between [rj , bj]. 

(S2) Compute the objective function of the solution at iteration i as zi.  

(S3) Sequentially execute Improvement1, Improvement2 and Improvement3 to the solution in this order. 
Update zi and the assignments as necessary. 

(S4) If zi > Zk, then set Zk = zi. Store the corresponding solution as the best solution. 

(S5) If i ≤ NumIter, go to (S1). Else, output Zk as the best solution. 

In (S1) of AlgorithmCRS(k), three different representative sets of reservation start times are generated to 
compute possible overlap amounts. The overlap index of a reservation is then computed as sum of the 
overlap amounts from these scenarios divided by the original return of the reservation. A low overlap index 
corresponds to a low average overlap amount, a high return, or both. Hence, by assigning the reservations 
to the resources in nondecreasing order of their overlap indices, the algorithm favors low-overlap and/or 
high-return reservations for processing, which is in line with the objective function of the CRS problem.  

To introduce randomness, the algorithm selects an assignment method for each reservation randomly and 
determines the reservation's start time based on this choice. The process is repeated multiple times, and 
the best solution found across these iterations is retained. The value of the iteration limit NumIter is 
determined via preliminary experimentation.  

In (S3) of each iteration, AlgorithmCRS(k) calls three basic improvement algorithms in a sequential manner 
to further enhance the quality of the produced solution. These algorithms are described below. The first 
one involves an insertion mechanism that tries to assign an unscheduled reservation to one of the used 
resources without disturbing its current schedule.  

Improvement1 (Insert): 

(S0) zimp1 = zi, A: set of assigned reservations, B: set of unassigned reservations.  

 Index the reservation in set B in descending order of their wj values.  

(S1) For each reservation j in set 𝐵𝐵 (𝑗𝑗 =  1, . . . , |𝐵𝐵|) do: 

 For each resource l in use, do: 

  Check if reservation j can be inserted into the schedule on resource l without changing the 
scheduled times of any existing reservations.  
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  If yes, assign reservation j to resource l, remove j from B and add it to A. Set zimp1 = zimp1 + wj.       

(S2) Output zimp1 and the corresponding schedule as the improved solution. 

Following the completion of insertion-based improvements by Improvement1, the algorithm below attempts 
to optimize the schedule by swapping reservations between different resources. The swap is executed only 
if it allows for the scheduling of a previously unallocated reservation, leading to an overall improvement in 
the objective function value. 

Improvement2 (Swap&Insert): 

(S0) zimp2 = zimp1, Ak: set of assigned reservations on resource k, B: set of unassigned reservations.  

 Index the reservations in set B in descending order of their wj values.  

(S1) For each pair of resources in use (l and p) do: 

 For each reservation j in set Al and each reservation i in set Ap do: 

Check if it is possible to move reservation j to resource p and reservation i to resource l, without 
changing the  remaining schedule (assigned reservations and start times) on either of the 
resources. If yes, make the swap. 

 For each reservation s in set B (s = 1,...,|B|) do: 

Check if reservation s can be inserted into the schedule on resource l or resource p without 
changing the scheduled time of any assigned reservations on the resource.  

If yes, assign reservation s to resource l or resource p, remove s from B and add it to Al or Ap, 
accordingly. Set zimp2 = zimp2 + ws. 

If no reservation in set B could be inserted into the schedule, reverse the swap and continue. 

(S2) Output zimp2 and the corresponding schedule as the improved solution. 

The algorithm prioritizes swap and insert operations based on the decreasing order of reservation weights 
(wj) within set B. This approach helps to maximize the potential improvement from each swap. It continues 
until there are no possible moves. The execution of Improvement2 is illustrated in Figure 1, which shows 
four reservations assigned on two resources on the timeline where each row represents a resource. 
Currently, reservation 5 with r5 = 2, b5 = 5 and p5 = 8 cannot be processed on either of the two resources, 
since it either overlaps with reservation 2 or reservation 3 on the first resource, and reservation 1 on the 
second resource. While Improvement2 tries to swap reservations between the resources, reservation 1 and 
reservation 3 can be swapped without disturbing current schedules. The insertion of reservation 5 to the 
second resource is then possible, as shown in Figure1(b). The objective function is thereby increased by 
w5. 

 

 
   (a) Before Improvement2    (b) After Improvement2 

Figure 1. Execution mechanism of Improvement2. 

Once all possible swap&insert combinations are explored by Improvement2, the last improvement algorithm 
tries to insert an unscheduled reservation to a used resource as in Improvement1. But unlike 
Improvement1, the following algorithm shifts the scheduled reservations on the resource forward and 
backward temporally in search of an available time gap for a feasible insertion.  

Improvement3 (Shift&Insert): 

(S0) zimp3 = zimp2, A: set of assigned reservations, B: set of unassigned reservations.  

 Index the reservations in set B in descending order of their wj values.  

(S1) For each reservation s in set B (s = 1,...,|B|) do:  

  For each resource l in use do: 
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Consider interval [rs, rs+ps] on resource l. Let left_j be the first reservation on resource l that starts 
within this interval. Let right_j be the first reservation on resource l that starts after left_j. 

Shift left_j and all reservations before it backward in time as much as possible without causing 
any  overlap. Similarly, shift right_j and all reservations after it forward in time as much as possible 
without causing any overlap.   

Check if reservation s can be inserted into the schedule on resource l between left_j and right_j  
without causing any overlap. If yes, reservation job s to resource l, remove s from B and add it to 
A. Set zimp3 = zimp3 + ws. 

(S3) Output zimp3 and the corresponding schedule as the improved solution. 

The algorithm iteratively performs shift and insert operations on reservations in set B, prioritized by their 
descending weight values (wj). This process continues until no feasible insertions can be made, indicating 
a local optimum. Our algorithm is different than the Shift & Insert algorithm described in Eliiyi et al. (2009) 
in the following manner. In their approach, each resource is considered separately, and for each pair (left_j 
and right_j in our notation), a gap between them is tried to be created by moving left_j and all before that 
exactly to their ready times while moving right_j and all after that exactly to their standby limits. No time 
intervals in-between the ready times and the standby limits are investigated for possible shifts, and their 
algorithm does not perform a shift even if only one task could not be moved to its ready time or standby 
limit. Improvement3 has a superior search procedure that checks for all possible shift combinations 
(including all possible time intervals for each reservation) by considering each unscheduled reservation 
separately.  

The execution of Improvement3 is illustrated through Figure 2. Consider resource 1 in Figure 2(a), 
processing reservation 2 and 4. Assume that reservation 2 has r1 = 2 and reservation 4 has b4 = 15. 
Reservation 5, having parameters r5 = 7, b5 = 10 and p5 = 6, is currently out of schedule as it overlaps with 
reservation 3 on resource 2, and reservation 2 or reservation 4 on resource 1. While trying to insert 
reservation 5 into the schedule of resource 1, Improvement3 shifts reservation 2 (left_j) two units backward, 
and reservation 4 (right_j) two units forward in time. These shifts create an opportunity to insert reservation 
5 at time 9, as illustrated in Figure 2(b), improving the objective function value by w5. 

 

 
   (a) Before Improvement3    (b) After Improvement3 

Figure 2. Execution mechanism of Improvement3. 

The solution approach described in this section is explained under the assumption that all resources are 
eligible to process all incoming reservation requests, i.e. there is no eligibility constraint in the problem and 
wjk = wj, ∀k. However, the adaptation to the problem with eligibility constraints is rather straightforward. 
Namely, only the eligible resources should be considered when making the assignment of an incoming 
reservation or the swaps between any two reservations. In other words, resource should be replaced by 
eligible resource wherever necessary in the proposed algorithms.  

The CRS problem can be framed as a multi-objective optimization problem, balancing return maximization 
and cost minimization. Interestingly, AlgorithmCRS generates a set of Pareto-optimal solutions across 
different capacity levels as a byproduct, offering valuable insights into the trade-offs between these 
competing objectives. The algorithm can be easily modified to store and output optimal solutions for every 
capacity level without increasing computational complexity. This enhancement transforms the algorithm 
into a tool for solving the associated multi-objective optimization problem. 

4. COMPUTATIONAL EXPERIMENTATION 
A computational experiment was conducted to assess the performance of the developed algorithms. The 
algorithms were implemented using C# and C++ on MS Visual Studio 2008 and executed on a Core 2 Duo 
2.8 GHz PC with 4 GB of memory. The experimental setting is identical to that of Eliiyi’s (2021) to allow 
direct comparison with optimal solutions. Therefore, the reader is referred to that study for details of the 
experiment design, in which 10 test problems were generated for the CRS problem with n = 20, 50, 100, 
200 reservations and 36 combinations of parameters, corresponding to 1440 instances. We include all 
these instances in our study as well as additional 360 new test instances for very large problems with n = 
500. Hence, a total of 1800 problem instances are used for performance evaluation purposes. 
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As stated by Eliiyi (2021), a majority of problem instances with n = 50 or more tasks/reservations could not 
be solved optimally by the commercial solver within the allotted 1200-second time limit, which is a clear 
display for the difficulty of the problem. Only the best feasible solutions were reported for these instances. 
In this section, we discuss the performance of CRS Algorithm as compared to IBM ILOG CPLEX 12.8 
solutions. Our algorithm is executed for 100 iterations for all instances, and a 1200-second time limit is 
imposed for CPLEX solutions, as in Eliiyi (2021). For instances where an optimal solution could not be 
determined within the time limit, the algorithm's solution is compared to the best feasible solution found by 
CPLEX. Tables 1 through 3 present the result of the experimental runs at three different resource cost 
levels for n = 20, 50, 100, and 200. 

The column Avg. UB gives the upper bound on the number of available resources as Max𝑎𝑎{|𝑃𝑃𝑎𝑎|}
 
for each 

problem instance (Eliiyi, 2021). The results are averaged over 10 problem instances. The other columns 
compare the average number of the used resources, average percentage of resource utilizations, average 
percentage of the processed reservations (over all incoming), average percentage of the processed return 
(over all incoming), the solution times of the CRS Algorithm and CPLEX, and the percent gaps between 
the CPLEX solutions and the lower bound solutions obtained by the algorithm. The last column, CPLEX 
ZERO lists the number of instances (out of 10) for which a feasible solution could not be obtained by CPLEX 
within the time limit. As no feasible solution could be obtained for any problem instance with n = 500 by 
CPLEX, the solutions could not be compared, therefore not reported. 

The average number of used resources over 10 problem instances is given in Avg. # used column. For 
example, in Table 1, for n = 100, b-r = 1, w = 1 and p = 1, while all requests could be processed with 12 
resources, the CRS Algorithm obtained solutions with an average of 4 machines while CPLEX used 1 
machines on the average. The Avg. % util. (resource load / planning horizon length) illustrates the 
percentage of resource usage during the planning horizon [0, 200]. For the same example, our algorithm 
generated solutions with an average resource utilization of 68% for the 4 resources used, whereas CPLEX 
solutions used only 28% of the 1 resource used. Note that CPLEX could not attain optimality for this set of 
instances within the time limit. The next two columns list the average percentage of processed reservations 
(% processed reservations) calculated by �∑ 𝑥𝑥𝑗𝑗𝑘𝑘𝑛𝑛

𝑗𝑗=1 �/𝑛𝑛 for the algorithm, and the average percentage of 
processed return (% processed return) computed as �∑ 𝑤𝑤𝑗𝑗𝑥𝑥𝑗𝑗𝑘𝑘𝑛𝑛

𝑗𝑗=1 �/�∑ 𝑤𝑤𝑗𝑗𝑛𝑛
𝑗𝑗=1 � for CPLEX. The percentage of 

processed reservations can be used to assess the solution's effectiveness in capturing potential gains. For 
instance, the solution by the CRS Algorithm that processes 86% of reservations generates 85% of the total 
potential return for the above example, whereas both ratios are 16% for CPLEX. In scenarios where the 
return of each reservation varies, the percentage of processed return could exceed the percentage of 
processed reservations. 

The tables reveal that while several problem instances with n = 50 or more reservations could not be solved 
to optimality by CPLEX within the allotted time limit, the CRS Algorithm produces very fast solutions; the 
longest solution time being around 1 minute. The percent gap (% Diff) between CPLEX and the lower bound 
obtained by the algorithm, calculated as 100 ∗ (𝑍𝑍𝐶𝐶𝑃𝑃𝐶𝐶𝐶𝐶𝐶𝐶 − 𝑍𝑍𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝑖𝑖𝑗𝑗ℎ𝑚𝑚𝐶𝐶𝑚𝑚𝑆𝑆)/𝑍𝑍𝐶𝐶𝑃𝑃𝐶𝐶𝐶𝐶𝐶𝐶, came out to be negative for 
many instances. This result indicates that the algorithm obtained better solutions than CPLEX in much 
shorter times. The gap is not computed for instances where CPLEX could not find a feasible solution, as 
indicated in the last column (CPLEX ZERO). CPLEX could not obtain any feasible solution for 910 of the 
1800 instances within the time limit. The algorithm's efficiency is influenced by several factors. High 
resource costs generally lead to faster computation times as fewer reservations are processed. Conversely, 
longer standby durations, increased processing times, and a larger number of reservations tend to extend 
solution times. While the number of reservations directly impacts performance, changes in reservation 
returns appear to have minimal effect. 

For n = 20, CPLEX found the optimal solutions for all instances. The average CPU time over Tables 1, 2 
and 3 is approximately 1 minute. Our algorithm obtained instant solutions for these instances, while the 
average % Diff is around 2.7% for uniformly distributed resource costs, 1.8% for low resource costs and 
3.0% for resource costs. The algorithm found optimal solutions in 274 out of 360 instances for n = 20. For 
larger ones, it obtained much better solutions than CPLEX. As an example, examine in Table 1 the row for 
n = 100, b-r = 2, w = 1 and p = 2, and note that the % Diff value is 51100.0. The CPLEX ZERO indicates 
that no feasible solutions could be obtained for 9 of the 10 instances of this setting. For the remaining one 
instance, CPLEX obtained an objective function value of 1, while the algorithm found 511, and hence the 
corresponding % Diff value. On average, the algorithm provides solutions with higher reservation 
processing, return processing and resource utilization percentages than CPLEX.  
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Table 1. Results for ck ~ U{80, 100, 120, 140, 160}, ∀k 

n b-r w p Avg. UB 
Avg. # used Avg. % util. 

% processed 
reservations 

% processed 
return 

Solution time 
(seconds) 

% Diff 
CPLEX 
ZERO Alg. CPLEX Alg. CPLEX Alg. CPLEX Alg. CPLEX Alg. CPLEX 

20 1 1 1 4 1 1 44 45 75 75 76 76 0.1 4.4 2.8  
2 5 1 1 60 60 60 61 64 65 0.1 159.0 4.2  

2 1 4 1 1 43 43 74 74 77 77 0.1 1.7 0.0  

2 5 1 1 25 27 31 31 32 32 0.1 10.1 2.6  

3 1 4 1 1 43 43 75 75 80 80 0.1 3.3 0.2  

2 5 1 1 51 52 62 62 68 69 0.1 31.5 3.5  

2 1 1 5 1 1 52 53 89 89 89 89 0.1 6.9 1.0  

2 5 1 1 65 65 67 68 69 70 0.1 273.1 3.0  

2 1 4 1 1 52 52 91 91 92 92 0.0 2.2 0.8  

2 5 1 1 51 52 56 55 58 59 0.1 144.2 11.0  

3 1 5 1 1 49 50 86 86 89 90 0.1 3.5 1.3  

2 5 1 1 63 63 69 69 76 76 0.1 50.3 2.2  
50 1 1 1 8 2 2 70 66 69 75 69 75 0.4 1200.1 -0.1  

2 9 3 2 69 47 81 41 80 42 0.8 1200.1 -937.2 2 
2 1 8 2 2 62 66 79 69 82 73 0.6 1200.1 -1.4  

2 9 2 1 71 31 52 19 55 20 0.3 1164.2 -764.0 5 
3 1 7 2 2 59 61 85 83 89 88 0.6 1200.1 0.5  

2 10 2 2 65 55 69 42 76 46 0.6 1200.1 -404.9  

2 1 1 10 2 2 64 67 89 67 89 68 0.7 1200.1 -32.9  

2 10 3 1 71 33 87 18 86 18 1.1 1200.1 -1356.6 3 
2 1 9 2 1 71 66 79 65 82 69 0.6 1200.1 -26.2  

2 10 2 1 76 31 65 22 69 24 0.5 1200.1 -320.9 5 
3 1 9 2 2 65 62 91 78 93 83 0.8 1200.1 -13.8  

2 11 2 1 72 34 73 26 77 29 0.8 1200.1 -998.5 2 
100 1 1 1 12 4 1 68 28 86 16 85 16 3.2 1200.1 -2015.9 4 

2 15 6 0 71 0 86 0 85 0 5.2 1200.3  10 
2 1 12 3 1 69 29 82 19 86 21 2.9 1200.1 -968.4 4 

2 15 3 1 74 3 52 1 56 1 1.9 1200.3  10 
3 1 13 4 2 66 33 89 29 93 31 4.0 1200.1 -277.7 2 

2 14 5 0 71 10 74 2 80 2 4.0 1200.3 -343.8 9 
2 1 1 15 4 1 71 39 93 21 93 22 4.7 1200.2 -628.9 2 

2 19 6 0 75 4 89 1 88 1 7.1 1200.1 -
 

9 
2 1 16 3 1 76 50 85 26 87 28 3.4 1200.1 -560.5  

2 19 4 1 79 5 66 4 70 4 3.7 1201.2  10 
3 1 14 4 2 71 40 93 36 96 39 5.0 1200.1 -538.9  

2 16 5 1 76 5 82 3 87 3 6.4 1200.1 -487.0 9 
200 1 1 1 21 7 0 71 0 90 0 89 0 24.1 1200.2  10 

2 21 11 0 75 0 89 0 87 0 39.9 1200.2  10 
2 1 22 6 0 74 2 82 1 86 1 20.2 1201.8  10 

2 22 6 0 78 0 61 0 65 0 21.2 1202.2  10 
3 1 19 7 3 72 10 90 7 94 7 27.1 1200.3 -3851.2 9 

2 18 9 0 75 0 78 0 84 0 36.0 1200.2  10 
2 1 1 26 7 0 76 16 93 3 92 3 33.1 1202.5 -2977.1 7 

2 28 12 0 75 0 93 0 92 0 60.8 1206.9  10 
2 1 26 6 1 77 4 88 1 91 1 31.5 1205.6 -8837.5 9 

2 28 6 1 82 4 62 1 67 2 29.6 1204.2  10 
3 1 26 7 1 75 11 93 3 96 4 37.3 1200.3 -1599.1 7 

2 26 9 0 79 0 81 0 87 0 51.5 1200.5  10 
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Table 2. Results for ck = 80, ∀k 

n b-r w p Avg. UB 
Avg. # used Avg. % util. 

% processed 
reservations 

% processed 
return 

Solution time 
(s.) 

% Diff 
CPLEX 
ZERO Alg. CPLEX Alg. CPLEX Alg. CPLEX Alg. CPLEX Alg. CPLEX 

20 1 1 1 4 1 1 49 49 79 79 79 79 0.1 3.1 1.1  
2 5 1 1 57 57 68 67 68 69 0.1 219.6 1.6  

2 1 4 1 1 44 44 80 81 83 83 0.1 2.1 1.3  

2 5 1 1 56 58 65 65 69 70 0.1 11.5 8.0  

3 1 4 1 1 45 45 80 80 85 85 0.1 3.6 0.1  

2 4 1 1 53 54 63 63 68 68 0.1 71.3 0.1  

2 1 1 5 1 1 51 51 90 91 90 91 0.1 3.0 3.7  

2 5 1 1 69 69 74 75 74 75 0.1 377.0 0.7  

2 1 5 1 1 50 51 89 90 91 92 0.0 4.3 1.8  

2 5 1 1 62 63 71 71 75 75 0.1 91.6 1.2  

3 1 5 1 1 51 52 90 90 92 92 0.0 4.5 0.7  

2 6 1 1 61 62 70 71 76 76 0.1 335.0 0.7  
50 1 1 1 8 2 2 62 61 85 84 85 84 0.6 1200.1 -3.2  

2 9 3 3 65 58 83 66 83 67 1.0 1200.1 -58.3  

2 1 7 2 2 60 61 85 81 87 84 0.6 1200.1 -4.1  

2 9 2 1 68 60 66 46 69 50 0.5 1200.1 -24.8 1 
3 1 8 2 2 59 58 82 83 88 89 0.7 1200.1 -0.6  

2 10 3 3 62 54 78 62 83 68 1.0 1200.1 -39.2  

2 1 1 9 2 2 65 66 91 73 90 74 0.7 1200.1 -29.4  

2 10 3 1 68 47 91 26 91 27 1.2 1200.1 -181.6 3 
2 1 8 2 2 65 64 91 72 93 76 0.7 1200.1 -20.6  

2 11 2 1 77 36 62 22 65 24 0.5 1200.1 -166.1 4 
3 1 8 2 2 67 63 91 86 94 90 0.7 1200.1 -8.2  

2 10 3 1 71 42 85 33 89 37 1.1 1200.2 -223.8 2 
100 1 1 1 12 4 3 66 52 90 61 90 61 3.9 1200.2 -73.8 1 

2 15 7 1 68 17 92 7 91 8 6.9 1200.3 -1662.8 6 
2 1 12 4 3 69 59 86 59 89 62 3.3 1200.1 -81.7  

2 15 4 0 74 17 66 5 70 6 3.0 1200.2 -1745.1 7 
3 1 12 4 4 64 49 91 64 94 68 4.4 1200.1 -291.7  

2 15 6 3 69 39 84 22 89 26 6.3 1200.3 -587.3 1 
2 1 1 16 4 1 71 37 95 26 94 25 4.9 1199.1 -365.6 3 

2 19 7 1 70 13 94 7 93 8 8.3 1200.3 -1853.9 7 
2 1 15 3 2 75 49 88 43 90 46 3.8 1200.2 -162.2  

2 18 3 0 79 9 63 4 67 4 3.3 1200.4 -1646.4 8 
3 1 15 4 3 68 42 95 47 97 52 5.3 1200.2 -288.5 1 

2 18 6 2 74 28 87 16 91 19 7.2 1200.2 -1206.2 2 
200 1 1 1 21 8 1 67 35 94 11 94 12 29.6 1200.2 -4359.8 2 

2 27 13 0 71 0 95 0 95 0 55.0 1200.3  10 
2 1 19 7 3 73 49 90 32 92 35 26.2 1200.3 -1176.0  

2 27 7 1 76 2 67 1 71 1 25.6 1200.3  10 
3 1 21 8 2 68 37 94 18 96 21 31.6 1200.2 -896.5 1 

2 28 11 0 72 0 86 0 90 0 50.5 1200.3  10 
2 1 1 27 7 0 75 0 93 0 93 0 34.4 1201.8  10 

2 31 13 0 73 0 96 0 95 0 68.5 1200.5  10 
2 1 28 7 0 76 6 93 1 95 1 38.6 1201.2 -

 

8 
2 31 7 0 81 2 70 1 74 1 38.5 1200.4  10 

3 1 27 8 0 73 0 96 0 98 0 42.2 1200.3  10 
2 32 10 0 78 0 86 0 91 0 62.8 1200.5  10 
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Table 3. Results for ck = 160, ∀k 

n b-r w p Avg. UB 
Avg. # used Avg. % util. 

% processed 
reservations 

% processed 
return 

Solution time 
(seconds) 

% Diff 
CPLEX 
ZERO Alg. CPLEX Alg. CPLEX Alg. CPLEX Alg. CPLEX Alg. CPLEX 

20 1 1 1 4 0 0 0 0 0 0 0 0 0.1 0.1 0.0  
2 5 0 0 0 7 0 7 0 6 0.2 5.0 10.0  

2 1 4 0 0 0 0 0 0 0 0 0.1 0.1 0.0  

2 4 0 0 0 0 0 0 0 0 0.2 0.1 0.0  

3 1 4 1 1 44 44 78 78 81 81 0.1 2.8 5.8  

2 5 0 0 15 16 19 19 20 20 0.2 8.0 4.0  

2 1 1 5 0 0 0 0 0 0 0 0 0.1 0.1 0.0  

2 6 1 1 58 58 55 55 55 56 0.1 161.2 9.5  

2 1 4 0 0 0 0 0 0 0 0 0.1 0.1 0.0  

2 6 0 0 0 0 0 0 0 0 0.2 0.2 0.0  

3 1 4 1 1 54 54 92 92 95 95 0.0 3.3 0.4  

2 6 1 1 50 50 58 57 61 62 0.1 71.7 6.0  
50 1 1 1 7 1 1 77 78 53 52 53 54 0.2 1200.1 5.6  

2 9 1 1 79 81 46 33 43 32 0.3 1200.1 -20.9  

2 1 7 1 1 70 72 55 55 59 60 0.2 1200.0 0.5  

2 9 0 0 22 8 13 5 14 5 2.3 1116.3 34.8 9 
3 1 7 2 2 61 64 78 69 84 76 0.6 1200.1 0.1  

2 9 1 1 72 69 45 42 52 48 0.3 1200.1 -47.6  

2 1 1 9 1 1 82 41 57 28 56 28 0.3 1200.1 -13.5 5 
2 10 2 0 79 0 65 0 64 0 0.5 1200.1  10 

2 1 10 1 1 79 75 59 56 64 62 0.3 1200.1 -36.8  

2 11 1 0 39 0 23 0 25 0 1.6 1200.1  10 
3 1 8 2 1 72 68 75 67 82 75 0.5 1200.1 -10.6  

2 11 2 1 79 46 58 25 65 29 0.4 1200.1 -116.1 3 
100 1 1 1 13 2 1 80 49 56 17 55 17 1.2 1200.1 -96.7 4 

2 15 4 0 80 8 59 5 56 4 2.1 1200.2 -50.7 9 
2 1 12 2 1 75 53 59 23 65 26 1.2 1200.1 -377.2 2 

2 15 1 0 79 0 26 0 28 0 0.4 1200.3  10 
3 1 12 3 2 71 57 78 55 84 62 2.3 1200.1 -36.5 1 

2 15 3 1 75 10 56 7 63 8 2.0 1200.3 -396.8 8 
2 1 1 15 3 0 81 0 73 0 71 0 2.2 1200.2  10 

2 18 5 0 81 0 75 0 72 0 3.8 1200.2  10 
2 1 16 2 1 81 40 62 17 67 19 1.6 1200.2 -693.7 4 

2 19 1 0 84 0 28 0 32 0 0.7 1200.3  10 
3 1 14 3 2 77 49 84 36 89 42 3.1 1200.2 -100.4 2 

2 18 3 0 80 4 59 2 66 2 2.5 1200.3 -9850.0 9 
200 1 1 1 21 5 0 80 7 69 1 67 1 10.9 1200.2 -1316.7 9 

2 27 8 0 81 0 69 0 65 0 21.7 1200.3  10 
2 1 20 4 1 79 25 59 11 64 13 8.4 1200.3 -374.1 6 

2 26 2 1 81 4 24 2 26 2 2.2 1201.3  10 
3 1 20 6 2 75 36 81 24 87 27 19.0 1200.3 -917.3 3 

2 26 5 0 78 0 55 0 62 0 15.1 1200.3  10 
2 1 1 26 6 0 82 0 79 0 78 0 20.1 1200.2  10 

2 31 9 0 83 0 80 0 76 0 37.7 1200.4  10 
2 1 26 4 0 83 0 66 0 71 0 14.8 1200.3  10 

2 32 2 0 87 0 30 0 33 0 4.2 1200.4  10 
3 1 26 6 0 79 0 86 0 91 0 27.2 1201.2  10 

2 33 6 0 83 0 59 0 67 0 22.7 1200.5  10 
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Increasing resource costs discourage capacity expansion. This is evident in higher resource utilization rates 
observed for larger problem instances in Tables 2 and 3. As problem size grows, more overlapping 
reservations occur, allowing for denser resource scheduling, and consequently, higher reservation and 
return processing levels. However, this increased efficiency comes at the cost of higher resource utilization, 
which is directly linked to increased resource costs. In summary, the developed algorithm including all 
improvement heuristics produces exceptionally high-quality solutions under one second for small problems 
(n = 20). It significantly outperforms CPLEX in terms of both solution speed and quality when handling 
larger problem instances. Moreover, the algorithm demonstrates consistent performance across various 
parameter settings, including return and cost values. 

4.1. Effect of Improvement Algorithms and the Number of Iterations 
To observe individual performances of the improvement algorithms, the CRS Algorithm is executed for 100 
iterations including all improvement algorithms, for 600 instances with c = 1 including the largest instances 
(n = 500). Table 4 presents the results of these experiments. The columns labeled as Best0 through Best3 
in the table illustrate in how many of the instances the resulting solution is determined by the corresponding 
improvement algorithm. Best0 indicates the case of no improvement. As an example, the first row of the 
table indicates that for 1 of the 10 instances in this setting, the best solution is obtained without applying 
any improvement. For another problem instance in this setting, the best solution is achieved after 
Improvement1. For the remaining 8 instances, the best solution is output by Improvement3. These columns 
clearly reveal the effectiveness of the improvement heuristics. The best solution is obtained without using 
any improvement in only 19 of the 600 test instances. For most (546 instances in total), the best solution is 
found after applying Improvement3. While Improvement3 seems to be the most effective in this regard, it 
should be noted that improvements are applied sequentially to the solution, i.e. Improvement3 is applied 
after Improvement2. This result will be investigated further below. 

The columns Imp1% through Imp3% indicate the percentage increase in the objective function by each 
improvement algorithm. For example, in the last row of the table, we can observe that Improvement1 was 
futile, yielding no increase in the objective function value. In contrast, a substantial improvement of 9.1% 
was achieved after Improvement2. After Improvement3, an additional 0.4% was obtained. The results in 
the table reveal that the best improvements can be obtained by Improvement2. On average, Improvement2 
(Swap&Insert) brings 12.4% enhancement to the objective, followed by Improvement3 (Shift&Insert) with 
7.1% and Improvement1 (Insert) with 1.3%. 

The columns CPU1% through CPU3% present average solution times of improvement algorithms as a 
percentage of the overall solution time of the CRS Algorithm, whereas CPU0% indicate the time consumed 
by the remaining parts of the algorithm. As an example, the last row of the table shows that Improvement2 
took 92.6% of the overall solution time on average for n = 500, b-r = 2, w = 3 and p = 2. The whole 100 
iterations of the algorithm with no improvement took only 0.7% of the 1302.8 seconds, whereas 
Improvement3 used up 6.5% of total solution time. It can be concluded that the best improvements come 
with a cost of solution time. Averaging over all test instances, Improvement2 consumes 84.5% of the overall 
solution time whereas Improvement3 spends only 10.0%, the iterations take 3.3%, and Improvement1 only 
1.0%. For the largest instances, the percentages of Improvement2 are amplified, reaching to approximately 
93% of the total solution time. The CPU (sec.) column presents the average solution times of the algorithms. 
Only one of the largest set of solution instances have taken more than 1200 seconds on the average, 
namely the setting with n = 500, b-r = 2, w = 3 and p = 2. 

Due to time-consuming nature of Improvement2, we further investigate if it is possible to obtain better 
solutions with different improvement schemes and iteration limits. For this purpose, new runs are carried 
out for the same instances in Table 4 with 100 and 500 iterations. The results are summarized in Table 5. 
The CPU (sec.) column is identical to the one in Table 4, presenting average solution times with all 
improvements at each iteration and a total of 100 iterations, which constitute the base setting for the 
algorithm.   

The next two columns exhibit performance when the CRS Algorithm is executed for 100 iterations only with 
Improvement1 and Improvement3. The column NoImp2% lists the average percentage decline in the 
objective function value as compared to the base setting, and NoImp2 CPU (sec.) present the average 
solution times for this case. It is observed that the individual effect of Improvement2 is up to 5% for large 
problems, while it brings an average 2% improvement over all instances, which are both quite significant. 
However, this reward comes at a substantial cost of solution time; there is a dramatic reduction in solution 
times when Improvement2 is not applied (from ~150 to ~14 seconds, averaged over all instances). 
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Table 4. Performance of the improvement algorithms 

n b-r w p Best0 Best1 Best2 Best3 
Imp1 

% 
Imp2 

% 
Imp3 

% 
CPU0 

% 
CPU1 

% 
CPU2 

% 
CPU3 

% 
CPU 
(sec.) 

20 1 1 1 1 1 0 8 6.2 0.0 8.1 12.0 0.0 69.7 18.3 0.1 
2 1 0 0 9 0.5 1.8 74.2 0.8 0.0 82.7 16.5 0.1 

2 1 3 0 0 7 1.5 0.0 21.2 13.2 0.0 64.5 12.3 0.1 
2 7 0 0 3 0.0 0.0 52.9 11.6 5.0 76.4 7.0 0.1 

3 1 1 1 0 8 0.0 0.0 0.5 9.5 2.5 59.3 18.7 0.1 
2 3 1 1 5 0.0 3.1 0.2 7.3 0.0 92.7 0.0 0.1 

2 1 1 0 0 0 10 3.5 0.0 18.0 1.3 3.9 57.6 27.3 0.1 
2 0 0 0 10 0.8 0.3 11.7 0.0 5.3 82.3 12.3 0.1 

2 1 0 0 0 10 8.9 0.0 8.5 8.3 0.0 46.7 25.0 0.0 
2 2 0 0 8 40.0 0.0 81.8 11.5 0.8 71.4 16.3 0.1 

3 1 0 0 0 10 1.4 0.0 3.4 8.3 2.5 52.5 16.7 0.1 
2 0 1 0 9 3.8 0.0 7.0 8.5 0.0 68.5 23.0 0.1 

50 1 1 1 0 0 1 9 1.3 10.4 10.9 1.9 0.0 83.3 14.9 0.4 
2 0 0 2 8 0.0 14.4 3.4 5.3 2.0 86.9 5.8 0.8 

2 1 0 0 0 10 1.0 13.8 6.8 1.8 0.6 87.0 10.6 0.6 
2 1 0 1 8 1.9 12.0 13.5 8.3 3.2 71.2 17.3 0.3 

3 1 0 0 3 7 0.0 9.1 3.3 2.5 0.4 89.0 8.1 0.6 
2 0 0 2 8 0.0 8.8 3.2 4.3 1.4 87.9 6.3 0.6 

2 1 1 0 0 0 10 0.8 31.1 5.9 3.3 0.6 84.4 11.7 0.7 
2 0 0 0 10 0.3 19.2 6.8 4.3 2.5 86.9 6.4 1.1 

2 1 0 0 1 9 0.1 13.0 7.2 4.0 2.4 78.8 14.9 0.6 
2 0 0 0 10 2.0 12.6 9.6 4.2 2.5 80.3 12.9 0.5 

3 1 0 0 0 10 0.0 9.2 2.0 3.1 0.4 86.2 10.3 0.8 
2 0 0 1 9 0.4 10.0 3.2 6.6 2.9 81.9 8.6 0.8 

100 1 1 1 0 0 0 10 0.1 28.6 3.9 2.7 0.8 87.8 8.6 3.2 
2 0 0 0 10 0.3 18.1 3.7 2.6 1.0 89.9 6.5 5.2 

2 1 0 0 0 10 0.0 14.0 2.9 2.1 0.7 88.9 8.3 2.9 
2 0 0 0 10 0.1 14.9 5.2 4.0 2.3 85.1 8.6 1.9 

3 1 0 0 2 8 0.2 9.5 1.4 2.0 0.5 91.6 5.9 4.0 
2 0 0 0 10 0.0 10.9 1.8 2.8 1.3 88.7 7.2 4.0 

2 1 1 0 0 0 10 0.0 27.3 3.8 1.9 1.2 88.6 8.4 4.7 
2 0 0 0 10 0.1 23.7 3.3 3.4 1.3 87.9 7.4 7.1 

2 1 0 0 0 10 0.5 16.9 3.5 2.4 0.6 86.9 10.0 3.4 
2 0 0 0 10 0.1 26.6 3.4 4.2 2.4 83.6 9.8 3.7 

3 1 0 0 1 9 0.0 9.0 1.1 1.8 0.7 90.7 6.8 5.0 
2 0 0 1 9 0.0 11.9 2.0 2.4 0.7 89.7 7.2 6.4 

200 1 1 1 0 0 0 10 0.2 23.5 2.0 1.3 0.4 90.1 8.2 24.1 
2 0 0 0 10 0.2 16.9 1.1 1.7 0.4 90.8 7.1 39.9 

2 1 0 0 0 10 0.0 16.2 1.4 1.2 0.4 90.8 7.7 20.2 
2 0 0 1 9 0.1 19.6 2.8 1.3 0.7 90.5 7.5 21.2 

3 1 0 0 0 10 0.0 8.7 0.7 1.0 0.4 92.5 6.1 27.1 
2 0 0 2 8 0.0 9.7 0.9 1.7 0.5 91.6 6.2 36.0 

2 1 1 0 0 0 10 0.1 26.0 2.5 1.1 0.4 90.5 8.0 33.1 
2 0 0 0 10 0.0 20.7 1.9 1.8 0.5 90.4 7.2 60.8 

2 1 0 0 0 10 0.0 14.1 1.8 1.2 0.4 90.4 8.1 31.5 
2 0 0 2 8 0.1 22.4 1.5 1.7 0.7 89.2 8.4 29.6 

3 1 0 0 0 10 0.0 7.8 0.7 1.1 0.3 91.7 6.9 37.3 
2 0 0 0 10 0.0 9.7 1.1 1.5 0.5 91.7 6.4 51.5 

500 1 1 1 0 0 0 10 0.0 21.4 1.1 0.6 0.2 90.1 9.1 408.5 
2 0 0 0 10 0.0 12.1 1.1 1.0 0.3 88.3 10.4 786.2 

2 1 0 0 1 9 0.0 14.4 0.6 0.5 0.2 91.5 7.8 414.8 
2 0 0 0 10 0.0 17.9 1.0 0.7 0.3 90.2 8.8 359.4 

3 1 0 0 0 10 0.0 7.1 0.3 0.6 0.2 91.9 7.4 462.2 
2 0 0 6 4 0.0 9.2 0.1 0.7 0.2 91.2 7.9 775.1 

2 1 1 0 0 0 10 0.0 21.8 1.3 0.6 0.2 91.6 7.7 687.5 
2 0 0 0 10 0.0 16.6 1.2 1.0 0.2 89.7 9.1 1143.8 

2 1 0 0 0 10 0.0 13.8 0.9 0.5 0.1 91.7 7.6 695.7 
2 0 0 2 8 0.0 17.8 0.8 0.7 0.2 92.0 7.1 729.8 

3 1 0 0 0 10 0.0 6.0 0.4 0.5 0.1 92.5 6.9 803.1 
2 0 0 1 9 0.0 9.1 0.4 0.7 0.2 92.6 6.5 1302.8 
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Table 5. Effect of improvements and number of iterations on algorithm performance 

n b-r w p 
CPU 
(sec.) 

NoImp2 
% 

NoImp2 
CPU 
(sec.) 

500 
NoImp2 % 

500 NoImp2 
CPU (sec.) 

500 
NoImp 

% 
500 NoImp 
CPU (sec.) 

500 
OneImp 

% 

500 
OneImp 

CPU (sec.) 
20 1 1 1 0.1 0.0 0.0 0.0 0.1 1.3 0.1 1.3 0.1 

2 0.1 0.0 0.0 -0.5 0.1 6.0 0.1 5.5 0.1 
2 1 0.1 0.0 0.0 0.0 0.2 2.0 0.1 2.0 0.1 

2 0.1 0.0 0.0 0.0 0.3 0.0 0.1 0.0 0.1 
3 1 0.1 0.0 0.0 -0.2 0.1 0.1 0.1 -0.2 0.1 

2 0.1 0.0 0.0 -2.2 0.2 -1.5 0.1 -2.0 0.1 
2 1 1 0.1 0.0 0.0 -0.9 0.1 4.4 0.1 2.2 0.1 

2 0.1 -0.7 0.0 -0.9 0.3 5.5 0.1 4.8 0.1 
2 1 0.0 0.0 0.0 -0.2 0.2 10.5 0.1 6.0 0.1 

2 0.1 0.0 0.0 -13.1 0.3 10.2 0.1 10.2 0.1 
3 1 0.1 0.0 0.0 -0.4 0.2 1.7 0.1 1.4 0.1 

2 0.1 0.0 0.0 -0.7 0.2 4.9 0.1 3.1 0.1 
50 1 1 1 0.4 2.0 0.1 -0.2 0.6 15.2 0.2 8.3 0.2 

2 0.8 1.6 0.2 -0.5 0.9 12.1 0.5 5.3 0.5 
2 1 0.6 0.1 0.1 -1.1 0.5 11.2 0.3 6.4 0.3 

2 0.3 1.8 0.1 -1.5 0.6 12.0 0.2 11.2 0.3 
3 1 0.6 0.3 0.1 -0.1 0.6 8.8 0.3 3.1 0.4 

2 0.6 2.2 0.2 0.5 0.7 8.2 0.3 2.8 0.4 
2 1 1 0.7 1.1 0.2 -2.3 0.8 17.6 0.3 5.5 0.4 

2 1.1 1.6 0.3 -2.5 1.1 17.2 0.6 8.2 0.9 
2 1 0.6 2.0 0.2 0.9 0.8 13.8 0.2 7.9 0.3 

2 0.5 1.6 0.2 -1.1 0.7 12.5 0.3 6.9 0.6 
3 1 0.8 0.8 0.2 0.0 0.7 8.9 0.3 2.8 0.4 

2 0.8 0.2 0.2 -1.8 0.9 9.6 0.4 5.4 0.7 
100 1 1 1 3.2 1.3 0.6 -1.5 2.7 20.6 0.7 4.6 0.9 

2 5.2 3.0 0.8 0.9 4.1 14.9 1.3 6.0 1.6 
2 1 2.9 2.4 0.5 1.0 2.3 13.1 0.7 4.0 0.9 

2 1.9 3.0 0.4 -0.2 1.8 13.8 0.7 4.4 0.8 
3 1 4.0 1.5 0.6 0.7 2.5 8.8 0.9 3.1 1.1 

2 4.0 3.0 0.7 2.0 2.9 10.0 1.1 2.5 1.4 
2 1 1 4.7 3.3 0.7 1.9 3.6 21.8 0.9 5.4 1.1 

2 7.1 2.1 1.2 0.7 5.6 18.5 1.7 7.1 2.0 
2 1 3.4 2.0 0.6 1.0 3.0 15.6 0.8 4.1 1.0 

2 3.7 4.0 0.7 0.9 3.3 18.1 0.9 7.0 1.2 
3 1 5.0 1.3 0.7 0.6 3.5 8.1 1.0 3.7 1.2 

2 6.4 2.0 0.9 0.2 4.3 10.7 1.5 5.0 1.8 
200 1 1 1 24.1 2.5 3.2 1.9 16.7 18.5 3.1 2.6 3.5 

2 39.9 2.0 5.0 1.8 24.8 13.4 5.6 2.8 6.5 
2 1 20.2 2.0 2.6 1.3 13.2 13.6 2.6 1.9 3.1 

2 21.2 4.7 2.2 3.0 11.8 15.6 2.9 4.9 3.4 
3 1 27.1 1.6 2.9 1.4 14.9 7.6 3.3 1.9 3.9 

2 36.0 2.7 4.3 1.8 19.5 8.8 4.7 2.2 5.6 
2 1 1 33.1 4.1 4.1 2.4 21.4 20.1 4.0 4.2 4.3 

2 60.8 3.1 7.4 1.5 39.2 16.6 8.2 3.2 8.9 
2 1 31.5 2.3 3.8 1.3 19.1 12.5 3.5 2.2 3.9 

2 29.6 2.5 3.5 1.1 18.4 16.2 3.6 3.6 4.4 
3 1 37.3 0.8 4.0 0.4 20.4 6.8 4.0 1.5 4.5 

2 51.5 2.2 5.4 1.3 28.0 9.3 6.0 1.9 7.2 
500 1 1 1 408.5 4.8 48.8 4.2 248.3 17.1 24.1 2.9 27.9 

2 786.2 5.0 94.2 3.9 486.5 11.8 52.7 3.9 62.5 
2 1 414.8 3.6 41.7 3.0 203.2 12.1 21.8 2.3 26.2 

2 359.4 5.5 31.9 4.3 157.0 14.6 19.9 3.5 24.0 
3 1 462.2 1.5 44.3 1.5 226.5 6.1 25.4 1.3 30.8 

2 775.1 3.1 72.0 2.6 355.5 8.0 41.7 1.5 49.6 
2 1 1 687.5 4.4 63.9 3.7 328.5 17.8 30.5 3.4 37.0 

2 1143.8 2.7 134.2 1.9 667.0 14.7 68.4 3.5 80.8 
2 1 695.7 2.5 56.4 2.0 284.5 12.0 26.8 1.6 32.6 

2 729.8 4.2 55.5 3.3 292.9 14.7 30.0 4.2 35.9 
3 1 803.1 0.9 60.4 0.8 311.2 5.3 32.6 1.2 39.8 

2 1302.8 1.9 98.9 1.5 491.1 8.4 52.8 2.2 62.9 
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The columns 500 NoImp2 % and 500 NoImp2 CPU present the results when the CRS Algorithm is executed 
for 500 iterations only with Improvement1 and Improvement3 at each iteration, in an attempt to improve the 
quality of solutions without the burden of the extra time by Improvement2. It can be seen that the solution 
times in this case are approximately half of the base setting with Improvement2 and 100 iterations. Hence, 
the second improvement algorithm has a higher contribution to the solution time than the number of 
iterations. The negative percentages for small problems in the 500 NoImp2 % column imply that better 
solutions can be obtained with this version as compared to the base setting, meaning that the randomization 
in the algorithm pays off over a larger number of iterations. On the other hand, although the number of 
iterations is fewer in the base setting, Improvement2 still brings up to 4.3% increase in the objective for 
large problem instances. 

The effect of the other two improvement algorithms on solution quality and time are also tested. For this 
purpose, the next two columns of Table 5 present the results when the CRS Algorithm is run for 500 
iterations with no improvement. It can be seen that solution times are all less than 1 minute, even for the 
largest problem instances. However, the decline in the quality of solutions as compared to the base setting 
is considerable; up to 22% for some problem instances and 11% on the average. The solutions are 
significantly worse when compared to the previous setting, as well. Although these improvement algorithms 
take a considerable amount of time, they are quite effective in improving the solutions.  

Finally, in an attempt to benefit from the effects of all improvement algorithms while reducing the solution 
time, the CRS Algorithm is run for 500 iterations, and all improvement algorithms are applied only once to 
the best solution at the end of all iterations. The results are listed in the 500 OneImp % and 500 OneImp 
CPU (sec.) columns. The percentages represent the average decline in the objective value as compared 
to the base setting. An average 4% decline is observed over all instances while the solution time is 
drastically reduced. This setting of the algorithm provides the closest solution quality to the base setting 
with much shorter run times for the largest problems with n = 500, although there is an average decline in 
solution quality of 2.6% for this instance set. 

Due to the dynamic characteristic of the problem environment, short solution times might be preferable. 
Therefore, if small computation times are desired, the CRS Algorithm should be executed with 500 iterations 
(or more) without Improvement2, or with a single post-iterations execution of all improvement algorithms 
(the last setting). Since the solution times are ignorable for any combination for small problem instances (n 
= 20 and 50), running all combinations and selecting the best solution may also be an option. For larger 
problem instances, the solution quality improves with Improvement2, and therefore the base setting of the 
algorithm seems to be most appropriate, as the trade-off between solution quality and computation time is 
evident especially for these instances. The algorithm's improved solution quality justifies the increased 
processing time. Additionally, the algorithm demonstrates efficiency in handling large-scale problems, 
providing quick and effective results. The decision to increase the number of iterations for further refinement 
remains at the discretion of the decision-maker. 

6. CONCLUSION 
In this study, we consider the Combined Reservation Scheduling (CRS) problem for deciding the capacity 
and determining the schedule in systems where the incoming reservation requests have time windows for 
processing. The resources have varying fixed costs of usage. Many application areas are reviewed for the 
problem, as well as related literature. Our research contributes to literature and practice by introducing a 
novel heuristic approach to address this critical problem. 

A randomized constructive heuristic is proposed for obtaining near-optimal solutions, employing effective 
improvement algorithms. We evaluate the performance of the developed algorithms through extensive 
computational experiments, testing different iteration limits and improvement schemes. The heuristic 
approach significantly outperforms CPLEX for problem instances up to 200 reservations. While 
computational time grows with problem size, primarily due to improvement algorithms, the algorithm's 
overall performance remains robust, meaning that this practical and effective approach can be directly 
implemented by industry practitioners and decision-makers. 

As to the best of our knowledge, ours is the first study to propose heuristic algorithms for simultaneous 
capacity and scheduling decisions for the CRS problem. Our findings can provide significant positive social 
and economic benefits across various industries through optimization of resource use and scheduling. It is 
expected that the fast and effective solution approaches developed for this unique, important and novel 
problem will shed light on subsequent studies by laying the groundwork for future research. Effective 
solutions for large instances hold significant value for industries such as tourism, healthcare, transportation, 
logistics, and manufacturing. For example, our proposed approach can optimize gate assignments at 
airports by simultaneously determining the optimal number of gates to use and their corresponding 
schedules, considering varying gate costs. 
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The modular structure of the randomized algorithm can be easily adjusted by inclusion or exclusion of 
improvement algorithms and modification of the iteration limit. The proposed heuristic effectively addresses 
the problem, demonstrating superior performance compared to CPLEX for large problem instances. Its 
efficiency and adaptability make it a valuable tool for practitioners. While the current approach yields 
excellent results, future research could explore optimization with machine learning, or the potential of 
metaheuristics like genetic algorithms, tabu search, or particle swarm optimization. Comparative studies 
with the proposed heuristic could provide valuable insights. Additionally, incorporating factors such as 
resource shifts, availability constraints and time-dependent operating costs could enhance the model's 
applicability to a wider range of real-world scenarios. These additional features may be worth investigating 
in environments where the resources/servers are outsourced in a daily manner instead of long-term 
contracts. 

 

Conflict of Interest 
No potential conflict of interest was declared by the author. 

 
Funding 
Any specific grant has not been received from funding agencies in the public, commercial, or not-for-profit 
sectors. 
 
Compliance with Ethical Standards 
It was declared by the author that the tools and methods used in the study do not require the permission of 
the Ethics Committee. 

 
Ethical Statement 
It was declared by the author that scientific and ethical principles have been followed in this study and all 
the sources used have been properly cited. 
 

 

The authors own the copyright of their works published in Journal of Productivity and 
their works are published under the CC BY-NC 4.0 license. 

 

  



 

 
Cilt/ Volume 59 | Sayı / Issue 1 
 

132 

Uğur Eliiyi 

REFERENCES 
Azizoglu, M. and Bekki, B. (2008). “Operational Fixed Interval Scheduling Problem on Uniform Parallel Machines”, 

International Journal of Production Economics, 112(2), 756-768. https://doi.org/10.1016/j.ijpe.2007.06.004  

Bard, J.F. and Rojanasoonthon, S. (2006). “A Branch-and-Price Algorithm for Parallel Machine Scheduling with Time 
Windows and Job Priorities”, Naval Research Logistics, 53(1), 24-44. https://doi.org/10.1002/nav.20118  

Barshan, M., Moens, H., Famaey, J. and De Turck, F. (2016). “Deadline-Aware Advance Reservation Scheduling 
Algorithms for Media Production Networks”, Computer Communications, 77(1), 26–40.  

Eliiyi, D.T. and Azizoglu, M. (2009). “A Fixed Job Scheduling Problem with Machine-Dependent Job Weights”, 
International Journal of Production Research, 47(9), 2231-2256. https://doi.org/10.1080/00207540701499499  

Eliiyi, D.T. and Azizoglu, M. (2011). “Heuristics for Operational Fixed Job Scheduling Problems with Working and 
Spread Time Constraints”, International Journal of Production Economics, 132(1), 107-121. 
https://doi.org/10.1016/j.ijpe.2011.03.018  

Eliiyi, D.T., Korkmaz, A.G. and Çiçek, A.E. (2009). “Operational Variable Job Scheduling with Eligibility Constraints: A 
Randomized Constraint-Graph-Based Approach”, Technological and Economic Development of Economy, 15(2), 
245-266. https://doi.org/10.3846/1392-8619.2009.15.245-266  

Eliiyi, U. (2021). “Seasonal Reservation Scheduling with Resource Costs: A Mathematical Modeling Approach”, İzmir 
İktisat Dergisi, 36(2), 409-422. https://doi.org/10.24988/ije.202136211  

Faigle, U., Kern, W. and Nawijn, W.M. (1999). “A Greedy Online Algorithm for the k-track Assignment Problem”, Journal 
of Algorithms, 31(1), 196-210. https://doi.org/10.1006/jagm.1998.1001  

Fischetti, M., Martello, S. and Toth, P. (1987). “The Fixed Job Schedule Problem with Spread-Time Constraints”, 
Operations Research, 35(6), 849-858. https://doi.org/10.1287/opre.35.6.849  

Fischetti, M., Martello, S. and Toth, P. (1989). “The Fixed Job Schedule Problem with Working-Time Constraints”, 
Operations Research, 37(3), 395-403. https://doi.org/10.1287/opre.37.3.395  

Fischetti, M., Martello, S. and Toth, P. (1992). “Approximation Algorithms for Fixed Job Schedule Problems”, Operations 
Research, 40(S1), 96-108. https://doi.org/10.1287/opre.40.1.S96  

Gabrel, V. (1995). “Scheduling Jobs within Time Windows on Identical Parallel Machines”, European Journal of 
Operational Research, 83(2), 320-329. https://doi.org/10.1016/0377-2217(95)00010-N  

Garcia, J.M. and Lozano, S. (2005). “Production and Delivery Scheduling Problem with Time Windows”, Computers & 
Industrial Engineering, 48(4), 733-742. https://doi.org/10.1016/j.cie.2004.12.004  

Gertsbakh, I. and Stern, H.I. (1978). “Minimal Resources for Fixed and Variable Job Schedules”, Operations Research, 
26(1), 68-85. https://doi.org/10.1287/opre.26.1.68  

Kolen, A.J.W. and Kroon, L.G. (1991). “On the Computational Complexity of (Maximum) Class Scheduling”, European 
Journal of Operational Research, 54(1), 23-38. https://doi.org/10.1016/0377-2217(91)90320-U  

Kolen, A.J.W. and Kroon, L.G. (1992). “License Class Design: Complexity and Algorithms”, European Journal of 
Operational Research, 63(3), 432-444. https://doi.org/10.1016/0377-2217(92)90160-B  

Kolen, A.J.W. and Kroon, L.G. (1993). “On the Computational Complexity of (Maximum) Shift Class Scheduling”, 
European Journal of Operational Research, 64(1), 138-151. https://doi.org/10.1016/0377-2217(93)90014-E  

Kolen, A.J.W., Lenstra, J.K., Papadimitriou, C.H. and Spieksma, F.C.R. (2007). “Interval Scheduling: A Survey”, Naval 
Research Logistics, 54(5), 530-543. https://doi.org/10.1002/nav.20231  

Kovalyov, M.Y., Ng, C.T. and Cheng, T.C.E. (2007). “Fixed Interval Scheduling: Models, Applications, Computational 
Complexity and Algorithms”, European Journal of Operational Research, 178(2), 331-342.  

Rojanasoonthon, S., Bard, J.F. and Reddy S.D. (2003). “Algorithms for Parallel Machine Scheduling: A Case Study of 
the Tracking and Data Relay Satellite System”, Journal of the Operational Research Society, 54(8), 806-821.  

Rojanasoonthon, S. and Bard, J.F. (2005). “A GRASP for Parallel Machine Scheduling with Time Windows”, INFORMS 
Journal on Computing, 17(1), 32-51. https://doi.org/10.1287/ijoc.1030.0048  

Spieksma, F.C.R. (1999). “On the Approximability of An Interval Scheduling Problem”, Journal of Scheduling, 2(5), 215-
227. https://doi.org/10.1002/(SICI)1099-1425(199909/10)2:5%3C215::AID-JOS27%3E3.0.CO;2-Y  

Steiger, C., Walder, H. and Platzner, M. (2004). “Operating Systems for Reconfigurable Embedded Platforms: Online 
Scheduling of Real-Time Tasks”, IEEE Transactions on Computers, 53(11), 1393–1407. 
https://doi.org/10.1109/TC.2004.99  

Wolfe, W.J. and Sorensen, S.E. (2000). “Three Scheduling Algorithms Applied to the Earth Observing Systems 
Domain”, Management Science, 46(1), 148-168. https://doi.org/10.1287/mnsc.46.1.148.15134  

Yu, G. and Jacobson, S.H. (2020). “Primal-Dual Analysis for Online Interval Scheduling Problems”, Journal of Global 
Optimization, 77, 575–602. https://doi.org/10.1007/s10898-020-00880-5  

https://doi.org/10.1016/j.ijpe.2007.06.004
https://doi.org/10.1002/nav.20118
https://doi.org/10.1080/00207540701499499
https://doi.org/10.1016/j.ijpe.2011.03.018
https://doi.org/10.3846/1392-8619.2009.15.245-266
https://doi.org/10.24988/ije.202136211
https://doi.org/10.1006/jagm.1998.1001
https://doi.org/10.1287/opre.35.6.849
https://doi.org/10.1287/opre.37.3.395
https://doi.org/10.1287/opre.40.1.S96
https://doi.org/10.1016/0377-2217(95)00010-N
https://doi.org/10.1016/j.cie.2004.12.004
https://doi.org/10.1287/opre.26.1.68
https://doi.org/10.1016/0377-2217(91)90320-U
https://doi.org/10.1016/0377-2217(92)90160-B
https://doi.org/10.1016/0377-2217(93)90014-E
https://doi.org/10.1002/nav.20231
https://doi.org/10.1287/ijoc.1030.0048
https://doi.org/10.1002/(SICI)1099-1425(199909/10)2:5%3C215::AID-JOS27%3E3.0.CO;2-Y
https://doi.org/10.1109/TC.2004.99
https://doi.org/10.1287/mnsc.46.1.148.15134
https://doi.org/10.1007/s10898-020-00880-5

	1. INTRODUCTION
	2. LITERATURE REVIEW
	3. SOLUTION ALGORITHMS FOR THE CRS PROBLEM
	3.1. The CRS Model
	3.2. A Randomized Heuristic for the CRS Problem
	4. COMPUTATIONAL EXPERIMENTATION
	4.1. Effect of Improvement Algorithms and the Number of Iterations
	6. CONCLUSION
	REFERENCES

