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ABSTRACT

In this paper, Grover’s quantum search algorithm is analyzed using a classical computer by cal-
culating the amplitudes and the probabilities of finding a single marked state for n=5, 10, 15, 
20, 25, and 27 qubit states. The calculations show that the marked state can be found in   
iterations, where N = 2n is the number of items. The possibility of improving Grover’s search 
algorithm to find a single item in N search elements is discussed by calculating the amplitudes 
and hence the probabilities of finding a single marked state for n=5, 10, 15, 20, 25, 30, 35, 40, 
45, and 50 qubit states. The calculations showed that the marked state could be found with 
sufficiently high probability in  (ln(N)) iterations. This is quite a remarkable speed-up that 
can be achieved to find a single marked element in an unsorted N search element.
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INTRODUCTION

Grover’s search algorithm [1] provides a relatively fast 
way of finding a marked element in an unsorted database 
of size N in the computational complexity   offered 
by quantum computers with respect to its classical coun-
terpart, which can only solve the problem in complexity 

. This means less memory requirement to represent 
the input data. The speed-up is a good example of realizing 
the computational power of quantum computers [2]. This 
power comes from the laws of quantum mechanics, which 
are fundamentally different from classical ones. Grover’s 
search algorithm can perform multiple computations 

simultaneously due to the quantum parallelism. Amplitude 
of the marked state is amplified at each iteration therefore 
when measured, the probability of finding the marked ele-
ment is sufficiently high to be identified. Grover’s algorithm 
is a black-box algorithm, which means that it does not rely 
on any specific properties of the input data or the function 
being evaluated. It only requires access to the function that 
evaluates the input data. 

There are numerous useful classical algorithms solv-
ing different problems such as generic algorithm to solve 
second-order boundary value problems [3], for prediction 
of linear dynamical systems [4], for optimization solution 
of Troesch’s and Bratu’s problems [5], and solving singular 
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two-point boundary value problems [6], control of axially 
moving viscoelastic strip [7], adaptive stabilization of a 
Kirchoff moving strip [8], and existence and stabilization of 
a Kirchoff moving strip [9]. Apart from classical ones, there 
are other quantum algorithms, which solve a given problem 
more efficiently than corresponding classical algorithms: 
Shor’s algorithm [10,11] solves the problem of factorizing 
large numbers, which is infeasible on a classical computer. 
The other one, which should be mentioned here, is the 
Deusch-Jozsa algorithm [12-14] which finds the character 
of the boolean function exponentially faster than a classical 
computer. 

After being theoretically proposed, Grover’s search 
algorithm has been implemented in many physical systems. 
These physical systems include nuclear magnetic resonance 
(NMR) [15, 16], trapped ions [17-20], superconducting 
qubits in the quantum electrodynamics QED [21-23], and 
cavity QED [24-26].

Since it is proposed, the mathematical structure of 
Grover’s search algorithm has been investigated [27, 28] 
and the complexity analysis was studied [29] and applied in 
many areas such as [30] in which a new protocol for quan-
tum private query is proposed, which achieves efficiency by 
utilizing two oracle operations to encode both encryption 
keys and encrypted data items into corresponding quantum 
superposition states. The protocol also introduces the use 
of Grover iteration to extract the target from the superpo-
sition state. As well known, quantum computers operate 
upon a register of qubits, which are the quantum mechani-
cal version of classical bits. A qubit can be described as the 
superposition of 0 and 1, while a classical bit is confined 
to a definite value of either one of these numbers. That is, 
describing the state of an n-bit classical information scale 
as the number of bits. Thus, the calculation time and the 
memory resources, which are necessary for classical com-
putation, are generally a polynomial function. However, 
describing the state of n-qubit information requires 2n com-
plex numbers. Therefore, simulating a quantum computer 
using a classical computer is exponentially complex with 
respect to the number of qubits. Although classical simu-
lation of quantum computation is exponentially costly, it is 
vital for the study of new quantum algorithms and architec-
tures. Classical simulation is also important to investigate 
the efficiencies and robustness of quantum algorithms as 
compared to their classical counterparts. 

To our best knowledge, there is no quantitative analysis 
of Grover’s search algorithm to show how the amplitudes of 
marked and unmarked states change at every iteration. This 
is important to see the evolution of the state vector at every 
iteration and to be able to discuss the possible improvement 
of the algorithm to obtain a better speed-up. Therefore, the 
main objective of the current study is to analyze Grover’s 
search algorithm on a classical computer for various num-
bers of qubits and try to find possible ways to improve it for 
a better speed-up in finding marked elements in a certain 
search space.

MATERIALS AND METHODS

Grover’s search algorithm proposes to find a particu-
lar element through a search space of N elements. Rather 
than searching for the element directly, one can concentrate 
on the index to those elements which is a number ranging 
from 0 to N-1. Defining N=2n, one can store the index in 
n bits. A particular instance of the search problem can be 
represented by a function f taking an integer x as an input 
in the range 0 to N-1. By definition, f(x)=1 if x is a solution 
to the search problem which is denoted by x*, and if x is not 
the solution to the search problem, then f(x)=0. 

Grover’s search algorithm consists of two steps. The first 
step is preparing the initial qubits in an equal superposition 
state by applying the Hadamard gates [31]. The second step 
is applying the Grover iteration  times. The Grover 
iteration itself consists of two steps; running the quantum 
oracle followed by the diffusion operator. After any iter-
ation, while the amplitude of the marked state grows, all 
other amplitudes shrink [32].

The recognition of the searched element is achieved by 
making use of an oracle, which is a unitary operator. The 
action of the oracle is defined in Equation (1). 

  (1)

where |x〉 is index register, ⨁ denotes addition module 
2, and |q〉 is called oracle qubit, which is a single qubit and 
is flipped if f(x)=1, and is unchanged if f(x)=0. It is useful 
to put the oracle qubit initially in the state . 
If x is not a solution to the search problem, applying the 
oracle to  does not do anything. But if x is 
a solution, then |0〉 and |1〉 are interchanged after the action 
of the oracle, giving a final state . Thus, 
the action of the oracle can be summarized in Equation (2).

  (2)

Schematic circuit for the quantum search algorithm is 
depicted in Figure 1. 

The schematic circuit shown in Figure 1 consists of n 
qubits prepared in the |0〉 state and one oracle qubit pre-
pared in the |1〉 state. Both of these states pass through the 
Hadamard gate before a series of Grover iteration opera-
tors are applied. Then by measuring the first n-qubits the 
desired result can be obtained. In the following, we give a 
detailed description of the circuit by writing the state vec-
tors at every step through the circuit. In the circuit, the first 
input is called the index register which consists of the state 
of n qubits all prepared in the |0〉 state. The second input is 
called the oracle qubit prepared in the |1〉 state. Therefore 
|ψ0〉 can be written as in Equation (3).

  (3)
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After the Hadamard transform on the index register 
and the Hadamard transform on the oracle qubit, we have 
|ψ1〉 as given in Equation (4).

  (4)

In |ψ1〉, the Hadamard transform puts the index register 
in a superposition of all values which is also called equal 
superposition state and the oracle qubit is in an evenly 
weighted superposition of 0 and 1. After that, the circuit 
consists of repeated application of the Grover iteration 
which is a quantum subroutine, and applied  times. 
Figure 2 shows the schematic diagram for the Grover iter-
ation circuit. We can now follow what happens to the state 
vector from Figure 2.

After the action of the oracle, the state vector takes the 
form given in Equation (5).

  (5)

The action of the oracle is to change the phase of the 
solution state, which we can also call the marked state |x*〉, 

and separate it from all other states. Thus, a unitary opera-
tor as given in Equation (6) can represent the oracle.

  (6)

Thus, |ψ2〉 can also be written as in Equation (7).

  (7)

where  called standard state. 
Since the oracle qubit remains  through-

out the calculations, it can be omitted from further calcu-
lations, therefore |ψ2〉 can simply be written as in Equation 
(8).

  (8)

After the action of the oracle, the marked state is sepa-
rated but still, all states have equal amplitudes. Now as the 
amplitude of the marked state must be increased, while 
all other amplitudes have to be shrunk so that when mea-
sured, the probability of finding the marked state should 
be the highest. The action of amplitude change can be 
achieved through the three steps: Hadamard transform 

Figure 2. Schematic circuit for the Grover iteration, G.

Figure 1. Schematic circuit for the quantum search algorithm.
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, performing a conditional phase shift with every com-
putational basis except |0〉 receiving a phase shift of -1, and 
applying the Hadamard transform  again which can be 
represented by the operator as given in Equation (9) and 
shown in Figure 2.

  (9)

Thus, the Grover iteration may be written as in Equation 
(10).

  (10)

RESULTS AND DISCUSSION

Analysis of Grover’s Search Algorithm
The equal superposition state, , 

can be written as the sum of two orthogonal states as given 
in Equation (11) and shown geometrically in Figure 3.

  (11)

where N is the number of items which is 2n, and n is the 
number of qubits, |X〉 and |x*〉 are computational basis and 
|x*〉 is marked state and |X〉 represent all other unmarked 
states. The evolution of the state vector |S〉 is calculated by 
applying Grover’s operator G given in Equation (10). Here 
Uf is called the phase operator which changes the phase of 
the marked state performed by the oracle and Us is called 

the diffuser which increases the amplitude of the marked 
state while shrinking the amplitudes of the unmarked 
states. Probabilities of finding marked and unmarked states 
are calculated by taking the mod-square of the amplitudes 
of |x*〉 and |X〉 in Eq. (11), respectively.

The number of iterations has to be known in advance so 
that when measured, the amplitude of the marked state is 
sufficiently big and can be distinguished from the unmarked 
states. As seen from Figure 3, at every iteration, the state 
vector |S〉 moves away from the state |X〉 and approaches 
|x*〉 according to (2m + 1)θ, where m is the number of itera-
tions. Eventually, the angle between |S〉 and |X〉 approaches 
90 degrees as given in Equation (12).

  (12)

, which is .
We calculated the evolution of the state vector |S〉 as 

given in Equation (13).

  ()

where  and , 
 and 

Some of the calculated state vectors are given in 
Equations (14-16):

  (14)

Letting (2b2 - 2 - a2) = c and (2b2 - 2 + a2) = d,

  (15)

Again letting (2b2c - 2d - a2c) = e and (2b2c - 2d + a2c) = f

  (16)

Considering all these steps, the general formula that cal-
culates each  vector iteratively is given in Equation 
(17).

  (17)

Here, ci and di are the generalizations of all c and d 
values.

  (18)

  (19)

To calculate the amplitudes, a function suitable for the 
pseudo-code given in Algorithm-1 was created.

Figure 3. Evolution of equal superposition state |S〉 in Gro-
ver’s method.
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Depending on the number of qubits, a maximum num-
ber of 10000 iterations were analyzed and the amplitudes (and 
probabilities) were calculated and shown in Figure (a-f) 4 for 
n=5, 10, 15, 20, 25, and 27 qubits. For n=2 qubit state (N=22=4 
search space), only one iteration is required to find the marked 
state with probability one (not shown in Figure 4). 

As the number of qubits increases, the number of iter-
ations also increases smoothly according to . Figure 
4 shows that as the number of iterations increases, while 
the probability of finding the marked state increases, the 
probability of finding the unmarked states decreases. The 
number of iterations required to find the marked state with 
sufficiently high probability for n=5, 10, 15, 20, 15, and 
27 qubits is 4, 25, 142, 804, 4549, and 9099 respectively as 
shown in Table 1. 

The Analysis of Proposed Method
The equal superposition state can be given in Equation 

(20).

  (20)

where,  and 
The phase-changing operator is the same as in the case 

of Grover’s method and given as . In the 
proposed method, as different from Grover’s method, the 
diffuser operator changes in every iteration, which is given 
in Equation (21). 

  (21)

where  is the new state vector after  
operator acts, where . After each Grover 
operator, the change in the state vectors is shown in Figure 
5. 

Note that the main difference between Grover’s method 
and the proposed method is that the diffuser operator 
changes at every iteration. In Grover’s method, the diffuser 
operator is  and stays unchanged throughout the 
search process. In the proposed method, however it con-
sists of the final state vector at the end of each iteration and 
the unit operator. Some of the state vectors after the action 
of Grover’s operator are given in Equations (22-24).

  (22)

Letting (2b2 - 2 - a2) = c1 and (2b2 - 2 + a2) = d1,

  (23)

Again letting  and 

  (24)

The general formula that calculates each  vector 
iteratively is given in Equation (25).

  (25)

Here  represents a common operation and is speci-
fied in Equation (26).

  (26)

Similarly, ci and di are generalized values of all c and d 
and can be formulated as

  (27)

  (28)

To calculate the amplitude in the standard state of 
the proposed method, a piece of code is written as in 
Algorithm 2.

As a characteristic future of Grover’s search algorithm, 
the number of iterations has to be known prior to the 

Algorithm 1. Pseudo Code of Grover’s Search Algorithm

Inputs : n – number of qubits
  n_step – number of iterations 
Outputs : A[] – amplitudes of unmarked states 
  B[] – amplitudes of marked state
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calculations. The complexity of the proposed method is 
analyzed as follows. As seen in Figure 5, in every iteration, 
the state vector approaches the marked state according to 
Equation (29).

  (29)

where m is the estimated number of iterations and given 
in Equations (30, 31).

  (30)

  (31)
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Figure 4. Probabilities finding the marked state and unmarked states.
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As seen, an exponential speed-up is achieved in the 
proposed method. At every iteration, the amplitudes (and 
hence the probabilities) of unmarked and marked states 
were calculated. The calculations were performed for n=5, 
10, 15, 20, 25, 30, 35, 40, 45 and 50 qubits. The results are 
shown in Figure 6 (a-j). 

As for the case of n=2, only one iteration is required to 
find the marked state with probability one (not shown in 
Figure 6). The calculations showed that for n= 5, 10, 15, 20, 
25, 30, 35, 40, 45, and 50 qubits, the number of iterations 
required to find the marked state with relatively higher 
probability as compared to the unmarked states are 2, 5, 5, 
7, 8, 10, 11, 13, 16, and 16, respectively as shown in Table 1. 

When compared to Grover’s method, in some cases, the 
probability of finding the marked state is relatively low in 
the proposed method. For example, for the cases n=20, 35 
and 45 qubits, the probabilities of finding the marked states 
are about 0.7. For all other cases, the probabilities are about 
0.9, which is sufficiently high.

The implementation of the methods mentioned in this 
study was carried out on a PC with an i5-8400 processor 
and 8 GB memory with Windows 10 operating system. 
MATLAB [33] was preferred as the software development 
environment. HPF Toolbox [34] is used to solve the large 
number of problems encountered due to the high num-
ber of exponential and multiplication operations during 
coding.

As it is clearly seen in Eq. (27-28), c and d values are cal-
culated iteratively and each value takes the value calculated 
in the previous iteration as a multiplier. However, the  
value is calculated at each stage. Here i denotes the iteration 

number. Therefore, as the iteration number increases, the 
value of  grows very quickly. Since the classical computer 
architecture does not allow the calculation of such large 
numbers, the HPF [34] library was used. With this library, 
instead of allocating a standard 16-digit memory for a vari-
able, higher numbers of digits can be used. We preferred 
variable lengths of 10-200-500-1000 and 2000 digits for the 
very large numbers that emerged in this study. Although 
the use of more digits allows much larger numbers to be 
calculated, we had to terminate it at some point because 
the calculation time was prolonged. The average of the 
times required to calculate all other values in an iteration is 
given in the last column of the table. It is clearly seen in the 
table that the calculated values and times grow exponen-
tially. However, especially after the 32nd iteration (usually 
around the 40th iteration), a buffer overflow occurs in the 
calculated values for all qubits. When all these situations are 

Algorithm 2. Pseudo Code of Proposed Method

Inputs : n – number of qubits
  n_step – number of iterations 
Outputs : A[] – amplitudes of unmarked states 
  B[] – amplitudes of marked state

Figure 5. Evolution of equal superposition state |S〉 in pro-
posed method.
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evaluated, libraries are needed in which much larger num-
bers can be used in order to reach 1000 iterations in total. 
The proposed approach was coded with the MATLAB pro-
gram, and a more efficient library than HPF was not found. 
In this regard, it is planned to examine the libraries used for 
finding large prime numbers and to develop the developed 
approach with these libraries.

CONCLUSION

To our knowledge, there is no quantitative analysis of 
Grover’s iterative search algorithm. In the current paper, 
we showed how the amplitudes and hence the probabili-
ties of finding a single marked state and unmarked states 

evolve at each iteration for various qubit states. We also 
discussed the potential improvement of Grover’s quan-
tum search algorithm. The study performed in the current 
study can be summarized in two steps: First, we analyzed 
the quantitative analysis of Grover’s search algorithm by 
calculating the amplitudes and hence the probabilities of 
finding the marked and unmarked states for various qubit 
states from n=5 to n=27 qubits. The calculations showed 
that while the probabilities of the marked states increase 
smoothly with increasing the number of iterations, the 
probabilities of unmarked states decrease smoothly with 
increasing the number of iterations. Second, we proposed 
an improved version of Grover’s search algorithm. The cal-
culations showed that a great speed-up is achieved after 

0 2 4 6 8 10 12 14 16 18

0,0

0,2

0,4

0,6

0,8

1,0

1,2

Pr
ob

ab
ilit

y

Number of Iterations

 |A|2

 |B|2

n=45
P=0.6841 at 16th iteration

  
-2 0 2 4 6 8 10 12 14 16 18 20

-0,2

0,0

0,2

0,4

0,6

0,8

1,0

1,2

Pr
ob

ab
ilit

y

Number of Iterations

 |A|2

 |B|2

P=0.9194 at 16th iteration 

n=50

(i) (j)

Figure 6. Probabilities of finding the marked and unmarked states.

Table 1. Comparison of the number of iterations and elapsed times for Grover’s and proposed method

Number of Iterations and Elapsed Time  

Number of 
 qubits (n)

Number of search 
space (N)

Iteration Number  
(Grover’s Method)

Elapsed Time  
(Grover’s 
Method)

Iteration Number  
(Proposed Method)

Elapsed Time  
(Proposed Method)

1 2 1 0.2 s 1 0.04 s
5 32 4 0.8 s 2 0.07 s
10 1024 25 5 s 5 0.18 s
15 32768 142 28.4 s 5 0.18 s
20 1048576 804 160.8 s 7 0.24 s
25 33554432 4549 909.8 s 8 0.29 s
27 134217728 9099 1819.8 s 9 0.32 s
30 1073741824 25736 5547.2 s 10 0.35 s
35 34359738368 - 11 0.40 s
40 1.09951E+12 - 13 0.46 s
45 3.51844E+13 - 16 0.56 s
50 1.1259E+15 -   16 0.56 s
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improvement is made to Grover’s search algorithm. For 
example, suppose a marked element is desired to be found 
in N=106 elements. Grover search algorithm can find that 
element in  iterations. However, after 
the improvement one can find the same element in only 

 iterations which is a great speed up in the 
search algorithm. However, in the proposed method, for 
some cases, the probability of finding the marked state does 
not smoothly increase, and for some cases, the probability 
of finding the marked state is not high enough. That would 
limit the use of our proposed method in real applications.
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