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ABSTRACT

In this article, a new operational matrix of fractional integration of Hermite polynomials is 
derived to solve multi-order linear fractional differential equations (FDEs) with spectral tau 
approach. We firstly convert the FDEs into an integrated-form through multiple fractional 
integration in association with the Riemann-Liouville sense. This integral equation is then for-
mulated as an algebraic equation system with Hermite polynomials. Finally, linear multi-order 
FDEs with initial conditions are solved with this method. We present exact and approximated 
solutions for a number of representative examples. Numerical results indicate that the pro-
posed method provides a high degree of accuracy to solve the linear multi-order FDEs.
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INTRODUCTION

The calculus of fractional order can be considered as a 
generalization of ordinary differentiation

and integration to arbitrary order. The fractional cal-
culus was born in 1695 with G.W.Leibniz’s question aris-
ing the uncertainty of the rational order of the derivation 
[1]. Fractional calculus’ history can be found in [1-3]. 
Fractional differential equations (FDEs) have gained 
an increasing interest with a wide range of significant 
applications within science domain [4-7]. Examples of 
application areas are mechanics [8], biology [9], sig-
nal processing [10], economics [11] and control theory 
[12]. The main motivation behind the research of FDEs 
is its high accuracy when compared with integer order 

models, providing a high level of flexibility for choosing 
degree of derivation. This is because FDEs ensure more 
realistic models for complex real-world problems. In 
order to solve the FDEs, efficient solutions are required 
accurately in which different methods have attempted to 
solve FDEs. In recent years, spectral methods have been 
an effective method for numerical solutions of FDEs, par-
ticularly in the area of computational fluid dynamics. A 
typical example of spectral methods attempts to formu-
late Jacobi pseudospectral scheme to solve multi-dimen-
sional fractional Schrodinger equations in association 
with various boundary conditions [13]. It solves the 
variable-order FDEs by deriving the operational matri-
ces for fractional variable-order of the derivative and 
integral with Jacobi polynomials. A series of attempts 
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employing Laguerre polynomials have been carried out 
to solve the FDEs with different spectral methods in the 
scope of numerical methods [14]. The work conducted 
in [15] resulted in the development of a novel algorithm 
targeting time-dependent problems under the basis of 
spectral Laguerre approximations. A recent work con-
sidered the modified Laguerre functions by proposing 
a novel tau method [16]. It is based upon the opera-
tional matrix of fractional integration (OMFI) inspired 
by Riemann-Liouville paradigm, highlighting the effi-
ciency of the proposed idea using illustrative examples. 
Another work exploited the Chebyshev polynomials in 
order to present a fractional radiative transfer equation, 
whereby the multi-dimensional issue is approximated by 
FDEs system [17]. In [18], a new explicit solution, which 
is targetted for shifted Chebyshev polynomials with flex-
ible degree and fractional order, is formed to figure out 
multi-term FDEs. To solve the same linear problem, the 
work in [19] combined the shifted Chebyshev polynomi-
als and extended spectral operational tau approach.

Jacobi polynomials have recently gained an import-
ant interest in both theory and practice. A derivation of 
shifted Jacobi operational matrix of fractional deriva-
tives and spectral tau approach are applied together for 
solving the multi-term FDEs [20].To solve the nonlinear 
Langevin equation, on the other hand, a jacobi Gauss 
Lobatto collocation method is proposed in [21]. Authors 
in [22] included shifted Jacobi polynomials for a deri-
vation of an OMFI using Riemann-Liouville, resulting 
in a direct solution of FDEs. An operational version of 
Legendre- tau technique to numerically solve the multi-
term FDEs is also proposed in [23]. An extended work 
of Legendre polynomials presents an implementation of 
operational matrix with the sense of Riemann-Liouville 
[24]. Recently, a numerical solution for solving linear and 
non-linear FDEs is presented using Bernoulli polynomials 
with the methods of tau and collocation [25]. In this study, 
we attempt to present a new solution for the integrated 
form of FDEs with Hermite polynomials along with the 
fractional integration’ operational matrix with the sense of 
Riemann Liouville. To do this, FDEs are initially re-writ-
ten in the integral form which is then converted into an 
algebraic equation system with the introduction of the 
OMFI of Hermite polynomials. Upon the solution of the 
algebraic equations with initial conditions, we obtain 
exact and approximated solutions for a number of illustra-
tive problems. The organization of the paper is as follows. 
Section II introduces the required notations and prelimi-
naries, particularly Riemann-Liouville. The derivation of 
the Hermite OMFI is presented in section III. The opera-
tional matrix derived in the previous section is applied to 
solve linear FDEs in section IV. In section V, the proposed 
methods are implemented to various representative exam-
ples. Finally, the paper is concluded in section VI.

PRELIMINARIES AND NOTATION

The Fractional Integration in Rieman-Liouville Sense 
 The most common definition of Rieman-Liouville inte-

gration is:

  (2.1) 

and if v = 0, then

   (2.2) 

A significant property of Rieman-Liouville integration 
part is:

  (2.3)

The definition of Rieman-Liouville fractional deriva-
tion of order v is:

  (2.4)

where  and m is the smallest integer 
greater than v.

Lemma1. If  then, 

 and

  

(2.5)

The Properties of Hermite Polynomials
Let  and  be the weight function 

on . The analytic form of Hermite polynomials of degree 
i is defined [26]

  
(2.6)

where  and .
Hermite polynomials satisfy this recurrence relation 

   (2.7)

The set of Hermite polynomials are orthogonal polyno-
mials is an orthogonal system, namely

  (2.8)
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where  indicates the function of Kronecker 

and .

HERMITE OPERATIONAL MATRIX of FRACTIONAL 
INTEGRATION

In this section, we aim to derive an OMFI for Hermite 
polynomials. Let , then  can be defined in 
terms of Hermite polynomials as

  (3.1)

Then, coefficient  can be written as

   (3.2)

The initial (N + 1) terms of Hermite polynomials are 
only taken into consideration, such that 

   (3.3)

where 

  and
  (3.4)

When we define q-step repeating integration of Hermite 
vector  by  it will be 

   (3.5)

where q indicates a fixed integer value and  rep-
resents the actual operational matrix of integration of .

Theorem 1. Let  be Hermite vector and v > 0 then 

  (3.6)

where  shows  OMFI of order v in 
the Rieman-Liouville sense which can be given as follows:

   

(3.7)

where

   
(3.8)

Proof: We will apply Rieman-Liouville integration to 
the analytic form of Hermite polynomials as:

   

(3.9)

If we approximate  by N + 1 Hermite polynomial 
series; we obtain

  (3.10)

where cj is given from (3.2) and it is

   (3.11)

Then in virtue of (3.9) and (3.10), we obtain 

  (3.12)

where

  
(3.13)

HERMITE TAU METHOD WITH OPERATIONAL 
MATRIX

In practice, various problems are driven by initial value 
conditions of multi-term FDEs. This section modifies the 
Hermite tau method with the operational matrix for solving 
the FDEs. Each step of the whole process is given below.

   (4.1)

with initial conditions

  (4.2)

where  are real constants and m-1 < v ≤ 
m,  and  0 < β1 < β2 < ⋯ < βk < v and f(x) is source func-
tion [16]. Rieman-Liouville integral of order v is applied to 
(4.1) after utilization (2.4), an integrated form of (4.1) is 
obtained, such as 

  
(4.3)

 

where . This states that

   (4.4)
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where 

 
(4.5)

To apply Tau method with OMFI for Hermite polyno-
mials to solve the fully-integrated problem (4.4) given by 
initial conditions (4.3), u(x) and g(x) are approximated by 
the Hermite polynomials as 

   (4.6)

  (4.7)

where the vector  can be calculated 
from (4.7), whereas  is unkown vector. We 
then appply Rieman-Liouville integral of order v and (v – 
βj) of the approximate solution, it is re-written as 

   (4.8)

and 

   (4.9)

The residual RN(x) will be given as [24-25]

   (4.10)

 with Tau method, by applying 

   
(4.11)

N - m + 1 linear algebraic equations are generated. Then 
by using (3.2) and (4.6) for (4.3) we generate m linear equa-
tions. Then by solving these two sets of equations, we get 
the vector C. From the vector C, we obtain the approximate 
solution uN(x).

ILLUSTRATIVE EXAMPLES

Example 1. The first example is this following problem

   
(5.1)

whose exact solution is u(x) = x2. 
By applying our method for N = 2, we can write the 

approximate solution as

From (3.8), we can find 

By using equation (4.10) and (4.11) we obtain 

   (5.2)

Now by applying (4.3) for the initial condition we have 

  
(5.3)

By solving linear system (5.2) and (5.3) we get 

 

thus our solution 

which is the same as the exact solution.
Example 2. We now consider the following initial value 

problem as follow

   (5.4)

whose exact solution is given by u(x) = x3.
For N = 3, if we apply our tecnique to this problem, the 

approximate solution 

and 

By using (4.10) and (4.11) we get 

  (5.5)
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  (5.6)

Now by applying (4.3) we get

   (5.7)

   (5.8)

By solving Eqs. (5.5)-(5.8) we have 4 unknown coeffi-
cients, which are found as

 

Thereby we can write our solution as

Example 3. Another example is considered

The exact solution of this example is:

With our method for N=2, we obtain the following 
equations

Upon solution of these algebraic equations, we present 
the following values of C parameters

Therefore, our proposed method successfully finds the 
exact solution as

Example 4. Following problem is also considered

  (5.9) 

whose exact solution is u(x) = x2.
For N=2 if we apply our method and we obtain 

 

From here, the approximate solution is obtained the 
same as the exact solution like 

Example 5. Consider this initial value problem 

  (5.11)

whose exact solution is u(x) = x3.
After applying our technique for N = 3 we get 

The approximate solution is uN(x) = u(x) = x3.
Example 6. The following inital value problem is 

considered

  (5.12)

with conditions

Also, we have the second initial condition valid for only 
α > 1 [27]. The exact solution is given as:

The proposed method solves this problem, and the 
absolute error is given in fig. 1 for α = 0.75, 0.85, 0.95 and 
N = 4. It is important to note that the exact solution con-
verges to the analytical solution of exp(-x) with α = 1. It can 
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Figure 1. Comparisons of u(x) with varying α = 0.75, 0.85, 
0.95.
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be seen that our method presents a good approximation in 
comparison to results given in [23]. 

In order to show the results for α > 1, where exact solu-
tion is given as cos(x) with α = 2, we selected three values of 
α, as indicated in fig. 2 below. A good balance between the 
exact solutions and obtained solutions is achieved. For α = 
1.5, the best results are achieved with a very low error ratio.

Example 7. Consider the following equation 

  (5.13)

with conditions

We obtain approximated solutions for v = 0.5 and 1.5 
with varying N, which are illustrated in Table 1 and Table 2 
compared with the exact solution. In this solution, we use a 
special case for a = b = -1. The results exhibit a satisfactory 
approximation solution with solutions presented in [24]. 
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Figure 1. Comparisons of u(x) with varying α = 1.5, 1.75, 
1.95.

Table 1. Numerical results in comparison to exact solution for v = 0.5

x N=2 N=3 N=4 N=5 Exact Solution
0 0 0 0 0 0
0.1 0.0291 0.0343 0.0378 0.378 0.03975

0.2 0.1164 0.1352 0.1488 0.1492 0.157036

0.3 0.2619 0.2998 0.3293 0.3306, 0.347370

0.4 0.4656 0.5251 0.5746 0.5779 0.604695

0.5 0.7275 0.8080 0.8798 0.8863 0.921768

0.6 1.0476 1.1458 1.2393 1.2502 1.290452

0.7 1.4259 1.5353 1.6468 1.6633 1.702008

0.8 1.8624 1.9736 2.0955 2.1185 2.147287

0.9 2.3571 2.4578 2.578 2.6078 2.617001

1 2.91 2.9848 3.0863 3.1224 3.101906

Table 2. Numerical results in comparison to exact solution for v = 1.5

x N=2 N=3 N=4 N=5 Exact Solution
0 0 0 0 0 0
0.1 0.0291 0.0304 0.0319 0.0321 0.125221
0.2 0.1164 0.1187 0.1245 0.1246 0.033507
0.3 0.2619 0.2607 0.2731 0.2717 0.267609
0.4 0.4656 0.4518 0.4729 0.4675 0.455435
0.5 0.7275 0.6879 0.7186 0.7061 0.684335
0.6 1.0476 0.9646 1.0049 0.9816 0.950393
0.7 1.4259 1.2775 1.3260 1.2884 1.249959
0.8 1.8624 1.6223 1.6762 1.6213 1.579557
0.9 2.3571 1.9947 2.0491 1.9752 1.935832
1 2.91 2.3903 2.4385 2.3458 2.315528
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CONCLUSION

This paper presented a general derivation for the OMFI 
of the Hermite polynomials. Riemann-Liouville sense is 
exploited to define the FDE as a form of fully integrated 
integration. The operational matrix obtained is a key part 
of the idea, in order to approximate the numerical solutions 
of the linear FDEs. A number of signals existed in the inte-
grated form equation are treated as linear combinations of 
the Hermite polynomials. Then, a final algebraic equation 
is obtained with the integrated form equation introduc-
ing the OMFI of the Hermite polynomials. The numerical 
solutions obtained showed the accuracy of the proposed 
method.
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