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Abstract. This study aims to investigate the application of perturbed
trapezoid inequalities in the numerical integration of n-times differen-
tiable and logarithmically convex functions. The objective is to analyze
the accuracy of numerical approximations, such as the trapezoidal and
Simpson’s rules, by providing error bounds through these inequalities. By
examining how these methods apply to log-convex functions, the study
presents suggestions into optimizing computational approaches and un-
derstanding the properties of these functions in various areas. The ob-
tained findings are expected to contribute to the development of more
precise and efficient in numerical integration techniques such as the rect-
angle, the trapezoid, and Simpson rule.
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1 Introduction

Log-convex functions play a crucial role in mathematical analysis and optimiza-
tion. A function is considered log-convex if its logarithm is convex. The com-
bination of such functions with the perturbed trapezoidal inequality has wide
applications in various disciplines requiring precise numerical integration and er-
ror estimation. This approach enhances the accuracy and reliability of solutions
in disciplines such as numerical analysis, optimization, economics, statistical
analysis, computational biology, engineering, and finance.

By taking advantage of the properties of logarithmically convex functions, it
is possible to obtain higher performance and more accurate results in applications
in these areas. Numerical integration methods often employ the trapezoid rule.
However, for log-convex functions, the perturbed trapezoid inequality refines
these approximations, reducing error and improving accuracy. Particularly, in
solving differential equations or evaluating definite integrals numerically, log-
convex functions can be integrated more precisely through this inequality. This
is of importance in applications demanding high precision, such as computational
physics or engineering simulations.

Besides, optimization problems involving log-convex cost or utility functions
benefit from more accurate gradient and integral approximations, leading to
better convergence rates and more reliable solutions. In economic models, log-
convex utility or production functions are frequently used. Accurate integration
of these functions is critical for resource allocation, cost-benefit analysis, and
policy-making. In statistical analysis, log-convex probability density functions
commonly appear, and the precise estimation of expected values and other statis-
tical measures is essential for hypothesis testing, confidence interval construction,
and inferential statistics. In engineering disciplines, particularly structural en-
gineering and control systems, sensitive numerical integration is often required.
Log-convex functions are utilized in stress-strain relationships, material prop-
erties, and control algorithms. In finance, log-convex functions are employed in
the modeling of phenomena such as option pricing, risk assessment, and portfolio
optimization, where accurate numerical integration is vital.

Logarithmically convex functions have been studied by many authors. Dragomir
and Mond [I] focused on generalizing or presenting Hermite-Hadamard type in-
tegral inequalities for these functions in different forms by using the properties
of logarithmically convex functions. Dragomir [2] presents two improved versions
of the Hermite-Hadamard integral inequality for logarithmic convex functions.
That is, he developed stronger or more sensitive forms of the Hermite-Hadamard
inequality for log-convex functions. Aujla and Bourin [3] introduced new inequal-
ities in matrix versions for both concave and log-convex functions and they also
contributed to the extension and proof of some important existing inequalities.
Alomari and Darus [4] generalized important results such as the Hadamard and
Jensen inequalities obtained for coordinated log-convex functions for functions
by defining them on a particular rectangle. Zhang and Jiang [5] investigated
some properties of logarithmic convex functions and proved integral inequalities
for such functions. They also presented a formula for estimating the remaining
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terms in the expansion of the Taylor series as an applied consequence of log-
convex functions. Yang et al. [6] generalized the Hadamard inequality regarding
log-convex functions and introduced new extended versions for these classes of
functions. Niculescu [7] discussed the existence of a strengthened version of the
Hermite-Hadamard inequality for log-convex functions. Dragomir [8] presented
new inequalities of the Hermite-Hadamard type for log-convex functions defined
on real intervals. Jain et al. [9] have discussed various estimates of the right (or
left) side of the Hermite-Hadamard inequality. These estimates are considered
for cases where the absolute values of the second (or first) derivatives of a func-
tion are log-convex under positive real exponents. Conde et al. [10] examined
norm and skew angular distances in a normed space. By using convex functions,
they aimed to improve and reverse some important results in the literature. This
study focuses on the application of perturbed trapezoid inequalities in numerical
integration of logarithmically convex and n-times differentiable functions.

The main purpose of the study is to analyze the accuracy of approximate
integrals made with numerical methods such as trapezoidal and Simpson rules
through these inequalities and to reveal the error limits. Additionally, by dis-
cussing how these methods can be applied to log-convex functions, it presents
suggestions on the optimization of numerical calculation methods and a better
understanding of the properties of these functions in various fields. It is expected
that the findings will contribute to making numerical integration methods more
precise and efficient.

2 Preliminaries

A function ¢ : I C R — R is convex on [ if the inequality

¢rea+(1—-r)y) <ré(x)+(1-r)¢(y), (1)

holds for all z,y € I and r € [0,1] . The function ¢ is said to be concave if (—¢)
is convex. For numerical integration, trapezoid inequality is given by

[ 6 (u)du— 3 (y = 2) (¢ (@) + 0 (9))] < $5Mz (y - 2)° (2)

where ¢ : [z,y] — R is assumed to be twice differentiable on z,y € I with the
second derivative bounded on (z,y) by My = supye(a,y) [¢” (v)] < 400 [11].

Definition 1. [T9] : A positive function ¢ is called log-convex on a real interval
I'=a,b] if

plre+(1-r)y) <o) o), (3)

for all x;y € I and r € [0,1]. If ¢ is a positive log-concave function, then
the inequality is reversed. Equivalently, a function ¢ is log-convex on I if ¢
is positive and log-convexr on I. Also, if ¢ > 0 and ¢" exists on I, then ¢
1s log-convez if and only if ¢.¢" — (cZ)’)2 > 0 [I2]. Note that if ¢ and ) are
conver functions and ¢ is monotonically nondecreasing, then ¢ov is convex.
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Moreover, since ¢ = exp (log @), it follows that a log-convex function is convex,
but the converse is not true [I3[T7)]. This fact is clear from inequality (@) by the
arithmetic-geometric mean inequality, then one obtains

¢ (2) " (y) <rd(x)+ (1 —1) o (y) (4)

for all xz,y € I and r € [0,1]. If the above inequality (@ is reversed, then ¢ is
called logarithmically concave or simply log-concave .

Theorem 1. [T]] Let ¢ : [x,y] — R be continuous on [z,y] and twice differen-
tiable on (x,y) and assume that the second derivative ¢" : (x,y) — R satisfies
the condition:

v< P < (5)

for all w € (z,y). Moreover, we have the inequality

6 () = (u— 25 @' () + W57 + & (u— 752)?] =2 1 g (1)

<lp-v)[Fy—2)+]u— =2 (6)

for all w € (z,y) and the perturbed midpoint inequality is given as

6 (52) + 1 (y—2) (' () = ¢/ @) = 725 [l o (D) at)

S%z(so—v)(y—w)z- (7)
Thus, we have the perturbed trapezoid inequality
2290 — (=) (6 () — o (@) = 5 JY @ (1) ]
séwfvﬂyf@? (8)

2.1 Application to the midpoint and trapezoidal formulas

Let d be a division of the interval [z,y], i.e., x =up <up < - < Uiy < U; =Y
and consider the quadrature formulas;

7 é(r)dr =T (¢,d) + E(¢.d) 9)

and
[Lo(r)ydr =T (¢,d) + E' (¢,d) (10)

where
T (6,d) = S5 (wign — i) 6“5 (11)

and
T/ (9,d) = X (i — ug) (Lbpleess)) (12

are the midpoint and trapezoidal approximations, respectively, and E (¢, d) and
E' (¢, d) are the associated errors [I5]. Here, we derive some error estimates for
the sum of midpoint and trapezoidal formulas.
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Proposition 1. [16] Let ¢ : I CR — R be a differentiable function on I° such
that ¢' € L' ([z,y]), where x,y € I° with x < y. If |¢'| is convex on [x,y], then
one obtains

B (¢,d) + B (9, d)] < § 375 (wier — ) [/ (wi)| + ' (uia)l] (13)
for every division d of [z, y].

Theorem 2. [16] Let ¢ : I C R — R be a differentiable function on I° such
that ¢" € L' [x,y], where x,y € I° with x < y. If |¢"'|? is s-convex on [x,y] for
q > 1, then we have

Q=

B (6,d)] < o (3)'

X {Z?:ol (% | (ui)|* + (% + WQ(SWB(S + 1771)) 6" (wit1)] )

Q=

+ (it 9 Qs+ (3 + s 6+ 1) 107 ")}

(14)

for every division d of [x,y].
Let I, :x = u1 <ug < -+ < Up_1 < Uy =y be a division of the interval
[z,y], & € [uj + 5%,74]-“ — (5% ;5 =0,1,--- ,n—1 a sequence of intermediate
points and h; = uj41 —uj; 5 =0,1,--- ,n — 1, then, the quadrature is given by

the following theorem.

Theorem 3. Let ¢ : I CR — R be a twice differentiable on (x,y) whose second
derivative ¢" : (z,y) — R belongs to L' (z,y) i.e [|¢"||; == [V||¢"||dr < oo.
Then, the perturbed Riemann’s quadrature formula holds

[ o (r)dr = A(6, ¢ 1n,€,6) + R(¢, ¢, In, €, 0) (15)
where
n—1 wi+u
A9, 1, €,0) th (&)~ (1=0) h (@ — J“)¢> (&)
§=0
5 — 52 n—1
5 ¢ (uz) + ¢ (ujt1)) — bl Z h? (¢ (ujt1) — ¢ (uy))
§=0 §=0

(16)
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and the residual term R (¢, @', I,,,&,0) satisfies the estimation;

IS w1 (17

R (6,61 €.0) 22[ e e | N
5 2n— 1h2 .
<(1-3) >3 14

(17)

where 6 € [0,1] and u; + (5% <& <ujqr— 5%. The perturbed midpoint rule in
the following holds:

[ 61 =M (6.6, 1) + Bar (6.1 (18)
where
M (6,6, 1) = Y57 hyo (Mt ) (19)
and the remainder term Ry (¢, @', I,) satisfies the estimation:
B (660 1) < 10"l 50 % (20)
The perturbed trapezoidal rule is given by the following theorem (see [10]).

[ o(r)dr =T (6,¢', 1) + Rr (¢, ¢, I,) (21)

where

T(¢:¢' 1) = 5 2250 hy (& () + & (wj1)) — § 32570 hy” (¢ (ujen) — ¢ (uy)
(22)

and the remainder term Ry (¢, ¢', I,) satisfies the estimation:
n—1 h?
|Rr (6,0, 1) < X020 % 116”1, - (23)

Theorem 4. Let I C Ry — R4 be an n-times differentiable mapping on I°,
x,y € I° with © < y, ag,a1, -+ ,a, € R where n is even number. If ’(b(”)| 18
log-convez on [x,y], then the following inequality holds:
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/¢ POICETIT

( (=D . (n—1). ( —2).an+ +4.3.2.04] [ (s (n—t)
- . [0 (@) + 6 (y)]
(n—3)
- n.(n—1).a, +---+4.3a4 + 3.2a3 + 4a e e
+ (y ) [n. ( ) 2n ' 4 3 2] [(Z)( 3) (y) _¢( 3) (x)}
nl.ay
(y—2)" P [nan + - +2.02] [ o (n—2)
B 2.nl.a, {(b (@) +9 (y)}
(=) an +- +a1+2a0] [, (n—1)
- . (60 () = 6" (@)
n n —i—1
y—x) (n) [ o (x) } { , ( o™ (x) ﬂ
< —In I'ec+1)—-I{i+1,—In
20l Ja] { 2 | I v+ 5 (4)
n —i—1
o™ () : , o™ (y)
+ o™ (z) [—m’ - F(i+1)—I(i+1,—In|— .
2|75 () 5 ()
(24)
Proof. See [17] for proof.
Theorem 5. Let I C Ry — R4 be an n-times differentiable mapping on I°,
2y € I° withe <y, p>1 with%—k%: 1, ag,a1, - ,a, € R and n is an even
number. If ’(b(”)’q is log-convex on the interval [x,y], thus one obtains
‘ / (i 2@ TG
—x
)" . (n=1). (0= 2) an+ -+ 43204 [ (o) (et
Sxiry (#7040 )
(n—3)
- n.(n—1).a, +---+4.3a4 + 3.2a3 + 4a n— n—
L= (=) 4 3 + 4as)] {gb( 9 () — g3 (z)}
2.nl.a,
(y—2)" 7 [nan + - + 2.09) (n—2) (n—2)
i [ @)+ 0" )]
(y— )" Van+ - +a1 +2a0] [ 1) (n—1)
+ Sl 4" W)= @)
) () |2 a ) () |2 a
o™ (x) ¢ '™ (y) ¢
—2)" [ i w7 lemw| 1 w7 o] 1
= éyn' Ia) | (Z ' . 1) ‘(b( ') ol | * ’¢( (@) o0 ()
M llnl \555 (ip+1)» qln‘¢<n)(y) qln‘ab(")(w)
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Proof. See [17] for proof.

Theorem 6. Let I C Ry — Ry be an n-times differentiable mapping on I°,
x,y € I° with x <y and p > 1 such that % —|—% =1, ag,a1, - ,an € R, where

n is an even number. If the mapping ‘¢(")|p is log-convex on [x,y], then the
following inequality holds:

‘ _x/¢ ¢(y)+m

)" [ (n 1)2 T(;La—nz) dn o+ 4.3.2.04] (609 (@) 4 609 ()] )

. (y—2)"" [n.(n—1) ;nnfan -+ 4.3a4 + 3.2a3 + 4ay] [¢(n,3) () — 6= (z)}
o= Pt 2] 0 5 00 )

L= oM [;w;fan -+ a1 + 2ag) [dy(nfl) (y) — oY (x)} ‘

< [ lal]
[‘fb(” ‘ <Zlaz { pln () Eii }“ [F(z’—i—l)—]“(i—i—L—pln ‘(ZE:; Ezi )D
‘¢(”) ‘(Za {— n’ﬂb(:) Ez; H - [[‘(i-l—l)—f'(i—i—L—pln z:; gz;DD]

Proof. See [17] for proof.

3 Main Results

Corollary 1. Under the assumptions of Theorem [4), for n = 2, we have the
inequality

_x/aﬁrdr— () + 6 (1) +

el

(y — ) [az + a1 + 2a0]
4a2

(¢ (y) — ¢ ()]

oS [ufg@] " frenr (o @)
d i{ ] freen-r (e nnf S]]

(27)
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Corollary 2. Under the assumptions of Theorem[J, for n =2, one obtains

—x) [ag + a1 + 2ag]

(6" (y) — ¢ (2)]

/y¢(r>dr—<¢<x>+¢<y>>+ Y

=

4a2
o"@ |t 7 o7 477
(y— =) ( Ll ) ol e v v lo@| L
T " W —— = | +|l¢" @) 7
4. |az| ; (ip+1)7 qln ;’;Eg; qln iuﬁii
(28)
Corollary 3. Under the assumptions of Theorem[, for n = 2,
— 2

L [omar- @@ ey LD rar gy ) g )

-2 [& Jal ]

4. |as| ;7;4—1

2 —i—1 %
(ol - o)
i 1 r 1) —-r 1,—pl
x (8" (y)| <§a|{ Pl (i+1) i+1,—pln )
2 —1—1 %
" ¢>”(ff)} { , ( ¢”($)m
1 l=pl r'(i+1)-r 1,—pl
1o <y>(;|a|[ pin |50 (1) =1 (i1, -pm |00
(29)

is obtained.

4 Applications in Numerical Integration

Let d be a division of the interval [z,y], i.e., z =ug < up < -+ < Up—1 < Uy = Y,
with h; = uj11 —uy for j = 1,2,3,--- ,n — 1. Consider perturbed trapezoidal
rule given by:

/ 6(r) dr =T (6,0, 1) + Re (6,6, Tn) (30)
where
n—1 n—1
T (6,0, In) = > _ 16 (u5) + 6 (uj1)| hj+ laz +Zla:_ 200] D1 () — ¢ (wy)] 1
j=0 =0
(31)

is the trapezoidal approximation and Ry (¢, &', In) is the associated error term.

Theorem 7. Assume that ¢ : I = [z,y] = (0,00) is a function with second-
order derivatives on I1° such that ¢" € L' ([z,y]), where z,y € I° with x <y .
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If |¢"| is log-convex on [x,y], then one obtains

|r (6,6, 1)
<4 |1a2|:§_:: [as“(ujﬂ)g [—m m }“ [F(i+1)—r<z+1,—1n m )H
e ] ruen-r ooz

(32)
for every division d of [x,y], t.e., x =ug <uyp < - < Upoq < Up =Y.

Proof. Applying Corollaryon the subinterval [u;,uj+1], (j =1,2,3,--- ,n—1)
of the division d yields

‘RT (¢7 ¢I7[h)‘
_ n—1 Uj41
S )+ st -SRI )+ ()] - [ ewa
j=0 j= uj
- 2 1 e
< g [0+ 6 )] = L ) 4 0 gl [ o0
LS|y 3 o (w) 177 [p . & (uy)
= Tl =0 [¢ (ujﬂ); [_ ln‘éﬁ” (uj41) } {F G+1)-T (H_ 1’_ln‘¢” (uj41) ﬂ
2 —i—1
" (s |9 ) } [ T < |27 () )]
e (“””;[ wrel] e (e
(33)
Theorem 8. Assume that ¢ : I = [z,y] = (0,00) is a function with second-

order deriwatives on I° such that ¢" € L ([z,y]), where x,y € I° with z < y,
p,q>1, % + % = 1. If |¢"|* is log-convex on |x,y], then one obtains

‘RT (¢7 (b/alh)‘
2
1 |a1|
<
4. Jaa| (Z (z‘p+1>é>
n—1 (jﬁ/(/(uj)) 1 _ % ¢;/(/Z(Lj+)l) ! -1 %
x 34167 ()| + |16 ()| 2| x B
‘ ¢ (uy) In | &/ (i)
Jj=0 ¢”(u +1) q & (uj)
(34)

for every division d of [x,y], i.e., T =ug <up <+ < Up_1 < Up =Y.
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Proof. Applying Corollaryon the subinterval [u;,uj+1], (j =1,2,3,--- ,n—1)
of the division d gives

| (6,6, 1)

_ n—1 Uj+1
Z 0w) + 6 (un)] by - ZEEEZON (o )+ o w2 - [

4.CL2

6 u5) + 6 uyen)] - TELEZO () 4 o s - o [ 60

=0 4.0,2 j j
4 |a‘2| i=0 (Zp"‘l)p
1
n—1 ¢¢'('(UJ)) 1 _1]° ¢;(1gj+)1) 1]
Wil ey

S D [P L] eSSy e PR O Al

j= In g ql Uj+1

j=0 R vy crey) @ (u;)

(35)
Theorem 9. Assume that ¢ : I = [z,y] = (0,00) is a function with second-
order derivatives on I° such that ¢" € L' ([x,y]), where z,y € I° with x < y,
p,q>1, % + % = 1. If |¢"|" is log-convex on [z,y], then one obtains
|r (0. ¢’,Ih>\
11
[
1+ 1
- 1
¢ (uy) |17 , , 9" (uj) '
X Q" (ujs1) a;| [—pan rG+1)-r(i+1,—phh|——2—
o 'Z (Z' & (1) G+1) & (1)

" (ujt1)
¢ (uy)

)}

}_H [F(i—l—l)—F(i—i—l,pln

// 2 UJJrl)
+ |¢ u] Z |: ¢// )

=0

for every division d of [x,y], i.e., T =ug <up < -+ < Up_1 < Up =Y.
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Proof. Applying Corollaryon the subinterval [u;,uj+1], (j =1,2,3,--- ,n—1)
of the division d yields

|r (6,0 11)
_ n—1 Uj+1
= 5 o)+ iy — 20 > 16 )+ ¢ i = [ o
j=0 i= uj
n—1 )
+a1 +2a , 1 [
< 3o 1)+ agen)) - EELEER G 1)+ 8 ey = [ 60
s T
! |a2| [;’L-{-l
K o () []7 o ) )
/! . . _ J . _ - _ J
A o 5 (S [l F | e - (o )]

¢" ( u]+1)

¢ (u;)

¢ (ujg1)
¢ (uj)

)}

}“ [r(z‘+1)—r(z’+1,pln

2
+ 19" (u;)] (Z {pln

=0

5 Applications to Special Means

In this section, we will apply the inequalities obtained for the log-convex func-
tions presented in [I7].

Proposition 2. Let z,y e R and 0 < x < y, n € N where n > 2 and n is an
even number. Then, the inequality in the following holds
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2 _ 2
‘le(y lngyJ_J; 1nx) _A(Zvy) +A(xln\/5,yln\/§)+"'

()" (y— )" (n—6)![n. (n—1).(n—2).a, + - +4.3.2.a4]
dnlan. H (x5 y"=5)
()" 2@y —2)"? (n—=5)[n.(n—1).an + -+ 4.3.a4 + 3.2.a3 + 4.a9]
4nl.an H (x4, —yn4)

()" 'y —2)"? (n— D [n.an + - + 2.09]
4.nl.ay H (zn=3,yn—3)

(_1)n (y B x)n—l (n _ 3)' [an +---+a;+ 2.Cl0]
4.nla, H (zn=2,—yn—2)

[ RN e P A )|

— 2.nl a,] —

(LB o ()] e (e (2]

=0

+

+

where L, A and H represent the logarithmically, arithmetic and harmonic
means, respectively.

Proof. The proof is obtained from Theorem (4| such that ¢ (u) = uln/u, u €
(0,00) .

Proposition 3. Letx,y € R with 0 < z < y, %—I—% =1,VYp,q > 1, n € N where
n > 2 and n is an even number. Then, one obtains

2 2
‘i (y 1ng;_i lnx)_A(Z’y)—i-A(xln\/E,yln\/@)—F"'

(_1)77,73 (y o x)n*4 (n — 6)! [n. (n - 1) . (TL — 2) Ay + e + 4.3.2.@4]
4.nla,.H (x5 y"=5)
(*1)7172 (y — x)nig (n=5"n.(n—1).ap+---+4.3.a4 + 3.2.a3 + 4.as]
4nlan H (x4, —yn—4)

()" "y —2)" (n— 4 [n.a, + - + 2.a2)
4.nl.ay H (273, y"3)

(—1)" (y —2)" " (n = 3)! [an + -+ + a1 + 2.a0]
4.nl.a, . H (272, —y"—2)

—z)" (& a; n—2)! a(n=1)  g(n—1
< ($5 ol (B e, o)

+

+

Q=
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where L represents the logarithmically mean.
Proof. The proof follows from Theorem |5| with ¢ (u) = uIn\/u, u € (0,00) .

Proposition 4. Let z,y € R, 0 < = < v, %—i—% =1, VYp,qg > 1, n € N where
n > 2 and n is an even number. Then, the inequality in the following holds

2 _ .2
‘le(y lni_i 1n:1:> _A(Z’y)—i—A(xln\/f,yln\/ﬂ)-i-"'

(—1)n_3 (y — x)n_4 (n=6)[n.(n—=1).(n—2).an + -+ 4.3.2.a4]

+ dnla,. H (x5 y"5)
N ()" 2 (y—2)" 2 (n=5)[n.(n— 1) .an + - + 4.3.a4 + 3.2.a3 + 4.as]
d.nlan. H (x4, —yn—*)
N (=) y—2)" 2 (n— D! [n.an + - + 2.a9]
4.nl.an, H (zn=3,yn3)
N (=) (y—2)" " (n—3)! [an + - - + a1 + 2.a0]
4.nl.ay. H (zn2, —yn=2)

Proof. The proof follows from Theorem |§| with ¢ (u) = uln/u, u € (0,00) .
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