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Abstract 

Detecting faults in electrical machine systems is crucial for developing maintenance 

strategies. Modern technology enables personalized maintenance planning for 

system components by continuously or periodically monitoring systems with 

sensors. The first step in condition-based maintenance planning is predicting faults 

from sensor data. Monitoring vibration signals is one of the most preferred 

approaches for fault diagnosis in electrical machine systems. We have used a dataset 

containing vibration data recorded to detect intentionally created faults in an 

electrical machine system. The paper spots three popular methods to convert the time 

domain data into the frequency domain: power spectral density signal, spectrogram 

images, and scalogram images. Furthermore, we have analyzed the performance of 

the popular machine learning and deep learning methods with frequency-domain 

inputs. We have reported the results with accepted performance metrics such as 

accuracy, precision, recall, and F1 score. Our findings indicate that spectrogram 

images with the InceptionV3 model achieve maximum accuracy of over 98% 

accuracy among. The findings also highlight the necessity of carefully selecting 

model parameters based on the data type. 
 

 

1. Introduction 

 

Electric machine systems are among the most crucial 

components of the industry and hold a pivotal 

position in manufacturing facilities [1]. Faults or 

unplanned downtime in electric machine systems can 

lead to extensive financial consequences and damage 

to the reputation of facilities [2]. Consequently, 

developing maintenance strategies for electric 

machine systems becomes beneficial and imperative. 

While academic studies categorize maintenance 

strategies in various ways, many researchers 

unanimously agree on dividing maintenance activities 

into three fundamental groups: corrective, preventive, 

and predictive maintenance [3-5]. 

Corrective maintenance, which emphasizes 

post-failure recovery, and preventive maintenance, 

which aims to prevent potential failures before they 
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occur, represent traditional approaches. Since 

corrective maintenance requires intervention after a 

failure, it is preferred in areas where unplanned 

downtime is not critical and is tolerable. On the other 

hand, preventive maintenance, in facilities where 

continuity is crucial, deems postponing the failure to 

a more suitable time by taking overly precautious 

measures sufficient. This approach involves creating 

a periodic maintenance and repair plan considering 

the average lifespan of electric machine system 

components. However, inherent unpredictability 

remains a challenge for electric machine systems. 

Determining a precise timeframe for potential failure 

is difficult due to the numerous factors influencing the 

expected lifespan of system components [6]. This 

uncertainty often leads facilities to adopt cautious 

measures and rely on maintenance programs based on 

generalized service life. Selçuk [4] has elucidated that 
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such overly precautionary measures, especially 

concerning personnel and spare parts inventories, 

often lead to economic inefficiencies. 

In recent years, supported by technological 

advancements and the proliferation of sensor 

technology, predictive maintenance offers 

personalized maintenance programs for electric 

machine systems [7]. In this approach, sensors 

continuously monitor the health of the motor and 

promptly flag any abnormalities. Beyond mere 

detection, the aim is to evaluate the progression and 

criticality of abnormalities and then make informed 

decisions regarding appropriate maintenance or repair 

interventions. 

Two primary techniques dominate predictive 

maintenance in electric machine systems: current-

based and vibration-based methods. The former 

approach, as detailed by Niu et al. [8], relies on the 

analysis of the motor's current signal. On the other 

hand, the vibration-based approach utilizes 

strategically positioned sensors to identify types of 

faults that create a vibration signature [9]. While time-

domain analyses have occasionally been employed in 

both techniques, many modern studies [10] support 

frequency spectrum analysis. Tools such as Fast 

Fourier Transform (FFT), Short-Time Fourier 

Transform (STFT), Wavelet Transform (WT), and 

Power Spectral Density (PSD) commonly feature 

prominently in these analyses. 

Features derived from these analytical tools 

are then interpreted. Historically, expert judgments 

formed the basis of such interpretations. However, the 

emergence of complex computational techniques like 

fuzzy logic, artificial neural networks, machine 

learning, and deep learning has ushered in a new era 

of analysis [11]. Garcia et al. [12], outlining the main 

stages of the standard predictive maintenance process, 

have enumerated various stages ranging from 

continuous monitoring of motor health to the strategic 

preparation of maintenance and repair plans based on 

multiple determinants. The first step in predictive 

maintenance is the disaggregation of faults using 

current or vibration signatures. Predicting how each 

disaggregated fault will deteriorate over time 

constitutes the next step. Proposing specific 

maintenance and repair plans for the predicted types 

of faults represents the final step of the approach. This 

study sheds light on the classification stage of 

predictive maintenance, a critical intersection in a 

comprehensive process. Inspired by recent 

advancements, the applicability of machine learning 

and deep learning methodologies to detect 

mechanical abnormalities via vibration signatures of 

electric machines is discussed. To provide a holistic 

perspective, results from machine learning and deep 

learning models are presented using 1-D power 

spectral density and 2-D spectrogram and scalogram 

images. 

 

2. Material and Method 

 

The most encountered electrical faults are winding 

and rotor bar faults, while bearing faults, 

misalignment, and imbalance are the most prevalent 

mechanical issues. This article focuses on classifying 

the mechanical faults in electric machine systems 

using vibration signals. 

 

2.1. Dataset 

 

The Machine Fault Dataset, MaFaulDA [13], was 

utilized in the article. The experimental setup 

comprises a circular metal disk combined with a DC 

motor. By placing various weights onto the disc, the 

imbalance failure is simulated. The overall system 

contains two bearings: one placed between the motor 

and the disk and the other positioned at the end of the 

system after the disk. Throughout the remainder of the 

article, the locations of the bearings will be referred 

to as Location 1 and Location 2, respectively. The 

dataset includes radial, tangential, and axial vibration 

signals recorded from these locations. After analyzing 

the data, we decided to use only the vibration signals 

on the radial axis. The data for each experiment has a 

length of 250,000, with an observation period of 5 

seconds and a sampling frequency of 50 kHz. The 

dataset contains six distinct classes of data, consisting 

of five fault conditions and one healthy condition. 

Descriptions of the dataset are tabulated in Table 1. 

 

2.2. PSD 

 

PSD is a powerful tool for analyzing the frequency 

spectrum of signals. It serves as a mathematical 

measure of the power distribution across frequencies 

and finds widespread use in various applications such 

as communication [14, 15], power systems [16], 

optics [17], and more. Since anomalies in electric 

motors manifest differently in the frequency 

spectrum, PSD is also beneficial for fault 

classification studies. 

There are various PSD estimation methods, 

broadly classified as parametric and non-parametric. 

Parametric estimation techniques require modeling 

the system with a limited number of parameters using 

autoregressive, moving average, and autoregressive 

moving average models. The accuracy of estimation 

is directly proportional to the accuracy of the model 

created. 
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Table 1. The data amount for each class and dataset explanation.  

Class 
Number 

of Data 
Explanation 

Normal 49 
The data set has been created by 49 distinct experiments with different rotational 

speeds varying between 737 rotations per minute (rpm) and 3686 rpm. 

Imbalance 333 
The imbalance cases are created by placing various weights from 6g to 35g on 

the disc. For 44 different rpm values, 333 experiments have been conducted. 

Horizontal 

misalignment 
197 

Misalignments are created by horizontally shifting the motor shaft from 0.5mm 

to 2 mm over 197 experiments. 

Vertical 

misalignment 
301 

Misalignments are created by vertically shifting the motor shaft 0.51 mm to 1.9 

mm over 301 experiments. 

Overhang 513 
Deliberately damaged bearings (outer and inner track faults, rolling element 

faults) have been placed at Location 1 in the experiments. 

Underhang 558 
Deliberately damaged bearings (outer and inner track faults, rolling element 

faults) have been placed at Location 2 in the experiments. 

Total 1951  

Moreover, as the data size increases, the 

complexity of the method also increases. On the other 

hand, non-parametric approaches like the 

periodogram are more flexible and do not require a 

model or prior information about the system. Hence, 

they are suitable for fault detection applications in 

electric machine systems with nonlinear 

characteristics and difficult-to-model behavior. 

This study focuses on the non-parametric 

PSD estimation technique known as the Welch 

approach. The estimated PSD of the recorded 

vibration signals is utilized as input for deep learning 

methods. 

Within the Welch approach, the signal is 

divided into 𝐾 segments, each of length 𝑀, with the 

inclusion of a designated overlap ratio. Following this 

division, these segments undergo multiplication by a 

window function represented as 𝑤(𝑛). Utilizing a 

window jump size of 𝑅, the calculated weighted 

segments, designated as 𝑥𝑚(𝑛), are determined as 

outlined in (1). 

 

𝑥𝑚(𝑛) ≅ 𝑤(𝑛)𝑥(𝑛 + 𝑚𝑅) 

 𝑛 = 0,1,2, … , 𝑀 − 1, 𝑚 = 0,1,2, … , 𝐾 − 1 
(1) 

 

Subsequent to this, the periodogram is 

derived through the computation of the square of the 

absolute value of the 𝑁-length Fourier transform 

applied to the divided segments. The periodograms 

for each segment are calculated as in (2). 

 

𝑃𝑥𝑚,𝑀(𝑤𝑘) ≅
1

𝑀
|∑ 𝑥𝑚(𝑛)𝑒

−𝑗2𝜋𝑛𝑘
𝑁

𝑁−1

𝑛=0

|

2

 (2) 

 

 

Finally, the periodograms of all subsegments 

are averaged to obtain the overall PSD to decrease the 

variance. The overall PSD, �̂�𝑥
𝑊(𝑤𝑘), is evaluated as 

given in (3). 

 

�̂�𝑥
𝑊(𝑤𝑘) ≅ 𝑃𝑥𝑚,𝑀(𝑤𝑘) = ∑ 𝑃𝑥𝑚,𝑀(𝑤𝑘)

𝐾−1

𝑚=0

 (3) 

 

Figure 1(a) and Figure 1 (b) depict sample 

PSD estimates obtained from vibration signals taken 

respectively from Location 1 and Location 2 for each 

class provided in Table 1. Figure 1(a) illustrates that 

different peak points occur at distinct frequencies for 

each class, reinforcing the idea that the PSD of 

vibration signals obtained from this point is beneficial 

to distinguish between different types of faults. 

However, as shown in Figure 1(b), the sensor at 

Location 2 exhibits a level of DC noise that 

complicates the direct use of the data. 

 

2.3. Spectrogram 

 

A spectrogram is a powerful tool that visually 

represents the dynamic frequency changes over time, 

commonly used in analyzing sound and vibration 

signals. Vibration is a crucial precursor to faults and 

failures in electrical machines, with frequency spectra 

in vibration signals providing vital information about 

the nature and severity of faults. Hence, representing 

both time and frequency makes spectrograms a 

logical choice in fault diagnosis for electrical machine 

systems. 
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(a) (b) 

Figure 1. (a) The PSD estimation of the vibration signal on Location 1 and (b) Location 2 for each class 

The Fourier Transform is a fundamental 

approach to discerning a signal's frequency content, 

deriving the frequency spectrum of a continuous 

signal using (4). 

 

𝑋(𝜔) = ∫ 𝑥(𝑡)𝑒−𝑗𝜔𝑡𝑑𝑡
∞

−∞

 (4) 

 

where 𝑥(𝑡) is the time-dependent continuous signal, 

and 𝑋(𝜔) is the counterpart of 𝑥(𝑡) in the frequency 

domain. While Fourier Transform provides insights 

into the signal's frequencies, it lacks details about the 

occurrence time of each frequency component. When 

the frequency content by time is required to be 

analyzed, the STFT is one of the most preferred 

methods. Segmenting the signal into smaller time 

windows and applying the Fourier Transform after 

multiplying the signal by a window function, a 

frequency spectrum emerges. The signal then 

undergoes multiplication by the time-shifted version 

of the window function, yielding another frequency 

spectrum. This process spans the defined time 

duration of the signal. When the resulting frequency 

spectra, all of equal length, are arrayed as rows in a 

matrix, a comprehensive depiction of time-dependent 

frequency changes materializes. The STFT is as 

expressed in (5) 

𝑆𝑇𝐹𝑇(𝜔, 𝜏) = ∫ 𝑥(𝑡)𝑊(𝑡 − 𝜏)𝑒−𝑗𝜔𝑡𝑑𝑡
∞

−∞

 (5) 

where 𝜏 is the time delay to slide the window function 

𝑊(𝑡). For the discrete input signals, discrete-time FT 

is replaced by the FT and the rest of the procedures 

remain the same. Figure 2 visualizes the STFT 

processes [18]. 

The processes visualized in Figure 2 can be 

summarized as follows. 

 

 

Figure 2. Visualization of STFT: segmentation, 

windowing, and DFT [18] 

• The input signal is segmented, and each segment 

is multiplied by a proper window function of 

length. 

• The window function slides over the input signal 

by 𝐿 with 𝑅 = 𝑀 − 𝐿 samples overlap of 

consecutive segments. 

• The frequency content of each segment is 

extracted by DFT and placed in the rows of a 

matrix. Thus, a 2D representation of the frequency 

by time change is obtained. 

 

2.4. Scalogram 

 

Much like a spectrogram, a scalogram visually 

illustrates how a signal's frequency changes over 

time. Unlike spectrograms, which rely on the Fourier 

Transform, scalograms based on the WT introduce a 

visually engaging exploration of time and frequency 

relationships. 

 In contrast to spectrograms, which offer a 

fixed time resolution through STFT, scalograms 

present a flexible narrative by balancing time and 

frequency resolutions. Unlike Fourier's sinusoidal 

signals, WT employs a mother function with distinct 

features. The signal to be analyzed is expressed 
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through this mother function, known for its 

irregularity, zero average, limited duration, and 

general asymmetry. Scalogram is obtained as a 2D 

representation of the input signal with the shifted and 

scaled variations of the mother function. While one of 

the dimensions is time, scale is the other one. Scale 

represents the mother function's different 

compressions or dilations, inversely related to 

frequency. While frequency increases, scale 

decreases, bringing about sharper time resolution. 

Conversely, a drop in frequency results in an increase 

in scale, widening the time window. 

 This tradeoff provides a zoom for detailed 

observation, enabling precise time resolution during 

sudden frequency changes and a high-frequency 

resolution within the domain of low-frequency 

elements. For a time-dependent continuous signal 

𝑥(𝑡), Continuous Wavelet Transform (CWT) is 

expressed as in (6) 

 

𝐶𝑊𝑇(𝜏, 𝑠) =
1

√|𝑠|
∫ 𝑥(𝑡)𝜓∗ (

𝑡 − 𝜏

𝑠
) 𝑑𝑡

𝑡

 (6) 

 

where 𝑠 is the scale referring to the compressions or 

dilations, 𝜏 is the time shift, 𝜓(𝑡) is a properly 

selected mother function. A mother function is 

required to be continuous, has null moments, and 

quickly decreases to zero with time (or band-limited). 

The admissibility condition to check any square-

integrable candidate function is given in (7) 

 

∫
|𝛹(𝜔)|2

|𝜔|
𝑑𝜔 < ∞ (7) 

 

where 𝛹(𝜔) is the FT of the 𝜓(𝑡). When using CWT 

to create a scalogram, the procedures are similar to the 

ones to create spectrograms. The input signal is 

multiplied with 𝜓∗(𝜏, 𝑠) for different values of 𝜏 and 

𝑠. While the time axis of the 2D scalogram is created 

by varying τ values, the scale axis corresponds to the 

different values of 𝑠. As previously mentioned, 

increasing the scale increases the time resolution and 

decreases the frequency resolution. The difference 

between CWT and STFT in terms of time and 

frequency resolution is visualized in Figure 3. 

 
2.5. Classifiers 

 

This study focuses on popular machine learning and 

deep learning methods as classifiers. While Decision 

Tree (DT), k-Nearest Neighbors (KNN), Support 

Vector Machine (SVM), and Linear Discriminant 

(LD) are preferred among the machine methods, 

Xception, InceptionV3, and MobileNet deep learning 

models have been meticulously chosen among Keras 

models, considering both dimension and performance 

metrics. Various fine-tuning strategies have been 

experimented upon the selected models to achieve the 

highest success. 

 
(a) (b) 

Figure 3 Decomposition of the time-frequency plane for 

(a) STFT and (b) CWT 

 

3. Results and Discussion 

 

The conducted study leverages vibration signals from 

an electrical machine system to classify mechanical 

faults within the system. 1-D power spectral density 

signals and 2-D scalogram and spectrogram images 

are created from the vibration signals. Machine 

learning techniques accept the power spectral density 

signals, while deep learning models use the scalogram 

and spectrogram images as inputs. Each machine 

learning algorithm was meticulously selected based 

on its proven effectiveness in handling similar 

datasets, ensuring a comprehensive evaluation of their 

performance in classifying mechanical faults. The 

deep learning models were chosen for their advanced 

capabilities in processing image data, leveraging 

transfer learning to enhance model accuracy and 

efficiency. The performances of the classifiers are 

evaluated with the well-accepted performance metrics 

explained in Table 2. The results reported in this study 

are obtained from the testing phase, utilizing a 5-fold 

cross-validation approach. This method involves 

dividing the dataset into five subsets, with each subset 

serving as a test set in turn, while the others are used 

for training. The performance metrics presented are 

the averages of the five folds. 

 In Table 2, True Positive (TP) refers to the 

number of examples correctly predicted as positive by 

the model, while True Negative (TN) is the number of 

examples correctly predicted as negative. False 

Positive (FP) represents the number of examples 

incorrectly predicted as positive but are negative, and 

False Negative (FN) is the number of examples 

incorrectly predicted as negative but are positive. 
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Table 2. The performance metrics 

Metric Description Mathematical Expression 

Accuracy (%) 
The ratio of correctly classified instances to the total 

number of instances. 

𝑇𝑃

𝑇𝑃 + 𝑇𝑁 + 𝐹𝑃 + 𝐹𝑁
 

Precision (%) 
The ratio of true positive predictions to the total 

predicted positives. 

𝑇𝑃

𝑇𝑃 + 𝐹𝑃
 

Recall (%) 
The ratio of true positive predictions to the actual 

positives. 

𝑇𝑃

𝑇𝑃 + 𝐹𝑁
 

F1 Score (%) The harmonic mean of precision and recall. 2 ×
𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 × 𝑅𝑒𝑐𝑎𝑙𝑙

𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 + 𝑅𝑒𝑐𝑎𝑙𝑙
 

 The performance of machine learning 

approaches is comparatively presented in Table 3. 
Table 3 provides a comparative overview of the 

performance of various classification methods 

applied to the dataset using accepted performance 

metrics. Moreover, the parameters yielding the best 

results are also provided. The learning parameters for 

the machine learning models were optimized using a 

random search strategy. For the Decision Tree 

classifier, the maximum number of splits was 

randomly selected from values between 4 and 100, 

with the optimal value chosen based on the highest 

accuracy. Various split rules, including the Gini’s 

diversity index, twoing rule, and maximum deviance 

reduction, were evaluated. For the SVM classifier, 

linear, quadratic, and cubic kernels were tested, along 

with both one-vs-one and one-vs-all approaches for 

multiclass classification. Box constraint levels were 

randomly sampled from a range of 1 to 10. In the case 

of the KNN classifier, distance metrics such as 

Euclidean, cosine, Chebyshev, and Hamming were 

explored, and the number of neighbors was 

determined through random search from a range of 1 

to 100. For Discriminant Analysis, both linear and 

quadratic kernels were considered, with covariance 

structures evaluated as full and diagonal. Among the 

examined methods, the KNN algorithm exhibited the 

highest performance with 96.56% accuracy, followed 

by SVM (95.85%) and DT (94.3%), while the LD 

method showed the lowest performance at 75.71%. 

These results highlight the non-linear nature of fault 

classes in the dataset and the effectiveness of 

algorithms like KNN in capturing complex patterns. 

The combination of PSD signal processing and KNN 

proves to be a robust method for fault detection in 

electrical machines. These findings underscore the 

importance of selecting an appropriate classification 

method tailored to the dataset for optimal 

performance. For a more detailed analysis of the 

classification performance of the methods, further 

information can be obtained through the analysis of 

confusion matrices provided in Figure 4 (a)-(d). 

Table 3. Performance of Machine Learning approaches with PSD signals 

Method Parameters Acc. (%) Prec. (%) Rec. (%) F1 Score (%) 

DT 
max. # of splits: 100 

split criterion: Gini diversity index 
94.3 92.31 90.81 91.55 

SVM 

kernel function: linear box 

constraint level: 1 

multiclass meth.: one vs one 

95.85 94.18 95.98 95.08 

KNN 

# of neighbors: 1 

distance metric: Euclidean 

distance weight: equal 

96.56 96.75 96.72 96.74 

LD 
preset: Linear discriminant 

covariance structure: full 
75.71 68.22 67.45 67.83 
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(a)  (b)  

  

(c) (d) 

Figure 4. Confusion matrices for (a) DT, (b) SVM, (c) KNN, and (d) LD 

 

 Figure 4 shows that the KNN model 

demonstrates the most balanced and superior 

performance, particularly excelling in classifying 

'normal', 'imbalance', and 'horizontal misalignment' 

categories, though it shows some confusion between 

'overhang' and 'underhang' classes. SVM exhibits 

comparable performance to KNN but with slightly 

more errors in the 'vertical misalignment' class. While 

the DT model performs well overall, it struggles more 

with distinguishing between 'imbalance' and 

'horizontal misalignment'. The LD model 

underperforms compared to the others, particularly in 

differentiating 'overhang' and 'underhang' classes, 

suggesting these fault types are not linearly separable. 

These results indicate that non-linear models, 

especially KNN and SVM, are more effective for fault 

detection. 

As the second part of the study, deep learning 

models with the inputs of scalograms and 

spectrograms are analyzed using a transfer learning 

approach across three different models. The 

performances of Xception, InceptionV3, and 

MobileNet deep learning models are comparatively 

evaluated through heatmaps. The study presents how 

the performance of the methods changes with the fine-

tuning and learning rate parameters. The learning rate 

has been optimized using a random search within the 

range of 5e-6 to 0.0002, and the fine-tuning steps have 

been selected from values between 10 and 200. The 

performance of each model for varying fine-tuning 

and learning rate parameters can be observed for the 

scalogram images in Figure 5 through the heatmaps 

provided. 

Figure 5 illustrates the performance of three 

deep learning models (InceptionV3, Xception, and 

MobileNet) using scalogram inputs, represented as 

heatmaps across various fine-tuning steps and 

learning rates. The MobileNet architecture 

demonstrates superior performance, achieving a peak 

accuracy of 96.94% with 50 fine-tuning steps and a 

learning rate of 0.00002. InceptionV3 also exhibits 

robust performance, reaching 94.73% accuracy, while 

Xception shows comparatively lower performance.  
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(a)  (b)  

 
(c)  

Figure 5. Heatmaps for the models (a) InceptionV3, (b) Xception, and (c) MobileNet with the scalogram images  

 These results suggest that the MobileNet 

architecture is particularly adept at extracting relevant 

features from scalogram representations of vibration 

signals for fault classification. Figure 6 displays the 

heat maps to indicate the effects of fine-tune-at and 

learning-rate parameters for the spectrogram images. 

  
(a) (b) 

 
(c) 

Figure 6. Heatmaps for the models (a) InceptionV3, (b) Xception, and (c) MobileNet with the spectrogram images 
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 Figure 6 presents heatmaps depicting the 

performance of InceptionV3, Xception, and 

MobileNet models using spectrogram inputs across 

various fine-tuning steps and learning rates. Notably, 

the InceptionV3 model achieves the highest accuracy 

of 98.30% with 150 fine-tuning steps and a learning 

rate of 0.0001. Xception's performance significantly 

improves with spectrogram inputs compared to 

scalograms, while MobileNet maintains consistent 

performance. The superior results obtained with 

spectrogram inputs, particularly for InceptionV3, 

indicate that this time-frequency representation may 

capture fault-related features more effectively for the 

given dataset. The distinct optimal hyperparameter 

combinations for each model emphasize the necessity 

of model-specific tuning. These findings highlight the 

potential of deep learning approaches, especially 

InceptionV3 with spectrogram inputs, for highly 

accurate fault detection in electrical machinery. 

 Furthermore, our study underscores the 

necessity of selecting the most suitable model for 

different data representations, such as spectrograms 

and scalograms. For example, the InceptionV3 model 

outperforms MobileNet when processing 

spectrogram data, emphasizing the importance of 

evaluating the data type and model architecture 

features together. 

 Moreover, it's evident that the choice of 

learning rate significantly impacts the effectiveness of 

fine-tuning strategies. Carefully selecting the optimal 

learning rate tailored to each model and data type can 

substantially enhance accuracy rates. Table 4 

summarizes the fine-tune-at and learning rate values 

where deep learning models achieve maximum 

accuracy. 

 In conducting a general assessment of our 

findings, we have compared the performance of 

traditional machine learning methods using PSD 

inputs with deep learning methods using spectrogram 

and scalogram inputs. While machine learning 

approaches have demonstrated strong performance, 

with KNN achieving the highest accuracy of 96.56% 

among PSD-based methods, deep learning models, 

particularly when using spectrogram inputs, have 

shown even higher accuracy. The InceptionV3 model 

with spectrogram inputs outperformed all other 

methods, achieving an impressive 98.30% accuracy. 

This suggests that hierarchical feature learning in 

deep neural networks is particularly effective for 

capturing complex patterns in vibration data for fault 

detection. 

 However, it's worth noting that the 

performance gap between the best machine learning 

model (KNN with PSD) and the best deep learning 

model (InceptionV3 with spectrograms) is relatively 

small (1.74%). This indicates that well-tuned 

traditional machine learning methods can still be 

competitive for fault detection tasks, especially when 

interpretability or computational resources are a 

concern. The choice between these approaches may 

depend on factors such as dataset size, need for 

interpretability, and available computational 

resources. Table 5 summarizes the best-performing 

models from each approach, highlighting their 

respective strengths in fault detection for electrical 

machinery. 

Table 4. Performance of Transfer Learning models for scalogram and spectrogram images 

Model Scalogram images Spectrogram images 

 Acc. (%) fine-tuning step learning rate Acc. (%) fine-tuning step learning rate 

InceptionV3 94.73 200 0.0001 98.30 150 0.0001 

Xception 86.90 10 0.00005 93.71 30 0.0001 

MobileNet 96.94 50 0.00002 96.60 30 0.00005 

Table 5. Comparison of best-performing models for each approach 

Approach Model Input Acc. (%) Prec.(%) Rec. (%) F1 score (%) 

ML KNN PSD 96.56 96.75 96.72 96.74 

ML SVM PSD 95.85 94.18 95.98 95.08 

DL InceptionV3 Spectrogram 98.30 98.10 98.44 98.56 

DL MobileNet Scalogram 96.94 97.08 97.32 97.52 
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4. Conclusion and Suggestions 

 

This study explores the performance of machine 

learning and deep learning models to classify the 

vibration data collected from electrical machines for 

fault detection. We first examine traditional machine 

learning methods like DT, KNN, SVM, and LD 

alongside three different deep learning models using 

transfer learning. The findings shed light on the 

effects of various data types and model architectures 

on classification performance. 

Among the machine learning methods, which 

are fed by the 1-D PSD signal, the KNN model 

achieved the highest accuracy rate of 96.56%. On the 

other hand, the InceptionV3 deep learning model 

surpassed the highest accuracy with spectrogram 

images. The results highlight the importance of fine-

tuning strategies, particularly emphasizing the 

significance of learning rate and fine-tune-at 

parameters. The InceptionV3 model has surpassed the 

others with an accuracy of 98.30% by selecting the 

fine-tune-at and learning rate parameters as 150 and 

0.0001. The outcomes of the study can guide data 

analysis and fault diagnosis processes in industrial 

systems. 
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