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Abstract
The analysis of blood flow in blood vessels, particularly in arteries, is a topic with important clinical
applications. The blood can undergo a reduction in its viscosity under shear stress, which is called shear
thinning. In this study, the effect of the shear thinning of blood is simulated using the Carreau-Yasuda
model, neglecting the viscoelastic effects. The purpose of this investigation is to analyze the pulsatile
blood flow in a three-dimensional model of the carotid artery and the effects of occlusion using Ansys
Fluent. The results obtained in this study show that, compared to Newtonian fluids, non-Newtonian
fluids exhibit significant differences in secondary flow patterns and shear flow behavior. Additionally,
the axial velocity in the non-planar branch decreases with obstruction. The maximum shear stress of
the walls with Newtonian fluid viscosity exhibits a significant error, and the values are lower than
those of walls with non-Newtonian viscosity in most cases. In continuation of this research, vessel
occlusion models with different occlusion sizes are analyzed. In the case where the outlet of the vessel
is narrowed, an increase in velocity is observed in the furcation area. Although the software cannot
simulate rupture, occlusion of the vessel at 80% and 50% of the internal diameter is analyzed.
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1 Introduction

Cardiovascular diseases (CVDs) account for approximately 17.9 million deaths annually, which
corresponds to 32% of all global deaths. Including coronary artery disease, stroke, and hyperten-
sion, CVDs are often linked to abnormalities in blood flow and vessel occlusion. Besides being the
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leading cause of death globally, CVDs also create a significant economic burden, with healthcare
costs and productivity losses estimated to exceed one trillion US dollars annually worldwide.
Understanding the hemodynamics of blood flow, particularly in occluded vessels, is therefore
critical for developing effective diagnostic and therapeutic strategies against CVDs.
With the increasing number of CVDs during the last few decades, the study of blood flow in
vessels and its behavior has been of particular importance and interest. Through a review of the
literature, it has become clear that there is still much to investigate regarding the shear stress
on the walls of the vessels, the effects of the hyperelasticity of the blood vessels, and how blood
interacts with the vessel structure under different gravity conditions. Another CVD, carotid
artery disease, is a condition characterized by the narrowing of the carotid arteries, the primary
vessels supplying oxygenated blood to the brain. This narrowing, or stenosis, is typically caused
by the accumulation of atherosclerotic plaque within the arterial walls. The primary objective
of treatment is to mitigate the risk of ischemic stroke by reducing plaque burden, preventing
thrombus formation, and maintaining adequate cerebral blood flow. Currently, it has been proven
that the occurrence of many CVDs is linked to blood flow characteristics [1].
Blood is a concentrated suspension of red blood cells (RBCs) in plasma, with these cells constituting
nearly 45% of the total blood volume. At normal temperatures, blood behaves as non-Newtonian
in the form of shear liquefaction [2]. A cramp is an abnormal swelling in a vein or other organs
with tubular structures in the body. Sometimes, it is also called stenosis [3] and [4]. From the
point of view of fluid mechanics, constriction indicates the presence of an obstacle to blood flow
inside the vessel [5]. Vascular branches in areas that have abnormal fluid dynamics are known
to be prone to atherosclerosis. Fluid mechanics studies have shown that atherosclerosis occurs
at bifurcations that have a complex geometry, i.e., in areas with a high Reynolds number and
where the shear stress is lower than the average of wall shear stress (WSS). The curvature of the
wall is related; in addition, local disturbances and areas of circulation play important roles in the
initiation and development of atherosclerosis. It is thought that the complexity of the blood flow
dynamics downstream of the occlusion will cause further development of the occlusion or cause
the plaque to be vulnerable to failure and thrombosis. It is almost universally accepted that blood
vessels that have curves or bifurcations are prone to constriction due to the complexity of the
flow in these areas [6]. Because the blood flow is pulsatile, these complicated flow patterns cause
constrictions in certain periods within the geometries that feature high shear stress, separation,
circulation, and turbulent flow.
Various studies have been conducted in this field. The investigation of blood flow in narrowed
vessels is an interesting topic that has attracted the attention of many researchers. This issue is
particularly important because the blood flow in constricted vessels and channels has a crucial
impact on the development of vascular obstruction [7]. Examining the mechanism of blood
flow and the distribution of blood flow in these stages leads to determining the dependence of
blood flow on various physical and physiological factors and to a correct understanding of this
phenomenon. As a result, it is possible to solve this problem or prevent it from an engineering
point of view. As a result of the clogging and narrowing (obstruction) that occur in the vein, the
normal flow of blood is disrupted. This disturbance in normal blood flow plays an important role
in vascular diseases. For this reason, to determine how constriction affects blood flow and analyze
blood flow in the parts of vessels that are clogged or blocked, much research has been performed,
including laboratory investigations as well as numerical studies.
Having started approximately 25 years ago, several experimental research studies have been
conducted using different laboratory models to study how unstable flow affects the blood flow at
occlusion sites. With the advancement of computational methods in recent years, later studies
featuring numerical simulations of this physiological phenomenon have been performed by
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numerous researchers [8, 9]. Many researchers have studied pulsatile blood flow in healthy and
blocked vessels using computational fluid dynamics (CFD) and compared the results using MRI
techniques [7, 10, 11].
Clogged or engorged blood vessels face various hemodynamic consequences of pressure drop,
which lead to the development of clots. The pressure drop depends on the flow velocity and the
geometry of the constriction, but the properties of fluid, such as density and apparent viscosity,
are relatively constant. Multiple constrictions in the arteries are the result of plaque growth in
atherosclerosis, which can collapse under certain physiological conditions [5].
Vascular narrowing is often accompanied by an unusual sound of blood flow, which results from
the disturbance of flow in the narrowed channel, and in this way, the location of the constriction
can be recognized. These sounds can be heard using a medical stethoscope, but disease diagnosis
with medical imaging refers to the set of methods and techniques that can be used to obtain visual
images of the parts of the human body [12].
Seo [13] investigated blood flow in the human carotid artery using ANSYS software. He investi-
gated the effect of the interaction between fluid and solid on the flow characteristics and shear
stress of the wall. He investigated two flow models, one of which considered the interaction
between solid and fluid, while the other did not. The results showed that the shear stress values
for these two models differ between 5% and 11%.
The collapse of the inner wall of the vessel is a process in which the bending of the artery is
under certain pressure and tension, and under these conditions, the collapse of the inner wall of
the vessel occurs. The result of the compression resulting from this collapse is to speed up the
process of fatigue and rupture. If plaque detachment occurs in the coronary and cerebral arteries,
it directly leads to a heart attack or stroke. The activity of blood plaques in certain cases, such as
cramps and, in particular, when thrombosis occurs, is of great interest [6]. Upon plaques sticking
together, congestion develops, and once the flow becomes sufficiently constricted, turbulence
may increase, bringing on an increase in the shear stress of the flow and the walls. Studies in the
computer environment show that flow transitions into turbulent and back into laminar in pulsatile
flow; therefore, it is very important to predict transient and turbulent flow in flows with low
Reynolds numbers when simulating blood flow within blood vessels with occlusion [14]. Another
factor that affects blood viscosity is the concentration and type of proteins in plasma, but these
effects are so small that they are not considered important in most hemodynamic studies [15].
Using Ansys software, Dong et al. [16] conducted a numerical study to explore the relationship
between mechanical forces that are exerted at the coronary branching (furcation) sites and the
angle of furcation, considering the division angles to be between 75 and 120 degrees. The results
revealed a relationship between environmental stress and left coronary artery diseases. In addition,
they considered two elastic and nonelastic assumptions for the blood vessel [16]. On the other
hand, Leeuwen et al. [17] investigated the diameter of the vessel and the RBC velocity in the vessel
and reported that vessel constriction induces a large change in the RBC velocity [17].
Botti et al. [18] conducted a CFD study modeling the blood hemodynamics of a specific patient
with an intracranial aneurysm by using two different CFD solvers, i.e., the finite element method
and the finite volume method, in order to compare their performances. They reported that the
finite element model provided better accuracy in high-order analysis for every degree of freedom
[18].
The particle hydrodynamic method has always been developed as a meshless Lagrange method
for simulating fluid-structure interactions. This algorithm, which involves the two-dimensional
simulation of blood flow, provides new support for the application of the SPH method. This
method is used to simulate the opening of the elastic valve due to the force of the fluid column
behind it, which, compared to the experimental results, proves the ability of this method to solve
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fluid and structural problems [19].
Many of the studies reported in the literature have focused on Newtonian fluid models or simpli-
fied geometries. While some have incorporated non-Newtonian models, they often neglect the
effects of pulsatile flow or fail to analyze the impact of varying occlusion sizes on flow patterns
and wall shear stress. This study aims to address these gaps by employing a non-Newtonian
Carreau-Yasuda model to simulate pulsatile blood flow in a three-dimensional model of the carotid
artery with varying degrees of occlusion. By incorporating realistic vessel geometry and pulsatile
flow conditions, this study provides a more accurate representation of the hemodynamics in
stenotic vessels. Furthermore, the analysis of different occlusion sizes (50% and 80% of the internal
diameter) is important to address in more detail the hemodynamic risks associated with high
occlusion levels and their implications for CVDs.
The purpose of this study was to analyze the pulsatile flow inside vessels with non-Newtonian
blood fluid. In the present study, the flow is unsteady and fully developed before entry. The
Carreau model is considered for the simulation of non-Newtonian blood fluid. Additionally, the
values of velocity and pressure are defined the same as real values and with pulses.

2 Materials and methods

This section presents the governing flow equations and the corresponding boundary conditions.
Homogeneous fluid motion equations are derived from the conservation principles of mass,
momentum, and energy. To facilitate engineering analysis, a continuum assumption is employed,
averaging the fluid properties over a representative elementary volume. This assumption is called
continuous media, and as long as the smallest physical dimension is much larger than the free
distance of molecules, this assumption is true.
Another assumption made in this study is that the blood was an incompressible fluid. This
assumption is justified by the fact that the density of blood remains nearly constant under phys-
iological conditions. The compressibility of blood is negligible due to the fact that the greatest
part of the blood plasma, as high as 90%, consists of water and that the pressure variations in the
cardiovascular system is relatively low. This assumption simplifies the continuity equation and is
consistent with the majority of blood flow models in the literature.

Governing equations

The governing equations are for the solid wall that interacts with the fluid. The equations solved
in the ANSYS software include the equations of conservation of mass Eq. (1) and momentum Eq.
(2).

∂p
∂t

+∇ · (ρV) = 0. (1)

The momentum equations, also known as the Navier–Stokes equations, govern viscous flow of
Newtonian fluids and can be written as in Eq. (2) in the general form:

ρ

(
∂ui
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∂ui
∂xj
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(
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−
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, (2)

where Bi represents the body forces that include primarily the gravitational forces, which are
relevant in hemodynamic studies. Other body forces, such as electromagnetic forces, are mostly
irrelevant and, therefore, negligible in this context.
This method can usually remove the viscosity of the fluid from inside the derivative, and in the
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Table 1. Constant values of the k-ω turbulence model

σω σk ’β β α

2.0 2.0 0.09 0.075 5.9

meantime, only a small and negligible error occurs. For an incompressible flow, Eq. (3) can be
shown as the following vector:

ρ
DD⃗
Dt

= −∇P + B + µ∇2U. (3)

For turbulent flows, the velocity and pressure variables are completely dependent on time; now, if
we want to use them as two average and fluctuating components in the Navier-Stokes equations,
a series of unknown parameters appear in the equation, which are called Reynolds stresses. By
substituting the separated velocity and pressure in the Navier-Stokes equation and simplifying it,
Eq. (3) becomes:

ρ

(
∂ūi
∂t

+ ūj
∂ūi
∂xj

)
= B̄i −

∂P̄
∂xi

+
∂

∂xj

[
µ

(
∂ūi
∂xj

− ρu ′
i u ′

j

)]
. (4)

The difference between the resulting momentum equation and the instantaneous momentum
equation is the last term on the right side of Eq. (4), which is called the Reynolds stress or distur-
bance stress. It is more suitable for simulating the flow behavior near the wall at low Reynolds
numbers and separating the flows caused by the reverse pressure gradient compared to the k-ϵ
model. Unlike the k-ϵ model, which incorporates nonlinear and complex damping functions, the
k-ω model offers a simplified approach by neglecting these terms. The k-ω turbulence model
posits a direct relationship between turbulent viscosity, turbulent kinetic energy, and turbulence
frequency. In the k-ω model, the turbulence viscosity is obtained from the following Eq. (5):

µt =
ρk
ω

. (5)

The two transfer equations of this model, the turbulent kinetic energy equation (k) and the specific
dissipation rate equation (ω) are as given in Eqs. (6) and (7), respectively.

∂(ρk)
∂t

+∇ · (ρUk) = ∇ ·
[(

µ +
µt

σk

)
∇k
]
+ Pk + Pkb −Yk, (6)

∂(ρω)

∂t
+∇ · (ρUω) = ∇ ·

[(
µ +

µt

σω

)
∇ω

]
+ α

ω

k
Pk + Pωb −Yω. (7)

The constants of this equation are shown in Table 1.

The constants in the k-ω turbulence model (Table 1) were validated through comparison with
experimental data and established benchmarks for turbulent flows. These constants were derived
from extensive empirical studies and are widely accepted in the literature for simulating wall-
bounded flows with adverse pressure gradients. The model’s accuracy was further verified by
comparing simulation results with experimental measurements of velocity profiles and turbulence
statistics in similar geometries.
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The capacity of standard two-equation turbulence models to accurately predict the inception and
extent of flow separation from smooth surfaces under adverse pressure gradients is limited. The
starting point for the development of the shear stress transfer turbulence model was the need for
accurate calculations of flows with separation phenomena and reverse pressure gradients. For a
long time, turbulence models were unable to account for these flows.
The k-ϵ turbulence model exhibits limitations in accurately capturing near-wall turbulent boundary
layer behavior. In this region, the k-ω model offers superior performance and is more suitable
for flows with adverse pressure gradients. On the other hand, the k-ω model’s sensitivity to
free-stream conditions outside the boundary layer can hinder its application in flows involving
separation induced by pressure gradients. This sensitivity in the free stream in turbulence
modeling prevents the wide substitution of ω equations in place of standard ϵ equations. This is
the basis for the development of the k-ω SST (Shear Stress Transport) model, which is given in
Eqs. (8) and (9) below [20].

∂

∂t
(ρk) +

∂

∂xi
(ρkui) =

∂

∂xi

(
Γk

∂k
∂xj

)
+ Gk −Yk + Sk, (8)

∂

∂t
(ρω) +

∂

∂xi
(ρωui) =

∂

∂xi

(
Γω

∂ω

∂xj

)
+ Gω −Yω + Dω + Sω. (9)

In the standard k-ω and SST k-ω models, the production terms of the k and ω equations are
dissected presented in tabular form in Table 2 below.

Table 2. Terms in the k − ω turbulence model

Term Standard k-ω equation SST k-ω equation
Production of k Pk = τij

∂Ui
∂xj

= νtSijSij Gk = τij
∂Ui
∂xj

Buoyancy production of k Pkb = −
gi
ρ

∂ρ
∂xi

Production of ω Pω = α ω
k Pk Gω = γ

νt
Gk

Buoyancy production of ω Pωb = Cωb
ω
k Pkb

Dissipation of k Yk = β∗ρkω

Dissipation of ω Yω = βρω2

Cross-diffusion Not present Dω = 2(1 − F1)ρσω2
1
ω

∂k
∂xi

∂ω
∂xi

Source terms Not present Sk = Ckρ |S|3
ω

Sω = Cωρ|S|2

Turbulence models such as k-ϵ or LES are less accurate for near-wall flow behavior and need more
computation workload, but the k-ω SST model combines the strengths of the k-ϵ model for free
shear flows and the k-ω model for near-wall flows and thus strikes a balance between accuracy
and computational efficiency. The k-ω SST turbulence model is well-known for its success in
simulating turbulent flows in structures containing complex geometries and boundary layers
by accurately resolving the boundary layer and near-wall flow behavior, which is essential for
calculating WSS and other hemodynamic parameters [21, 22].
Studies have shown that the k-ω SST model provides accurate estimates of wall shear stress
and flow separation, which are critical parameters in cardiovascular health assessment [22].
The application of these models in pulsatile flow simulations has also been validated through
comparisons with experimental data. For example, the k-ω SST model has been shown to provide
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highly accurate results, usually within 5% error, when compared to experimental measurements
[23]. As a result, the k-ω SST turbulence model was chosen for this study due to its superior
performance and for being a validated and reliable choice for simulating blood flow in stenotic
vessels. The Carreau-Yasuda model, which takes into account the shear thinning properties of
blood that become important under variable flow conditions [22, 24], has been widely used for
simulating pulsating blood flow, and has been supported by studies to be an effective model
in capturing the complex flow properties observed in biological systems [21, 22]. Furthermore,
integrating the Carreau-Yasuda model with the k-ω SST turbulence model provides a more
comprehensive understanding of flow dynamics in occluded arteries because it effectively captures
both the non-Newtonian properties of blood and the turbulent flow characteristics [22–24].

In the present study, blood has a profile similar to that in the study of Chen and Lu [25] and enters
the inlet branch at a Reynolds number equal to 270 (or an average velocity of 0.0694 m/s). As for
the output boundary conditions, zero relative pressure at the outlet of the two branches is used,
as per the above study, and due to the incompressibility of blood in this problem, the amount of
working pressure does not affect the results. Additionally, the axial flow velocity gradients at the
exits of both branches are considered to be zero. The boundary condition of the wall is assumed to
be non-slip. In the present study, blood flow in a bifurcating blood vessel has been numerically

Figure 1. Blood vessel geometry

simulated in a three-dimensional model for Newtonian and non-Newtonian Carreau–Yasuda
viscosity conditions. The desired geometry is drawn in the design software. Figure 1 shows the
geometry drawn in SOLIDWORKS software. The Carreau-Yasuda model has been chosen for this
study due to its ability to accurately describe the shear-thinning behavior of blood across a wide
range of shear rates. Unlike the power-law model, which is limited to intermediate shear rates,
and the Casson model, which does not account for the gradual transition between Newtonian and
non-Newtonian behavior, the Carreau-Yasuda model captures the viscosity variation of blood
more comprehensively. This makes it particularly suitable for simulating blood flow in vessels
with complex geometries and varying shear conditions.

The shear thinning behavior of blood is described by the Carreau-Yasuda model using:

µ(γ̇) = µ∞ + (µ0 − µ∞) [1 + (λγ̇)a]
n−1

a ,

where µ(γ̇) is the dynamic viscosity as a function of shear rate (γ), µ0 is the zero-shear viscosity,
µ∞ is the infinite-shear viscosity, λ is the relaxation time, n is the power-law index that describes
the degree of shear thinning, and a is the Yasuda parameter that controls the transition between
Newtonian and shear-thinning regions. Values of these model parameters are presented in Table 3.
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The heartbeat pattern has been selected as the pulse function, and because the Fluent software is
not able to define this type of pulse, the custom codes have been defined to induce the pulse for
the simulation and have been incorporated into the solver through the use of UDFs. To simulate
pulsatile blood flow in a CFD model, a physiological waveform that represents the heartbeat
has been obtained by using a Fourier series to approximate the periodic nature of the arterial
pulse. The blood flow rate calculated based on the waveform derived from experimental data or
idealized representations of the cardiac cycle has been represented by the following formula:

Q(t) = Qmean +
N∑

n=1

[
An cos

(
2πnt

T

)
+ Bn sin

(
2πnt

T

)]
. (10)

In Eq. (10), the wave function can also be converted into a single sinusoidal form by using
amplitudes and phase-shift:

An cos
(

2πnt
T

)
+ Bn sin

(
2πnt

T

)
= Cn sin

(
2πnt

T
+ ϕn

)
,

where the amplitude Cn is:

Cn =
√

A2
n + B2

n.

And the phase angle ϕn is:

ϕn = tan−1
(

An

Bn

)
.

Eq. (10), then becomes:

Q(t) = Qmean +
N∑

n=1

Cn sin
(

2πnt
T

+ ϕn

)
,

where T is the period of the cardiac cycle (typically 0.8–1.0 s for a heart rate of 60–75 bpm), ϕn are
the phase angles for each harmonic, N is the number of harmonics (typically 4–10 for a realistic
waveform). The parameters and respective values used to simulate the pulse are presented in
Table 3 below.

With the given parameters, the pulsatile blood flow has been simulated in the modeled vessel.
The Womersley number, which characterizes the pulsatile blood flow, has been calculated for the
non-stenotic and stenotic (%50 and %80 constricted) cases using:

α =
r
√

ωρ

µ
,

and respective α numbers were found to be 52.46, 26.23, and 10.49, respectively.

The solution domain is organized and discretized using the so-called O-shaped mesh, except
near the tip of the bifurcation and that part of the outlet branch that includes the constriction.
Additionally, the unorganized mesh adapts better to the mix of the flow (caused by the presence
of bifurcations and obstructions). Therefore, in this area, an unorganized mesh has been used in a
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Table 3. Parameters used to simulate the pulsatile blood flow

Property Value(s)
Vessel diamater 0.0045 m
Density 1060 kg/m3
Zero-shear viscosity 0.056 Pa.s
Infinite-shear Viscosity 0.0035 Pa.s
Temperature 37 C
Mean velocity 0.0694 m/s (Re=270)
Period of cardiac cycle 1 s
Number of harmonics 5
Cosine coefficients (Bn) 0.2, 0.15, 0.1, 0.05, 0.02
Sine coefficients (An) 0.3, -0.1, 0.08, -0.03, 0.015
Amplitudes (Cn) 0.36, 0.18, 0.13, 0.058, 0.025
Phase Angles (ϕn, radian) 0.59, -0.59, 0.67, -0.54, 0.64
Power-law index (n) 0.03568
Yasuda parameter (a) 2
Relaxation time (λ) 3.313 s

small enough way. Ansys Fluent software, which can create unorganized and organized meshes,
was used to create the mesh, which can be seen in Figure 2 below. The number of generated mesh
was 122540 elements. To determine the correct number of elements to build the mesh, a mesh
independence analysis was made, and convergence was established.

Figure 2. Side and front views of the meshed model

For numerical analysis in the ANSYS Fluent software, it is necessary to provide boundary condi-
tions. To model the inlet flow, the mass flow rate values given in the reference study have been
used. The outlet pressure boundary condition has been used for both of the two outlets of the
artery division. Since the solution is unsteady, a user-defined function is used to provide the input
and output boundary conditions. Figure 3 shows a view of the desired geometry along with the
boundary conditions, and Figure 4 shows the values for the input and output blood pressure as
given by the reference study.

In order to ensure that the number of elements that constitute the mesh have no or negligible
impact on the solution, a mesh independence test is always carried out. In this study, mesh
independence was demonstrated using WSS values. WSS is a critical parameter in hemodynamic
simulations and is highly sensitive to mesh resolution. Therefore, it is often the primary metric
for mesh independence. Once WSS converges with mesh refinement, it implicitly means that the
mesh is also validated for the accuracy of velocity and pressure fields, as these are the underlying
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Figure 3. Boundary conditions of blood vessel geometry

Figure 4. Input and output values of blood flow according to time

quantities used to compute WSS. In this regard, the WSS parameter in a section near the wall has
been investigated in meshes with different numbers of elements. As shown in Figure 5, a number
of elements greater than 1350,000 inside the geometry indicates the independence of the mesh.

Figure 5. Shear stress according to the number of elements
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One of the critical aspects of turbulence modeling is the accurate representation of near-wall
flow physics, i.e., reflecting real-world conditions accurately. The performance of turbulence
models is significantly influenced by their ability to capture wall-bounded flow characteristics.
In this regard, the y+ parameter, a non-dimensional wall distance, serves as a crucial metric for
evaluating the adequacy of near-wall mesh resolution. The logarithmic law of the wall provides
theoretical guidelines for the appropriate range of y+ values to ensure accurate representation
of the boundary layer. Ansys-Fluent software can be used to solve flow models that include
moving cells. Depending on the complexity of movement and physics, the flow of one of the mesh
movement models can be suitable for modeling. One of the most common models in Fluent for
simulating streams that have a moving and variable mesh is the dynamic mesh model. To use the
dynamic mesh model, we need to start with a mesh volume and describe each moving area in the
model. Fluent can describe motion under a boundary profile based on functions defined by the
user, known as user-defined functions (UDFs). For dynamic meshes, remeshing and smoothing
techniques were employed to maintain mesh quality during deformation. Remeshing involves
locally refining or coarsening the mesh in response to changes in geometry, whereas smoothing
is the adjustment of nodes’ positions to reduce distortion. These techniques ensure accurate
simulation of fluid-structure interactions and moving boundaries.

3 Results and discussion

Many models have been presented to simulate non-Newtonian blood fluid in vessels, but none of
them have been able to analyze the elastic behavior of vessel walls due to the pulse pressure of
the blood, as in real samples, to minimize deviation. This problem has become one of the reasons
for the failure of researchers. Computer simulation can solve the most complex problems of
engineering sciences; therefore, in such problems, all required algorithms are simulated according
to real vessel samples. The geometry of the vessel, which includes a two-way vessel with a
diameter of the outlet different from the diameter of the inlet, is drawn, tested, and compared in
the region before the constriction with different percentages. To create more tension in the vessel
and complicate the problem, the diameter of one of the outlets is reduced by half, and the results
are compared with each other. This complexity enables us to solve similar problems and analyze
the output information. Different models are available to define blood fluid in the software. The
selected models include three models: a non-Newtonian power law, a Newtonian power law, and
the Carreau model, which has the least error compared to the analytical solution.
WSS (τw) is calculated from the velocity gradients on the wall of the vessel using the following
relationship:

τw = µ

(
∂u
∂y

)
y=0

,

where µ is the dynamic viscosity of blood, u is the velocity parallel to the wall, and y is the distance
perpendicular to the wall. ANSYS uses the same formulation to calculate the wall stress based
on the velocity gradients obtained during the numerical solution of the governing Navier-Stokes
equations at the wall (y=0). In this study, the contour plots for WSS were obtained directly in CFD
post and presented in Figure 6 for different conditions.
The shear stress values obtained in this simulation were validated against those of another study
conducted using a similar bifurcation vessel model. The values are presented in Table 4. The range
of the errors is from approximately 2 to 13%, and the average error is approximately 7%, which is
acceptable. Figure 6 shows the distribution of inner-wall shear stress.
The results of the analysis are given as shear stress values near the vessel wall. Figure 6 shows
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Table 4. Inner wall shear stress

X/C Time (s) Shear Stress (Pas) CFD (A) Shear Stress (Pas) [16] (B) Error (%) (B-A)/A*100
0.0 0.123 0.12 −2.5
0.2 0.174 0.18 3.4
0.4 0.280 0.26 −7.1
0.6 0.355 0.38 7.0
0.8 0.220 0.24 9.0
1.0 0.150 0.13 −13.3

the values of shear stress inside the vessel resulting from the analysis with the Carreau model.
The average value near the vessel wall is approximately 0.3 Pascal. In the case of constriction, the
region behind the constriction experiences the highest shear stress. The flow output also has shear
stress values, and this stress increases with the narrowing of the outlet of the vessel.

Figure 6 show shear stress values on walls of the vessel with 80% and 50% constriction. The
shear stress is highest in the region near the branch and near the constriction because of the
increase in pressure in these areas. With the narrowing of the constriction due to a sudden change
in diameter, the velocity in the narrowed channel increases greatly, which in turn increases the
pressure on the wall, and with the narrowing of the outlet, this pressure increases. The tension at
these points increases due to the increase in pressure. The concentration of greatest stress occurs
after constriction and in the furcation area.

The velocity streamlines in Figure 7 show that the flow characteristics in normal and stenotic
arteries change significantly. While the velocity distribution in the normal artery is relatively
balanced, the flow lines progress smoothly, and no significant recirculation or turbulence is
observed. With the increase of constriction, a significant increase in the flow velocity and the
formation of turbulence in the region after the constriction are observed with the expansion of
backflow areas. This supports the formation of high shear stresses in the arterial wall seen in
Figure 6.

Figure 8 shows the values of the velocity inside the vessel for different modes of analysis. As it
approaches the area before the constriction, due to the increase in pressure, the flow experiences a
sharp drop in velocity, which acts like the flow inside the nozzle in the constriction area, and a
higher velocity is observed in the flow of the constriction area. This increase in velocity continues
to the furcation area, which induces an increase in friction and shear stress. In the case where the
outlet of the vessel is narrowed, the increase in velocity increases, and up to 17% greater velocity
is observed in the furcation area. With increasing velocity, the amount of pressure and shear stress
increases, and the vessel is unable to bear this pressure and is on the threshold of rupture.
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Figure 6. Shear stress contours on (a) normal (b) 50% and (c) 80% constricted vessel
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Figure 7. Velocity values of vessel geometry (a) normal (b) 50% and (c) 80% constricted vessel



Mustafaoğlu et al. | 111

Figure 8. Velocity values before the furcation for different conditions

As seen from the pressure values, the effect of pressure is also evident within the entire tissue of
the vessel wall. The shear stress values of the wall grid due to this pressure are given in Figure 9.
In this case, the wall tissue will not bear this pressure and will be on the verge of tearing. As
seen from the deformation values, the effect of pressure inside the tissue of the vessel wall is
also evident; with the increase in the amount of relaxation, the pressure increases. In Figure 10,

Figure 9. Shear stress values before the flow crossroads on the wall for different

the pressure values inside the vessel are analyzed for different states. By approaching the area
before the constriction, due to the increase in pressure, the flow encounters an increase in pressure,
which acts like the flow inside the nozzle in the constriction area, and more pressure is observed
in the flow of the constriction area. This increase in pressure continues to the furcation area,
which causes an increase in friction and shear stress. In the case where the outlet of the vessel is
narrowed, this increase in pressure is greater. Shear stress is a critical factor in the development
of thrombosis. Low shear stress (< 0.4 Pa) promotes platelet adhesion, whereas high shear stress
(> 1.0 Pa) potentially causes endothelial damage. The shear stress values observed in this study,
particularly near occlusions, fall within these clinically relevant ranges.
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Figure 10. Velocity values before the furcation for different conditions

When the highest pressure values near the occlusions are concerned, the maximum pressure was
found to be 4139,37 Pa for the 50% constriction case, it reached 4689,78 Pa for the 80% constriction
case. These elevated pressure values highlight the increased risk of vessel wall damage in highly
occluded vessels. The pressure values suggest that the occlusion exerts pressure on the entire
vessel wall, clearly indicating that clogging causes a sharp pressure increase in the vessel just
before the stenosis.

4 Conclusion

The stress–strain relationship in the blood does not follow a single relationship. This analysis
depends on the dimensions of the vessel compared to the dimensions of the particles present in
plasma (red and white blood cells, and platelets). The behavior of blood flow in vessels with a
large internal diameter adheres to well-established hemodynamic principles, where inertial forces
dominate viscous forces, and the continuum assumption remains valid. To achieve the objectives
of the research, the numerical studies carried out in this field are first discussed, and in this part,
the main focus has been on the research carried out using Ansys software. In the second part,
the computational studies performed on the blood flow are discussed, and then the governing
equations are explained. Furthermore, the vessel model was selected from reliable sources to
ensure the validity of the simulation data. The results indicate the approximate accuracy of the
non-Newtonian model used. Continuing this research, vessel occlusion models with varying
occlusion sizes have been analyzed. The effect of pressure on the vessel wall tissue is evident. For
small occlusions, large vessels can withstand the pressure. Although the software cannot simulate
rupture, the vessel wall tissue appears capable of tolerating up to 50% stenosis.

In a vessel with 80% constriction of the internal diameter and a narrowed outlet, pressure values
indicate high pressure intensity and velocity heterogeneity. This leads to a significant increase
in shear stress near the constriction while the vessel flow exerts pressure on the wall. Wall mesh
deformation due to this pressure suggests that the wall tissue would not withstand this level of
pressure and would be at the threshold of tearing.

Velocity values within the vessel are analyzed under different conditions. As the flow approaches
the constricted area, velocity sharply decreases due to increased pressure. Within the constriction,
the flow behaves similarly to that inside a nozzle, resulting in higher fluid velocity in the narrowed
region of the vessel.
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This study highlights the importance of accurately modeling non-Newtonian blood behavior and
vessel occlusion to understand the hemodynamic risk factors associated with CVDs.
The main findings of the study can be summarized as follows:

• It was observed that blood modeled as a non-Newtonian fluid exhibited significant differences
in flow patterns compared to the Newtonian assumption and that the Carreau-Yasuda model
played a critical role in determining the flow dynamics in high shear stress regions near the
stenosis.

• The fact that the maximum WSS values were significantly higher in non-Newtonian flows
indicated the importance of using the Carreau-Yasuda model to consider the shear thinning
behavior of blood in hemodynamic studies.

• It was observed that the narrowing of the vessel significantly changed the flow characteristics of
the blood. In the case of 50% and 80% constrictions, the axial velocity in the non-planar branch
decreased, while the velocity and, hence, the pressure increased in the furcation region, which
led to an increase in the critical factor of wall shear stress.

• When the velocity distributions within the vessel were evaluated, it showed significant hetero-
geneity, especially in the regions downstream of the occlusion, which could worsen the vascular
damage due to hemodynamic risk factors such as flow separation, recirculation, and turbulence.
• The use of the k-ω SST turbulence model has been shown to provide accurate resolution of
near-wall flow physics and adverse pressure gradients, which are critical for capturing complex
flow patterns in narrow vessels

5 Limitations

Although this study provides valuable information on the hemodynamics of the constricted
vessels, the study is limited by the fact that the viscoelastic effects of blood and vessel walls are
neglected, which may affect the flow dynamics, especially in highly stenotic regions. Another
limitation is that the study does not include experimental validation.

6 Future Research

To take this research further, future studies can use viscoelastic models that take into account the
elastic behavior of blood and vessel walls. Numerical results can be validated with experimental
data obtained by techniques such as MRI or ultrasound. The effects of different turbulence models,
such as Large Eddy Simulations and Reynold Stress Model on the accuracy of hemodynamic
predictions can be investigated.
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