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 The use of satellite imagery in critical areas, such as environmental monitoring and natural 
disaster management, is becoming increasingly important. Applications like monitoring 
coastal areas, detecting coastal erosion, and tracking land use changes demand high accuracy 
and detailed analysis. Traditional methods for coastline segmentation are often limited by the 
low resolution (LR) and high complexity of satellite imagery. To address this challenge, Super 
Resolution (SR) algorithms are employed to enhance the resolution of satellite images, which 
is particularly beneficial when examining areas with intricate structures, such as coastlines. In 
this context, the integration of SR and segmentation techniques presents an innovative 
approach to achieving greater accuracy and efficiency in satellite image analysis. In this study, 
the resolution of satellite images was enhanced using the Super Resolution Generative 
Adversarial Networks (SRGAN) model. Thanks to the flexible architecture of the SRGAN 
model, it was successfully adapted to work with satellite images, yielding satisfactory results. 
Coastal segmentation was performed using low-resolution, super-resolved, and high-
resolution Gokturk-1 (GT-1) satellite images, employing U-net, LinkNet, and DeepLabV3+ 
segmentation models for comparison. The results indicated that increment in image 
resolution significantly affects segmentation success. Additionally, better performance in 
coastline segmentation was achieved with U-net and LinkNet models. Although the 
DeepLabV3+ model is effective for segmentation, it tends to capture less detail compared to 
the other two models. Overall, the combination of SRGAN and the LinkNet segmentation model 
produced results that were closest to reality. 
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1. Introduction  
 

Remote sensing today finds a wide range of 
applications, including cartography, agricultural land 
analysis, urban planning, natural disaster investigation, 
geological studies, and atmospheric and climate research 
[1-4]. In these fields, the spatial resolution of images is a 
critical factor influencing the accuracy of the results. 
Although advancements in satellite technology have 
improved the spatial resolution of satellite images, 
obtaining high-resolution images can be costly [5]. 
However, for relatively low-resolution, open-access 
satellite images such as those from Landsat-8 and 
Sentinel-2, deep learning algorithms can be utilized to 
enhance spatial resolution. This approach facilitates 
more accurate and consistent analysis. 

 Numerous studies in the literature address super 
resolution (SR) of satellite images [6-9]. Goodfellow et al. 

[6] introduced the Generative Adversarial Networks 
(GAN) model. In this model, two different networks are 
presented. The generative network attempts to produce 
data that is similar to real data, while the discriminative 
network separates real and generated data. These two 
networks work in an adversarial way to make better 
predictions. Thus, data similar to real data is obtained. 
Ledig and et al. [7] proposed the SRGAN model and this 
model aimed to preserve details at high scales in SR tasks 
by using GAN model. It was confirmed that this model 
provides more photo-realistic outputs compared to 
state-of-the-art reference methods. Romero et al. [8] 
proposed RS-ESRGAN model and aimed to enhance the 
resolution of Sentinel-2 and Landsat-8 satellite images. 
RS-ESRGAN was based on the SRGAN model. 
Modifications were applied to the SRGAN by removing up 
sampling blocks. In addition, this study evaluated 
different SR models and compared them with proposed 
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one. Results were evaluated using PSNR, SSIM, ERGAS, 
SAM, and CC metrics. In another study, Xiong et al. [9] 
proposed ISRGAN model which also relied on SRGAN 
model. This study examined the proposed model's ability 
to generalize across different types of sensors and 
contexts. The findings demonstrate a notable 
improvement in land cover classification accuracy after 
SR process. 

Segmentation models have an important role in 
image processing and computer vision. These models 
provide the ability to identify and analyze specific 
objects, regions, or structures by using deep learning 
algorithms. Segmentation is utilized in various 
application areas such as medical imaging, autonomous 
driving, security systems, and remote sensing [10-13]. 
Several deep learning (DL) based architectures were 
developed for segmentation. Ronneberger et al. [10] 
offered U-Net model. The U-net architecture is capable of 
end-to-end training with a small number of images using 
efficient data augmentation strategies. The model has a 
symmetrical structure between the encoder and decoder 
paths, thus enabling it to learn both low-level details and 
contextual information. Chaurasia et al. [11] developed 
LinkNet model, which is an important innovation for 
efficient semantic segmentation. LinkNet architecture 
has direct connections between the encoder and decoder 
that enables recovery of the lost spatial information. This 
approach provides accurate segmentation results while 
significantly reducing the network's processing time. 
Chen et al. [12] developed the DeepLabV3+ segmentation 
model. DeepLabv3+ is a sophisticated model that uses 
Spatial Pyramid Pooling (SPP) and encoder-decoder 
structures to improve object segmentation in images. 
This model uses SPP to capture extensive contextual 
information. Its encoder-decoder architecture generates 
reliable segmentation results that include rich contextual 
information and fine details. DeepLab's most recent 
version [13] is DeepLabV3+. 

Remote sensing technologies have advanced 
significantly in recent years and serve an important role 
in a variety of industries, including geographic 
information systems (GIS), environmental monitoring, 
agriculture, forestry, and disaster management. These 
advances have also increased the need for efficient 
algorithms such as powerful segmentation models that 
can handle large data sets for effective processing and 
analysis of remote sensing data. As a result, segmentation 
models have become vital tools for accurately classifying 
and analyzing remote sensing data. Alsabhan et al. [14], 
conducted a study with the U-Net model to extract 
buildings from satellite images. The model was trained 
using the Massachusetts building dataset. Various U-Net 
model encoders were tested and compared across 
experiments. The results revealed the potential of the 
segmentation model. In another research, Sariturk et al. 
[15], studied on building segmentation from high-
resolution images with four U-net based models. The 
results were evaluated with Intersection over Union 
(IoU) and F1 score and indicated acceptable performance 
of these models.  Zhang et al.  [16], proposed a deep 
learning method named Deep Residual U-Net (Deep 
ResUnet) for semantic segmentation, specifically for 

extracting roads. Their proposed network aimed to 
combine the strengths of residual learning and U-Net. 
The study revealed the success of U-net and Deep 
ResUnet models. Han et al. [17], studied on building 
extraction from remote sensing images and proposed an 
improved DeepLabV3+ network. The method was 
compared with U-Net, SegNet, PSPNet, and DeepLabv3+. 
Tests were performed on the WHU and Massachusetts 
building datasets. The improved DeepLabv3+ model 
achieved better results, followed by the DeepLabV3+ 
model according to IoU and F1 score metrics. Gupta et al. 
[18], have utilized U-Net and LinkNet models for the 
segmentation of satellite images to assess post-disaster 
damage and analyze road conditions. The U-Net model 
demonstrated high accuracy in segmenting buildings and 
roads, while the LinkNet model was similarly effective. 
Experimental results revealed that the U-Net (VGG16) 
model exhibited superior performance. The results were 
evaluated with precision, recall and F1 score.  Arıkan et 
al. [19], used the U-Net model to evaluate the 
performance of Göktürk -1 (GT-1) satellite images for 
building segmentation. According to results, high Jaccard 
coefficient and high dice similarity coefficient was 
obtained. 

Sea-land segmentation using satellite imagery is an 
important study field with environmental and 
socioeconomic implications. Determining the sea – land 
borders play a crucial role in natural disaster 
management by enabling rapid identification and 
mapping of affected areas following events such as 
tsunamis, floods or coastal erosion. Thus, emergency 
responders and decision makers can allocate resources 
efficiently. In addition, sea -land segmentation provides 
critical data for the sustainable management of coastal 
ecosystems, detection of marine pollution and protection 
of coastal habitats in environmental monitoring and 
protection studies. It also helps to clearly define 
maritime and land boundaries in planning and managing 
maritime activities, ensuring safe and efficient 
operations in areas such as ports, fishing grounds and 
waterways. Yang et al. [20], studied on DeepLabV3+, 
SegNet [22], PSPNet [23], FC-DenseNet [24], RefineNet 
[25] and U-Net models for sea-land segmentation of 
Landsat-8 OLI satellite images, where the FC-DenseNet 
model achieved the highest accuracy and the 
DeepLabV3+ model acquired the best performance in 
training time efficiency. In another study, Panuntun et al. 
[21], aimed to identify the optimal semantic 
segmentation architecture for land cover mapping using 
remote sensing images. U-net, LinkNet, FPN [26], and 
PSPNet [23] semantic segmentation models were applied 
to multispectral, hyperspectral, and high-resolution 
aerial image datasets to classify vegetation, water, soil 
and impervious surfaces, etc. According to results, the 
LinkNet model achieved the highest accuracy. 
Multispectral images exhibited the highest performance 
based on IoU and F1 scores, with 0.993 and 0.997, 
respectively. The results highlight the efficiency and 
broad applicability of LinkNet and multispectral images 
for land cover classification. 

This research aimed to perform a comparative and 
quantitative analysis on the effects of super resolved 
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mid-spatial resolution satellite images on sea-land 
segmentation problem by use of three DL based 
segmentation architectures and using Göktürk -1 very 
high-resolution satellite image as a reference. 
 

2. Method 
 

In this study, we aimed to enhance the resolution of 
Landsat-8 and Sentinel-2 satellite images using the 
SRGAN model and examine its effects on segmentation. 
Additionally, we compared the performance of 
segmentation models, including those using high-
resolution Gokturk-1 satellite images. A flowchart of the 
process is provided in Figure 1. 

 
Figure 1. Study Flowchart 
 

2.1. Super Resolution 
 

The SRGAN model was chosen for Super Resolution 
due to its ability to generate detailed, high-resolution 
images from low-resolution inputs. Its perceptual loss 
function enhances detail capture. The dataset, configured 
with 3 bands, was down sampled to create low-
resolution images and enriched with data augmentation. 
Histogram equalization was applied to the SR images to 
maintain consistent histogram distribution. 

 

2.1.1. Dataset 
 

This study used Landsat 8 and Sentinel 2 satellites for 
their free access and wide coverage. Landsat 8, operated 
by the USGS, features the Operational Land Imager (OLI) 
with a 30-meter spatial resolution. Sentinel 2, managed 
by the ESA, uses the Multi-Spectral Instrument (MSI), 
providing images with 10-meter resolution. Additionally, 
GT-1 satellite imagery from the same region, offering 2-
meter MS and 0.5-meter PAN resolution, was used for 
segmentation comparison. 
 
 

2.1.2. Preprocess 
 

To train a deep learning model, a large amount of 
training data is typically required. However, collecting 
this data can be difficult, time-consuming, and costly. 
Therefore, various methods exist to artificially augment 
the existing dataset. Some of these methods include 
cropping images from different sections, rotating, 
scaling, and recreating them by adding noise. By using 
one or several of these methods together, the amount of 
image in the dataset can be increased. For more effective 
training, the images were cropped into 200 × 200 patches 
with overlapping sections (achieved by shifting). An 
example of this cropping pattern is shown in Figure 2. To 
augment the dataset, each image was rotated by 90°. 
 

 
Figure 2. Example of remote sensing image (a) and 
cropped section image (b) 

 

Super Resolution models need datasets with both high- 
and low-resolution images. Low-resolution images are 
created by down sampling high-resolution ones, which 
reduces detail and sharpness. This process can be done 
at various scales, allowing the model to train for different 
resolutions. While the overall structure is retained, much 
fine detail is lost, highlighting the challenges of low-
resolution imagery. Figure 3(i) provides a visual of this 
process for scale factor of 2. As the scale factor increases, 
the resolution of the image obtained through down 
sampling decreases significantly. This makes the 
enhancement of the image more challenging. As seen in 
Figure 3 (ii), detail information is lost for a scale factor of 
4. 
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Figure 3. Satellite Image (a), Image patch(b), down 
sampled image(c); for (i) 2x and (ii) 4x scale factor. 

 

2.1.3. SRGAN 
 

Super Resolution Generative Adversarial Networks 
(SRGAN) [7] model enables the generation of high-
resolution images from low-resolution images. The 
SRGAN model is based on the architecture of Generative 
Adversarial Networks (GAN), a type of deep neural 
network. The GAN model comprises a generator network 
(model G) and a discriminator network (model D). The 
generator part facilitates the generation of artificial 
images through predictions. The discriminator part 
identifies the differences between the generated images 
and the original images. The general GAN architecture is 
shown in Figure 4. 
 

Figure 4. General GAN Architecture 
 

In Figure 5 the black dotted lines represent the data 
distribution to be produced, the blue dashed lines D 
represents the discriminant distribution, and the green 
solid lines G represents the generator distribution. The 

discriminator is trained simultaneously with the 
generator. This allows the generator progressively 
creates more realistic data, and the discriminator 
enhances its ability to distinguish between genuine and 
generated data. As training progresses, the data 
generated by the generator converges towards the input 
data, becoming more accurate and realistic. 
 

 
Figure 5. Black dotted lines: data distribution to be 
produced, blue dashed lines: D discriminant distribution, 
green solid lines: G generator distribution 

 

The generator produces new data based on a 
specific probability distribution. The generator part 
utilizes a deep ResNet [27] structure with 16 blocks. 
Within these blocks, two convolutional layers with 3×3 
kernels and 64 feature maps are used. These are followed 
by a batch normalization layer activated by ReLU [28]. In 
this layer, parametric values are used instead of fixed 
values. The purpose of the generative network is to 
generate new data that cannot be distinguished by the 
discriminator. At the end of the training process, the 
generator network improves and reaches a point where 
the generated images become indistinguishable from 
real images. 
 

The discriminator part is fed with data from the real 
high-resolution dataset and the data generated by the 
generator, and it determines which images are real and 
which are generated. The discriminator network 
includes layers with 3×3 filter kernels, with the feature 
map size increasing from 64 to 512 kernels, adopting a 
structure similar to the Vgg-19 [29] network. Leaky ReLU 
is used for the activation function. Finally, the probability 
of the real high-resolution and the predicted image being 
the same is determined. During training, losses are 
continuously calculated, and the training process 
continues by minimizing these losses. 
 

2.1.4. Refactoring 
 

In models, pixel values need to be processed and 
multidimensional arrays created for image 
enhancement. Generally, models are designed to process 
these values at an 8-bit depth. Satellite images, such as 
those from Sentinel-2 and Landsat-8, are obtained with a 
32-bit depth, providing rich radiometric information. 
This difference in data type can be addressed by 
converting 32-bit images to 8-bit; however, this 
conversion would result in the loss of color information 
in pixel values. In scenarios such as satellite image 
studies, where feature loss must be minimized, it is 
essential to train and test image data without changing 
the bit format. Therefore, instead of performing this 
conversion, the model has been adjusted to work with 
32-bit images. 
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2.1.5. Hyperparameters 
 

For training and evaluation, images are cropped 
and resized to 200 × 200 pixels. The scale is set at 2x and 
4x, with down sampling used to create low-resolution 
images, allowing for high- and low-resolution image 
pairs. All training runs use the same hyperparameters on 
an NVIDIA GeForce RTX 3060. 

The generator network follows a ResNet 
architecture, while the discriminator uses a VGG-based 
design. The difference between the enhanced and 
original images is calculated with MSE loss, which 
measures the mean squared error. Additionally, Total 
Variation Loss (TVLoss) is used to calculate image 
smoothness. Losses are computed using Adversarial Loss 
(weight: 1e-3), Perceptual Loss (weight: 6e-3), and 
TVLoss (weight: 2e-8), with the goal of minimizing these 
losses throughout training. 
 
2.1.6. Postprocess 
 

After obtaining high-resolution images with the SR 
model, differences in histogram distribution may occur. 
Matching the histogram distributions of the input images 
with those of the super-resolved images can improve the 
results by ensuring the alignment of pixel intensity 
distributions. This approach is crucial for accurate 
interpretation and analysis.  
 

2.1.7. Evaluation Metrics 
 

2.1.7.1. Mean Squared Error (MSE) 
 

MSE measures the difference between predicted and 
observed values, calculated as: 

𝑀𝑆𝐸 =
∑(𝑦𝑖−𝑝𝑖)2

𝑛
  (1) 

 

where  𝑦𝑖  is the observed value, 𝑝𝑖  is the predicted 
value, and 𝑦𝑖 . 𝑛 is the number of observations. An MSE of 
0 indicates perfect predictions, while lower values signify 
closer alignment. 

 

2.1.7.2. Peak Signal-to-Noise Ratio (PSNR) 
 

PSNR uses MSE to compare reconstructed images to 
the original signal. A higher PSNR indicates greater 
similarity: 

 

𝑃𝑆𝑁𝑅 = 10 log10 (
𝑀𝐴𝑋2

𝑀𝑆𝐸
) (2) 

 

The MAX value is the maximum pixel value. 
 

2.1.7.3. Structural Similarity Index (SSIM) 
 

SSIM assesses perceptual differences between images, 
focusing on brightness, contrast, and structure. Values 
above 0.95 indicate high similarity, while values below 
0.9 suggest significant differences: 
 

𝑆𝑆𝐼𝑀 =
(2𝜇𝑥𝜇𝑦+𝑐1)(2𝜎𝑥𝑦+𝑐2)

(𝜇𝑥
2+𝜇𝑦

2+𝑐1)(𝜎𝑥
2+𝜎𝑦

2+𝑐2)
 (3) 

 

𝜇𝑥, 𝜇𝑦 represent the means of the two compared 

datasets. 𝜎𝑥
2𝜎𝑦

2  are the variances, and 𝜎𝑥𝑦 is the 

covariance. 
 

 

2.1.7.4. Cosine Similarity (CS) 
 

CS quantifies similarity between two items 
regardless of size, treating each as a vector. Values 
between 0.7 and 1.0 indicate high similarity: 
 

𝑐𝑜𝑠𝑖𝑛𝑒 𝑠𝑖𝑚𝑖𝑙𝑎𝑟𝑖𝑡𝑦 =
𝐴.𝐵

‖𝐴‖‖𝐵‖
 (4) 

 

2.1.7.5. Correlation Coefficient (CC) 
 

CC calculates the linear relationship between two 
datasets. A value of 0 indicates no correlation: 

 

r =
∑(xi−x‾)(yi−y‾ )

√∑(xi−x‾)2∑(yi−y‾ )2
    (5) 

2.1.7.6. ERGAS Value 
 

ERGAS assesses the ratio of the square root of MSE to the 
mean of a reference image, primarily for remote sensing: 
 

𝐸𝑅𝐺𝐴𝑆 = 100
ℎ

ℓ
√

1

𝑛
∑

𝑅𝑀𝑆𝐸2

𝑀𝑅𝑖
2

𝑛
𝑖=1   (6) 

 

𝑀𝑅𝑖  is the mean radiance of the �-th MS band, ℎ 
denotes the spatial resolution of the high-resolution 
band, and ℓ represents the spatial resolution of the low-
resolution image. 

 

2.2. Coastline Segmentation 
 

Segmentation was performed using U-net, LinkNet, 
and DeepLabV3+ models on original and SR Sentinel-2 
and Landsat-8 images as well as GT-1 images that is used 
as a reference. The dataset, enlarged with data 
augmentation. Land masks were created from NIR band 
of the images. These masks were reviewed and corrected 
for obvious errors to finalize the labeled dataset creation. 

 

2.2.1. Dataset Generation  
 

The dataset used in the segmentation models is the 
same as the one used in the SR model. Landsat-8 and 
Sentinel-2 images were cropped to 512×512 dimensions. 
Three different augmentation functions were applied to 
the dataset: horizontal flip, vertical flip, and random 
rotation. 

Masks were created using the Near-Infrared (NIR) 
band. The reflectance values of the NIR band show 
distinct differences between land and water surfaces, 
making it effective to create masks using a threshold 
value determined based on the mean value of the NIR 
band. This approach is based on the principle that water 
surfaces have low reflectance values while land surfaces 
have high reflectance values, allowing for a simple and 
quick mask creation process. However, this method has 
limitations: the accuracy of masks can be affected by 
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environmental factors like snow cover or shadows. To 
enhance mask accuracy, threshold values may need to be 
tailored to specific regions or conditions. Additionally, 
segmented images were carefully reviewed to correct 
any mislabeled areas. An example image and its 
corresponding mask are shown in Figure 6. 
 

 
Figure 6. Image section(a) and mask (b) 

 

2.2.2. U-net 
 

U-Net [10] is a convolutional neural network 
designed for biomedical image segmentation, providing 
high-accuracy segmentation by processing input images 
at various scales. The architecture consists of two 
symmetric paths named encoder path and decoder path. 

In the encoder path, the input image is processed 
through 3x3 convolutional layers with ReLU activation 

functions, followed by 2x2 max-pooling layers, down 
sampling the image at each step while doubling the 
number of feature maps.  

In the decoder path, the feature maps are up 
sampled using 2x2 up-convolution layers and processed 
through 3x3 convolutional layers, then merged with the 
corresponding feature maps from the encoder path. At 
this stage, skip connections preserve high-level features 
from the encoder path, combining them with the up 
sampled output to prevent loss of detail. In the last layer, 
a 1x1 convolution network is used and the feature vector 
is mapped to the desired number of classes. 

In traditional auto-encoder architecture, the input 
data size is progressively reduced through the initial 
layers, completing the encoder part of the architecture 
and then starting the decoder part. However, this process 
causes the model to learn a linear feature representation 
and leads to the 'bottleneck' problem as the size 
increases. U-Net differs at this point; it performs up-
convolution on the decoder side and avoids the 
bottleneck problem through connections in the encoder 
path that prevent the loss of features. The symmetric 
structure between the encoder and decoder paths 
enables the model to learn both low-level details and 
high-level contextual information. The U-net architecture 
used for this study is as shown in Figure 7. 
 

 
Figure 7. U-net architecture 

 
2.2.3. LinkNet 
 

LinkNet [11] is a lightweight convolutional neural 
network model developed to provide fast and efficient 
image segmentation. This model is ideal for applications 
requiring low computational cost and high speed. The 
architecture of LinkNet consists of two main parts named 
the encoder path and the decoder path. 

The encoder path of LinkNet down samples the 
input image using various convolutional layers and max-

pooling layers. The first block contains a convolutional 
layer with a kernel size of 7x7 and a stride of 2, followed 
by a max-pooling layer with a window size of 2x2 and a 
stride of 2. Each convolutional block consists of two 
consecutive 3x3 convolutional layers and a ReLU 
activation function.  

 
The decoder path expands the feature maps using 

up-convolution layers. Each up-sampling block merges 
feature maps from the previous block with feature maps 
from the corresponding blocks in the encoder path. This 
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merging process preserves the details from the encoder 
path and enhances the model's accuracy.  

In LinkNet, skip connections are employed between 
the encoder and decoder paths. These connections allow 
the low-level features from the encoder path to be 
combined with the corresponding high-level features in 

the decoder path. This increases the model's localization 
accuracy and minimizes detail loss. The final layer uses a 
1x1 convolutional layer to determine the class 
probabilities for each pixel. The LinkNet architecture 
used for this study is as shown in Figure 8. 

 

 
 

 
Figure 8. LinkNet architecture 

 
 

2.2.4. DeepLabV3+ 
 

DeepLab [12] architecture proposed by researchers 
at Google and has several variants. DeepLabV2 [30] 
model was presented by improving the encoder path of 
the DeepLab model. Conditional Random Field (CRF) was 
removed in DeepLabV3. Instead, Atrous Spatial Pyramid 
Pooling (ASPP) was implemented and DeepLabV3 
addresses the problem of segmenting objects at different 
scales by using modules that capture multi-scale context 
through various atrous rates. Atrous convolutions, 
applied either sequentially or in parallel, capture multi-
scale context. End-to-end framework restriction has 
been removed. DeepLabV3+ [13] is the latest version in 
this series. 

The encoder path of DeepLabV3+ down samples the 
input image using Xception (inception with deep 
separable convolutional network) convolutional layers 
and atrous (dilated) convolutions. Atrous convolutions 
provide a large field of view while maintaining the 
resolution of feature maps, allowing the model to capture 

more contextual information. A powerful CNN model 
Xception is used as the backbone. This robust backbone 
extracts detailed and meaningful features from the input 
image. 

In the Decoder section, it is combined with the 
feature map of the same resolution coming from the 
encoder section, together with the up sampling. The 
decoder processes the feature maps with the ASPP 
module, capturing information at multiple scales. ASPP 
combines multiple atrous convolution layers with 
different dilation rates and uses a global average pooling 
layer. This structure allows the model to understand 
both broad and narrow contexts. 

In DeepLabV3+, the use of up sampling and atrous 
convolutions at different rates in the ASPP module 
ensures the model captures both low and high-resolution 
feature maps details. Thus, the DeepLabV3+ making it 
ideal for tasks requiring high-resolution and detailed 
segmentation. The DeepLabV3+ architecture used for 
this study is as shown in Figure 9. 
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Figure 9. DeepLabV3+ architecture 

 

2.2.5. Hyperparameters 
 

raining for the U-Net, LinkNet, and DeepLabV3+ 
segmentation models has initiated using PyTorch. To 
enable effective comparison, the same hyperparameters 
are applied across all models. Training is performed on 
an Nvidia GeForce 3060 graphics card, with a learning 
rate of 0.00005 and the ADAM optimizer for 
optimization. DiceLoss is used as the loss function, while 
the IoU metric evaluates model performance throughout 
the training process. 

2.2.6. Evaluation Criteria 
 

2.2.6.1. Confusion Matrix 
 

A Confusion Matrix is a table that evaluates classification 
model performance by visualizing correct and incorrect 
predictions. It includes True Positive (TP), True Negative 
(TN), False Positive (FP), and False Negative (FN) values. 
TP counts correctly predicted positive instances, TN 
counts correctly predicted negatives, FP indicates false 
alarms, and FN shows missed positives. These 
components help assess accuracy, precision, specificity, 
and overall model performance, offering insights into its 
reliability in real-world applications. 

 

2.2.6.2. Intersection over Union 
 

The IoU score is commonly used to evaluate model 
performance in segmentation and object detection tasks. 
It is obtained as given with Eq 7. 

 

𝐼𝑜𝑈 =  
TP

TP+FP+FN
        (7) 

 

2.2.6.3. Dice Loss and Dice Coefficient 
 

The Dice Coefficient measures the overlap between 
the predicted segmentation region and the ground truth 
segmentation region.  

 

𝐷𝑖𝑐𝑒 𝐶𝑜𝑒𝑓𝑓𝑖𝑐𝑖𝑒𝑛𝑡 =  
2×TP

(TP+FP)+(TP+FN)
    (8) 

 

Dice Loss measures how well the model predictions 
overlap with the ground truth values and encourages the 
model to perform accurate segmentation during the 
training process. 

 

𝐷𝑖𝑐𝑒 𝐿𝑜𝑠𝑠 =  1 − Dice Coefficient    (9) 
 
 

2.2.6.4. Precision 
 

Precision measures how many of the pixels 
predicted as positive by the model are actually positive.  

 

𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 =  
TP

TP+FP
                   (10) 

 

2.2.6.5. Recall 
 

Recall measures how many of the actual positive 
pixels the model correctly predicts.  

 

𝑅𝑒𝑐𝑎𝑙𝑙 =  
TP

TP+FN
      (11) 
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2.2.6.6. Accuracy 
 

Accuracy measures the model's rate of correctly 
predicting all pixels. It takes into account both true 
positives and true negatives. 

 

𝐴𝑐𝑐𝑢𝑟𝑎𝑐𝑦 =  
TP+TN

TP+TN+FP+FN
     (12) 

 

A high Accuracy indicates that the model generally 
makes correct predictions; however, it may not fully 
reflect the balance between positive and negative classes. 

 

2.2.6.7. Specificity 
 

Specificity measures how many of the pixels 
predicted as negative by the model are actually negative. 
It aims to reduce the rate of false positives. 

 

𝑆𝑝𝑒𝑐𝑖𝑓𝑖𝑐𝑖𝑡𝑦 =  
TN

TN+FP
     (13) 

 

2.2.6.8. F1 Score 
 

The F1 Score is the harmonic mean of Precision and 
Recall and is used to measure the overall performance of 
the model.  

 

𝐹1 𝑆𝑐𝑜𝑟𝑒 =  
2×Precision×Recall

Precision+Recall
    (14) 

 

A high F1 Score indicates that the model has both 
high Precision and high Recall values. This reflects the 
model's overall performance in capturing true positives 
and minimizing false positives. 
 

3. Results  
 

In this study, the performance and effectiveness of 
the applied models and techniques were systematically 
evaluated. The findings obtained in this process revealed 
the strengths and weaknesses of the models. Satellite 
images were enhanced with the SRGAN model and U-net, 
LinkNet, DeepLabV3+ segmentation models were tested 
with images of different resolutions. Test results showed 
that segmentation success increases as the resolution 
increases. However, due to the advantages and 
disadvantages of the models, the success of the models 
varies as the resolution changes. 

According the results, low resolution, super 
resolution and GT-1 satellite images. U-net and LinkNet 
models achieved high scores on various metrics.  

Figure 10 (i) shows the comparison of the results of 
the SR technique in reduced resolution domain for scale 
factor 2. The difference image shows that the discrepancy 
between the remote sensing image and the super-
resolved image is minimal. Figure 10(ii) shows the 
comparison of the results of the SR technique in reduced 
resolution domain for a scale factor of 4. As mentioned in 
the method section, improvement for a scale factor of 4 is 
more challenging. Nevertheless, the obtained super-
resolved image demonstrates that structure and details 
can be recovered using SR. The difference image shows a 
high similarity in the sea areas and coastline. This is a 
significant result for coastline segmentation. 

 

 
Figure 10. Remote sensing image (a), down sampled 
image (b), super-resolved image of down sampled Image 
(c), difference between remote sensing image and super-
resolved image (d); for (i) 2x and (ii) 4x scale factor. 

 

Figure 11 (i) shows a remote sensing image alongside its 
super-resolved version at a scale factor of 2. The super-
resolved image retains the structure of the original while 
enhancing details. Figure 11 (ii) presents the remote 
sensing image and its super-resolved counterpart at a 
scale factor of 4, highlighting the SRGAN model's 
effectiveness in improving image quality. Super-
resolution clearly enhances coastal features, making 
inland snow masses more distinguishable and improving 
the recognition of environmental conditions. 
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Figure 11. Original remote sensing image (a), super-
resolved image (b); for (i) 2x and (ii)4x scale factor.  
 

Table 1 provides a comprehensive evaluation of the 
SRGAN model and histogram equalization applied in this 
study for a scale factor of 2. The results demonstrate that 
the SRGAN model can produce highly correlated images. 
Enhancing the down sampled image with the SRGAN 
model yielded impressive results, achieving a PSNR value 
of 30.35 and an SSIM value of 0.93, indicating a high 
degree of similarity. Histogram equalization further 
increased the PSNR value from 30.35 to 31.56 and the 
SSIM value from 0.93 to 0.94, suggesting an improvement 
in similarity. Similar results were obtained when the 
satellite image was tested with the model, with an SSIM 
value of 0.99 indicating that the enhancement of the 
satellite image's resolution was performed with minimal 
loss of information. 
 

Table 1. Remote sensing image (a), super-resolved 
image of down sampled image (b), super-resolved image 
of the down sampled image and histogram equalization 
(c), super-resolved image of the remote sensing image 
(d), super-resolved image of the remote sensing image 
and histogram equalization (e) for scale factor 2. 
 

×2 MSE PSNR SSIM CS CC ERGAS 

(a)/(b) 0.0020 30.355 0.930 0.994 0.991 17.213 

(a)/(c) 0.0015 31.564 0.945 0.995 0.993 14.938 

(a)/(d) 0.0006 35.053 0.979 0.998 0.997 10.073 

(a)/(e) 0.0001 41.635 0.990 0.999 0.999 4.7084 

 
Table 2 presents a comprehensive evaluation of the 

SRGAN model and histogram equalization applied in this 
study for scale factor 4. The results obtained for scale 
factor 4 fall behind those for scale factor 2. This is 
expected, as the difficulty increases with a higher scale 
factor. However, a high correlation was still observed. 
With histogram equalization, despite the high scale 
factor, high similarity results were achieved, with a CC of 
0.98 and an SSIM of 0.84. By comparing the satellite 
image with the super-resolved satellite image with 

histogram equalization, PSNR of 34.37 and SSIM of 0.978 
values were obtained. This demonstrated that the model 
could enhance satellite images without distorting the 
texture and structure. 

 

Table 2. Remote sensing image (a), super-resolved 
image of down sampled image (b), super-resolved image 
of the down sampled image and histogram equalization 
(c), super-resolved image of the remote sensing image 
(d), super-resolved image of the remote sensing image 
and histogram equalization (e) for scale factor 4. 

×4 MSE PSNR SSIM CS CC ERGAS 

(a)/(b) 0.0045 26.794 0.814 0.987 0.978 25.894 

(a)/(c) 0.0041 27.157 0.841 0.988 0.980 24.809 

(a)/(d) 0.0007 34.684 0.972 0.997 0.996 10.504 

(a)/(e) 0.0007 34.370 0.978 0.997 0.996 10.965 
 

The data presented in Table 1 and Table 2 provide a 
comparative evaluation of the results of scale factor 2 
and scale factor 4. The obtained results have been 
analyzed using different metrics in conjunction with 
image enhancement and histogram equalization 
methods. These data demonstrate that the enhancement 
and histogram equalization methods used in both scale 
factor 2 and scale factor 4 significantly improve image 
quality and have positive effects on the metrics. It is 
evident that the histogram equalization process yields 
better results at both levels of scaling. The results 
confirm that these methods can be effectively used in 
image processing field to achieve higher quality results.  

Results of the segmentation experiments are 
evaluated both visually and quantitatively with use of 
metrics. 

Figure 12(i) shows the LR image, its mask, and the 
segmentation results from the U-net, LinkNet, and 
DeepLabV3+ models. While all models accurately 
separate the coastline, LinkNet mislabels areas within 
the land due to environmental factors, likely because it 
focuses too much on fine details. LinkNet performs well 
in segmenting small regions like islands, while U-net is 
less affected by environmental conditions. DeepLabV3+ 
produces a shallower prediction than the others. 

Figure 12(ii) presents the SR image, its mask, and 
segmentation results for the same models. The models' 
performance improves with higher resolution, 
particularly LinkNet, which resolves the land mislabeling 
issue. U-net also shows improvement, and while 
DeepLabV3+ doesn't visibly change between LR and SR 
images, evaluation metrics show better segmentation 
accuracy. 

Figure 12(iii) shows the GT-1 image, its mask, and 
the models' segmentation results. Both U-net and 
LinkNet perform better with the high-resolution GT-1 
image, closely aligning with the mask, while DeepLabV3+ 
remains inconsistent. Overall, U-net and LinkNet show 
clear superiority in segmenting high-resolution images. 
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Figure 12. Image (a), mask (b), Segmentation Results of 
U-net (c), LinkNet (d), DeepLabV3+ (e), for (i)LR, (ii) SR 
and (iii) GT-1 images. 
 

The segmentation performance of DeepLabV3+, 
LinkNet, and U-net models for the LR, SR and GT-1 image 
was compared using the metrics in [31,32,33], and 
results were presented in Table 3. For LR image, 
DeepLabV3+ achieved the highest accuracy, with 0.973 
IoU, 0.986 Dice, 0.989 Precision, 0.983 Recall, 0.997 
Accuracy, 0.999 Specificity, and 0.9866 F1 Score. LinkNet 
ranked second with 0.967 IoU, 0.983 Dice, 0.967 
Precision, 0.999 Recall, 0.997 Accuracy, 0.997 Specificity, 
and 0.983 F1 Score, excelling in Recall. U-net, while 
achieving the highest Recall, slightly trailed in other 
metrics, with 0.961 IoU, 0.980 Dice, 0.961 Precision, 1.0 
Recall, 0.997 Accuracy, 0.996 Specificity, and 0.980 F1 
Score. Overall, DeepLabV3+ provided the best results, 
with LinkNet and U-net also performing well, showing 
that these models are effective for high-accuracy 
coastline segmentation from satellite images. 

For the SR image, LinkNet achieved the highest 
accuracy with 0.983 IoU, 0.991 Dice, 0.983 Precision, 
0.999 Recall, 0.998 Accuracy, 0.998 Specificity, and 0.991 
F1 Score. DeepLabV3+ followed with 0.978 IoU, 0.989 
Dice, 0.987 Precision, 0.990 Recall, 0.998 Accuracy, 0.998 
Specificity, and 0.989 F1 Score, showing a balanced 
performance. U-net, with 0.973 IoU, 0.986 Dice, 0.973 
Precision, 0.999 Recall, 0.997 Accuracy, 0.997 Specificity, 
and 0.986 F1 Score, performed well but slightly lagged 
behind the other models. LinkNet benefited the most 
from SR, showing improved performance over LR. 

For the GT-1 image, U-net achieved the best results 
with 0.985 IoU, 0.992 Dice, 0.991 Precision, 0.994 Recall, 
0.998 Accuracy, 0.999 Specificity, and 0.992 F1 Score. 
LinkNet was close behind with 0.984 IoU, 0.992 Dice, 
0.985 Precision, 0.999 Recall, 0.998 Accuracy, 0.998 
Specificity, and 0.992 F1 Score. DeepLabV3+, with 0.967 
IoU, 0.983 Dice, 0.985 Precision, 0.981 Recall, 0.997 
Accuracy, 0.998 Specificity, and 0.983 F1 Score, lagged 
slightly but still performed well. U-net led with the 
highest resolution, with LinkNet close behind, while 
DeepLabV3+ fell behind both. 

 
Table 3. Metric based evalution results of segmentation models across LR, SR and GT-1 images. 

LR IoU DiceCoeff. Precision Recall Accuracy Specificity F1-Score 

U-net 0,961 0,980 0,961 1 0,996 0,996 0,980 

LinkNet 0,967 0,983 0,967 0,999 0,997 0,997 0,983 

DeepLabv3+ 0,973 0,986 0,989 0,983 0,997 0,999 0,986 

SR IoU DiceCoeff. Precision Recall Accuracy Specificity F1-Score 

 U-net 0,973 0,986 0,973 0,999 0,997 0,997 0,986 

 LinkNet 0,983 0,991 0,983 0,999 0,998 0,998 0,991 

DeepLabv3+ 0,978 0,989 0,987 0,990 0,998 0,998 0,989 

GT-1 IoU DiceCoeff. Precision Recall Accuracy Specificity F1-Score 

 U-net 0,985 0,992 0,991 0,994 0,998 0,999 0,992 

 LinkNet 0,984 0,992 0,985 0,998 0,998 0,998 0,992 

DeepLabv3+ 0,967 0,983 0,985 0,981 0,997 0,998 0,983 
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Overall, the segmentation results from GT-1 show 
the highest accuracy, followed by the SR segmentation 
results, and then the LR segmentation results. These 
findings suggest that GT-1 provides the most accurate 
segmentation. The SR results also demonstrate high 
performance, but the LR results exhibit slightly lower 
performance. As illustrated in Figure 13, the area 
misclassified in the LR image is accurately predicted in 
the SR image by the same model (LinkNet), indicating an 
improvement in segmentation success with SR. 

Resolution is an important factor for the 
segmentation of images. The effects of this factor can be 
observed by using the high-resolution GT-1 satellite 
image as a reference for the same region. By comparing 
the GT-1 satellite image (Assumed Ground Truth) with 
the Landsat-8 satellite image and the super-resolved 
image of Landsat-8 image, it is evident that as the 
resolution increases, accurate, smoother and more 
realistic coastline can be delineated as shown in Figure 
14.  

 
 

 
Figure 13. Super Resolution effect on LinkNet model, LR 
image (a), SR image (b), results of LinkNet segmentation 
model with LR image (c) and SR image (d). 
 

 

 
Figure 14. Coastline (yellow) of LR image (a), coastline 
(green) of SR image (b), coastline (red) of GT-1 image (c), 
all coastlines on GT-1 image (d). 

 
The comparison of coastline lengths obtained from 

different models and for all dataset is provided in Table 
6. For relative error analysis, a manual digitization was 
applied on GT-1 image to act as ground truth. The coastal 
length for the region in accuracy analysis was 3412.00 m 
according to this difgitization. According to the results, 
although the U-net and DeepLabV3+ models produce 
successful results in segmentation process according the 
metrics, it was observed that the LinkNet model 
determines the coastline length closest to the ground 
truth value. In particular, by segmenting the images 
improved with the SRGAN model with the LinkNet 
model, the closest coastline length to the real one could 
be calculated with Landsat-8 and Sentinel-2 satellite 
images. 
 

Table 4. Segmentation Models vs coastal length. 

  Coastal Distance (m) Relative Error (%) 

  
U- 

Net 
Link 
Net 

Deep 
labv3+ 

U-
Net 

Link 
Net 

Deep 
labv3+ 

LR 3,126.67 3,163.38 2,951.16 8.36 7.29 13.51 

SR 3,157.98 3,196.15 2,991.42 7.44 6.33 12.33 

GT1 3,187.21 3,388.66 3,226.27 6.59 0.68 5.44 
 

4. Discussion 
 

The SRGAN model has been adapted to work with 
32-bit satellite images for Super Resolution. The 
obtained results show that resolution enhancement at 2x 
and 4x scales has been successful for Landsat-8 and 
Sentinel-2 images. The main factors contributing to this 
outcome are preventing data loss by adjusting the 
number of bands and maintaining the data type required 
by the algorithms for the model's operation. Various tests 
have indicated that preserving the characteristics of 
original data is crucial. Additionally, matching the 
histograms of the obtained high-resolution images with 
the original images has increased the accuracy of the 
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analysis. Providing a homogenously distributed data 
enhances the accuracy of the training. It is important to 
select the images considering the different 
characteristics of the study area and to test the training 
based on these differences can be satisfied this way.  

Segmentation model tests have been repeated for 
different images and regions. According to the obtained 
results, the DeepLabV3+ model is successful in regional 
predictions but lags behind the U-net and LinkNet 
models in capturing details. The U-net model is generally 
successful but falls behind LinkNet in accurately 
calculating the actual coastline length. The LinkNet 
model has been found to be more successful in 
segmenting details. With this advantage, the model can 
better segment small land areas, although its detailed 
segmentation feature may lead to incorrect predictions 
due to environmental factors such as snow and shadow 
within the land. However, this problem can be overcome 
with SR techniques. It can be stated that, the combination 
of SRGAN and the LinkNet model can calculate values 
closest to the actual coastline length while preserving 
coastline details according to outputs of this study. 

 

5. Conclusion  
 

The integration of SR and advanced segmentation 
techniques is highly effective in enhancing the resolution 
of satellite images and accurately delineating coastline 
features. The challenges posed by low-resolution images 
can be overcome with SR. It is evident that the 
performance of segmentation models is directly 
proportional to resolution. In this study, it was observed 
that the SRGAN model enhances details and improves 
segmentation performance. By applying SR to Landsat-8 
and Sentinel-2 satellite images, the details of the 
coastline were enhanced, and the adverse effects of 
environmental factors on segmentation were mitigated. 
It was observed that the LinkNet segmentation model is 
the most effective in segmenting details. These results 
demonstrate that relatively low-resolution images 
obtained at low cost can achieve near-real values when 
combined with the SRGAN model and LinkNet 
segmentation model. 
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