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Abstract
This study evaluates the impact of symmetric and asymmetric dependence on premium
calculations for various annuity and life insurance products across different age groups. Ini-
tially, we determined the marginal survival probabilities for individual lifetimes at specific
ages using the Gompertz mortality model. Subsequently, joint survival probabilities were
derived, considering independent and dependent future lifetimes for individuals within a
group. The dependency structure was examined using Archimedean copulas for symmet-
ric models and Khoudraji copulas for asymmetric models, which are widely referenced
in the literature. In addition, actuarial calculations were conducted using real data on
dependent lifetimes sourced from a Canadian insurance company. The data set is divided
into three different populations based on age differences between married couples: the en-
tire population without considering age differences, the population where males are older,
and the population where females are older. The symmetric and asymmetric dependence
structures of these populations were determined using an asymmetry test. The best-fitting
models were identified using maximum likelihood estimation and goodness-of-fit tests. Fi-
nally, actuarial calculations were performed on the data set. Our findings showed that
there were no significant differences between symmetric and asymmetric premium calcu-
lations for the whole population. However, when the population is disaggregated by age,
the asymmetry becomes evident in the data structures, which increases the differences
in the premium calculations. For example, the Kho-Fr model selected for the population
of older female exhibiting asymmetric dependency was generally found to produce higher
premiums than the Gumbel model. These findings reveal the importance of determining
the dependency structure and working with age-based sub-populations rather than treat-
ing the whole population as a homogenous structure in model selection.
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1. Introduction
In actuarial science, including the dependency factor in models is important for premium

calculations for multiple annuities and insurance products covering more than a single life.
Standard practice assumes for simplicity that future lifetimes among a group of people are
independent. However, numerous studies show that this simplified assumption is not valid
for real insurance data. As is well known, married couples can be exposed to similar risks
because they have the same life circumstances. Therefore, individuals’ future lifetimes
may affect each other, and modeling should account for dependence.

The main methods used for modeling dependent lives include copula models, multiple
state models, and common shock models. Copula models are a function that describes the
joint distribution of multiple random variables. These models allow modeling dependence
structures between marginal distributions. Multiple state models are another important
approach to modeling the interdependence of individuals’ future lifetimes, considering
multiple life cases. These models are used to represent transitions between various life
states (e.g., active, disabled, dead) and to capture the dependence structure arising from
such transitions. They are particularly useful in insurance products involving joint lives
or multiple risks, where changes in one individual’s state can influence the state transition
probabilities of another. Common shock models describe a particular event or shock as
a situation that affects all individuals in the same way. For example, a common shock
between spouses, such as health status, financial crisis or social factors, may have similar
effects on the lifetime of both individuals. Such models relate dependent lives not only
by time but also by the joint impact of external factors. In this study, copula models are
preferred for modeling the dependence of individuals’ future lifetimes in joint lives due to
their suitability for symmetric and asymmetric analysis.

Several studies have shown that there are significant differences between risk-related
quantities such as premiums under dependent and independent assumptions [13, 15, 19].
In this sense, Frees et al. [19] is the first study in the literature to model joint lives with
copula functions using the Canadian insurance dataset, which is a good example of a
situation where joint lives are highly correlated, and then applied to actuarial annuities.
On the other hand, as explained in the motivation section of the study, there may be
asymmetry in real-life data due to gender differences, age differences, health status, social
and economic factors. Inspired by this idea, the study aims to measure the impact of
asymmetric dependence on the pricing of various annuities and insurance products in the
actuarial field. In this context, the marginal survival probabilities of individual lifetimes
are calculated using the Gompertz mortality model, and the interactions of the future
lifetimes of individuals within a group are analyzed using various dependent models.

The paper examines symmetric and asymmetric dependence structures in the pricing
of insurance products using the Archimedean and Khoudraji copula models. To assess
the pricing implications of asymmetric dependence, actuarial calculations are performed
on dependent real-life data from a Canadian insurance company. In the application part,
we first estimate copula parameters using maximum likelihood techniques, followed by a
goodness-of-fit procedure based on the Cramer-von Mises test statistic (Sn) [22] to com-
pare candidate copulas. Finally, the best models are selected using the Akaike Information
Criterion (AIC) and Bayesian Information Criteria (BIC) ensuring an optimal represen-
tation of dependency structures in insurance pricing. In recent years, the importance of
relying on risk assessment and premium calculations in the insurance industry has in-
creased. This study emphasizes that asymmetric dependence should not be ignored. For
this purpose, studies in the literature are summarized.

Copulas, first introduced by Sklar [64], are frequently used in the literature to model
dependency structures in various fields such as finance [29, 33, 34, 39, 57, 58], hydrology
[7, 21, 32], medicine [42, 60] and environmental sciences [3, 35]. Our study focuses on the
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analysis of dependency structures and, like these studies, contributes to the understanding
and modeling of dependencies between variables. Archimedean copulas are commonly used
to model dependence in bivariate lifetimes and have been shown to be useful in various life
insurance applications [2,6,15,17,48,49]. The recent literature has seen ongoing studies on
the application of copulas in the field of insurance [25,28,45]. In addition, numerous studies
have explored the role of asymmetry in insurance, particularly in automobile insurance
[1, 11, 20, 43, 51, 53, 59, 61, 65]. Recently, the concept of asymmetry has been extensively
examined in the field of life insurance [8, 9, 44]. However, it should be noted that only a
limited number of studies link asymmetry with the concept of copula within the domain
of life insurance [36, 38, 63]. Dufresne et al. [15] estimated lifetime by modeling joint
lives with Archimedean copulas considering the age difference in life insurance using the
Canadian insurance data. Kara [36, 38] theoretically examined the effect of asymmetric
dependence on the pricing of joint life insurance and last survivor insurance policies with
GFGM asymmetric copula models. The premium of a last survivor insurance policy is
determined in [18] using the GFGM-Type II copula model. Frees et al. [19] conducted a
study on life insurance related to dependent mortality.

This study differs from previous research by combining both symmetric and asymmetric
copula models, offering a more flexible and innovative approach to modeling dependency
structures in life insurance. While Dufresne et al. [15] analyzes under the assumption
of symmetric dependence using Archimedean copulas, this study incorporates Khoudraji
asymmetric copulas to model the joint lifetimes of spouses more realistically. The use of
Khoudraji asymmetric copulas allows a more flexible treatment of dependency structures
and extends the asymmetric dependency analyzed analytically by [36, 38] with GFGM
copulas by testing it on real insurance data. Although Erawati and Subhan [18] use the
GFGM-Type II copula only for policies that have died, this article applies the Khoudraji
copula to mixed life insurance to illustrate the impact of asymmetric dependence on pre-
mium calculations. Moreover, although Frees et al. [19] analyzed dependent mortality,
they did not evaluate asymmetric dependence structures from a financial perspective. This
research fills these gaps and provides a comprehensive actuarial framework that takes
asymmetric dependence into account, leading to more accurate premium calculations, im-
proved risk management and stronger financial stability for insurers. This study on the
impact of asymmetric dependence on premium calculations provides a new perspective to
understand the importance of dependence in the insurance industry and to develop pricing
strategies more effectively.

In the literature, elliptic and Vine copulas are also used for modeling dependent struc-
tures in the insurance and actuarial areas [12, 30, 55, 62, 67]. However, since the main
focus of the study is to examine the effect of asymmetric dependence on premiums, cop-
ula functions that can directly model asymmetric dependence are preferred. Although
various asymmetric models using Archimedean copulas are also available, only Khoudraji
copulas were chosen as candidate copulas in our study. Khoudroji copulas, by definition,
require the use of only independent and Archimedean copulas [41, 46]. As a result of
the asymmetric tests performed in the study, two of the three populations were found to
have asymmetric dependence, and therefore non-asymmetric elliptical copulas were not
included. Moreover, Vine copulas are generally preferred in high-dimensional dependence
modeling and offer a more complex structure to model the asymmetric structure of two
populations. Since the estimation process of Vine copulas requires more computational
complexity and does not directly include asymmetric structures, they are not included in
the study.

The rest of the paper is organized as follows: Section 2 describes the data set and
presents the rationale for symmetric and asymmetric dependence on life data that mo-
tivates the study. Section 3 describes marginal distributions, dependency models and
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insurance products. It also includes the analysis steps from the identification of depen-
dence and its type to the selection of models. Section 4 includes actuarial applications
to real insurance data, which constitutes the original part of the study. Here, it proposes
model selection with goodness-of-fit tests using a real Canadian insurance dataset. Then,
numerical applications are presented with real data to evaluate premium prices on various
annuities and insurance products in the life insurance sector. Section 5 gives the results
and discussion. Section 6 concludes the paper by evaluating the results.

2. Motivation
Previous studies such as [50] show that being married can significantly affect mortality.

Moreover, the dependence between the lifetime of the male and the female has previously
been analyzed by [6,15,19]. In these studies, the dependence of the data was first analyzed
with common measures of dependence such as Kendall’s τ and Spearman’s ρ, and then
modeled with Archimedean copulas. The data used in this study were received from a
large Canadian life insurance company and include policies in force during the 5-year
observation period from 29 December 1988 to 31 December 1993. The data set contains
14,947 contracts, of which 14,889 are male-female couples and 58 are same-sex couples (22
male-male and 36 female-female). Additionally, in this study, the coupling occurs at the
time that an annuity is bought from the insurance company and the date of entry into the
contract, date of birth and date of death of both insured persons are known.

In this study, our objective was to model the dependence between male and female
lifetimes in married couples with symmetric-asymmetric copula functions for the reasons
mentioned below. Thus, we aim to draw attention to the differences that arise in actuarial
calculations by considering the types of dependence. For this purpose, we used the same
data set from a large Canadian insurance company. In case the same couple had more than
one policy, each couple was considered only once in the analysis and same-sex marriages
were excluded. This reduced the number of observations to 12,856 couples. The age at
the beginning of the observation is denoted as xm for males and xf for females.

Summary statistics for the dataset of 12,856 couples are presented in [15] (Table 1).
According to these statistics, the average entry age is 66.39 for the whole population,
67.87 for males, and 64.91 for females. Among the 12,856 observed couples, only 193
experienced the death of both insured individuals during the 5-year observation period.
To ensure methodological consistency, this study focuses solely on these 193 complete ob-
servations. Although the full dataset includes 12,856 couples, right-censored cases (where
one or both individuals survived the period) were excluded from the modeling stage. This
decision is consistent with prior studies such as [15,19], which also relied on complete data
for dependence modeling and estimation. The observed differences in p-values and the
parameter estimates compared to [15] are mainly attributable to the different sample se-
lections, the complete cases in our study versus the full data set in theirs. Exchangeability
tests were also applied only to the complete cases, as the exchTest() function cannot be
used on censored data. Although it is theoretically possible to fit copula models, including
Archimedean and Khoudraji-type copulas, to censored datasets, such applications require
more advanced estimation methods that are beyond the scope of this study.

In this study, the data set is classified into three groups based on the ages at death of
insured individuals: xm≥xf (i.e., the male died older than the female), xm<xf (i.e., the
female died older than the male) and the whole population including all couples. This
classification is strictly based on the ages of death and may differ from the approach used
in studies such as [15], where the grouping appears to have been performed according to
the ages of entry. For each dataset, Spearman’s correlation measure and asymmetric test
results are calculated for the gender of the older partner and the results are given in Table
1. The values indicate that the ages at the death of spouses are positively correlated. The
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asymmetricity test was performed with the code "exchTest" in the R package. Although
no asymmetry was observed in the entire population, a statistically significant asymmetry
(p < 0.05) was observed when the grouping was based on the gender of the older partner.

Table 1. Spearman’s ρ correlation measure and asymmetric test results

Samples ρ Test value p-value
xm≥xf 144 0.8579 0.027344 0.02647
xm<xf 49 0.8777 0.034985 0.01948
whole 193 0.7955 0.016027 0.505

In actuarial applications, understanding the nature of the dependency between spouse
lifetimes is essential to select appropriate models. The following section briefly reviews
the relevant types of dependence and explains the rationale behind the modeling choices
adopted in this study.

Dependence between the lifetimes of spouses has been widely studied in the actuarial
literature and is most commonly associated with long-term factors, such as shared lifestyle,
chronic health conditions, and sustained social interactions [6, 13–15, 31, 68], as summa-
rized in [27]. In this context, long-term dependence refers to situations where the force of
mortality of the surviving spouse remains constant or increases after the partner’s death.
This persistent association is shaped by the cumulative effects of cohabitation, mutual
habits, and environmental similarities. As pointed out by [66], widely used Archimedean
copula families (Clayton, Gumbel-Hougaard, Frank, and Joe) are suited to modeling long-
term dependence and do not account for short-term or instantaneous effects. Although
their study does not address Khoudraji-transformed versions, these asymmetric copulas
preserve the core dependence structure of the base models and are therefore also suit-
able for modeling long-term dependence while allowing for asymmetry in the dependence
relationship. Although the literature also considers short-term and instantaneous forms
of dependence, these are not modeled in the present study and are mentioned solely for
theoretical context. Short-term dependence generally refers to a temporary increase in
mortality risk in the surviving spouse due to psychological effects, often described as the
"broken heart" syndrome [47,56]. Instantaneous dependence, resulting from shared expo-
sure to external shocks (e.g., accidents or natural disasters), is typically addressed using
common shock models [27]. However, it is necessary to determine whether the dependence
in the lifetimes of spouses is symmetric or asymmetric. For this, exchangeability (sym-
metry) tests must first be applied. The rejection of exchangeability tests in certain cases
supports the need for models that account for asymmetric dependence. Symmetric depen-
dence occurs when the lifetimes of spouses are affected in similar ways, while asymmetric
dependence is when the lifetimes of spouses are affected in different ways. The causes of
asymmetric dependence between spouses in real life can be explained by certain factors
that directly influence the dependency structure in the lifetimes of couples:

(1) Gender differences: Habits such as smoking, drinking alcohol, and participating
in dangerous activities can increase the risk of death of men. Therefore, men’s
tendency to engage in higher-risk behaviors leads to differences in lifetimes between
men and women. In other words, women tend to live longer than men, which can
lead to asymmetric dependency.

(2) Age difference: Generally, men are older than women and the risk of death in-
creases with increasing age. This can create a natural asymmetry in survival prob-
abilities between spouses, making the assumption of exchangeability unrealistic in
dependency modeling.

(3) Health status: Each spouse may have different chronic diseases and genetic predis-
positions. In addition, women are often observed to use healthcare services more
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frequently and attend regular check-ups, which can influence survival results. This
may therefore lead to asymmetry in lifetimes.

(4) Social and economic factors: Differences in the social support networks of spouses
and economic situation can lead to asymmetric dependence in lifetimes.

(5) Psychological factors: Spouses may have different psychological tolerance and
stress coping mechanisms. This supports the need to model the dependency struc-
ture as asymmetric in lifetimes.

Such situations require modeling dependency using non-exchangeable asymmetric cop-
ula families such as Khoudraji. This study aims to examine the impact of asymmetric
dependencies in spouse lifetimes on actuarial calculations. In this context, the Archime-
dian and asymmetric Khoudraji copula functions are used to calculate the required joint
survival probabilities. Marginal distributions, dependent models and actuarial calcula-
tions for insurance products are briefly introduced in the next "Background" section of
the study. The determination of dependency structures, parameter estimation, and model
selection are discussed later.

3. Background
3.1. Marginal distributions

In actuarial sciences, survival models are constructed by defining the future lifetime of
an individual as a random variable. For further details on the survival life models, please
refer to the work of [4]. The lifetime of a newborn shall be modeled by a positive continuous
random variable, say X with distribution function F and survival function S. The symbol
(x) will be used to denote a life age x and Tx = X − x|X > x is the remaining lifetime
of (x). The actuarial symbols tpx and tqx are, respectively, the survival and distribution
function of Tx. In fact, for a living (x), the probability that it survives for at least t years
and the probability that it dies in t years are, respectively, given by

tpx = P (Tx > t) = P (X > x + t | X > x) = P (X > x + t)
P (X > x)

= S (x + t)
S (x)

(3.1)

tqx = 1 − tpx = P (Tx ≤ t) (3.2)
When X has a probability density function f , then Tx has a probability density function
given by

tfx = tpxµ(x + t) (3.3)
where µ(.) is the hazard rate function, also called the force of mortality.

Life products were initially designed according to the life status of only one person;
however, as the number of people in the same policy increased over time, multiple life
statuses were taken into account [4]. As a result, the change in the number of people
registered in the policy means that all kinds of calculations made regarding the products
will change. Therefore, this transition from single-life products to multiple-life products
requires an appropriate expansion of the actuarial structure. Actuarial calculations for
multiple lives are common in insurance practices. In the following, (x) stands for the
husband of the age (x) while (y) is the wife. Considering a couple (x, y), Txy describes
the remaining time until the first death between (x) and (y) and it is known as the joint
life status. In contrast, Txy is the time until death of the last survivor. In our study, only
joint survivor status was analyzed. Txy random variable can be written as

Txy=min (Tx, Ty) . (3.4)
The joint life function of two individuals with future lifetimes Tx and Ty is expressed as

follows:
tpxy= P (Txy>t) = P (Tx>t, Ty>t) . (3.5)
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If the future lifetimes of individuals are independent, the probability that two individuals
age x and y live together for at least t years and the probability that the first death occurs
within t years are, respectively, given below:

tpxy = P (Tx > t, Ty > t) = P (Tx > t) P (Ty > t) = tpx tpy (3.6)

tqxy = tqx + tqy − tqx tqy (3.7)
Various parametric mortality laws are used in the pricing of actuarial products. Models

such as the constant force of mortality, De Moivre, Gompertz, Makeham and Weibull are
common in the literature. The choice of model depends on the characteristics of the data
and the objective of the study. Frees et al. [19] and Carriere [6] showed in their studies
that the dataset consisting of middle-aged, and elderly insured persons fits the Gompertz
mortality law well. Therefore, in our study, like [15], focusing on the Gompertz model, we
use the Gompertz law reparametrized by [5]. Gompertz’s law of mortality, which states
that mortality increases exponentially with age, is expressed as follows:

S (x) = exp
(

− B

ln c
(cx − 1)

)
; B > 0, c > 1, x ≥ 0 (3.8)

tpx = exp
(

−Bcx
(
ct − 1

)
ln c

)
(3.9)

The reparametrized Gompertz law is given as follows:

e− m
σ = B

ln c
, e

1
σ = c (3.10)

from which we obtain
tpx = exp

(
e

x−m
σ

(
1 − e

t
σ

))
(3.11)

where the mode m>0 and the dispersion parameter σ>0 are the new parameters of the
distribution.
We estimate the Gompertz parameters with MLE for the whole populations, xm≥xf and
xm < xf and the results are given in Table 2.

Table 2. Gompertz parameter estimates

Parameters whole xm≥xf xm<xf

m̂m 82.2435 83.09 79.1488
m̂f 80.0767 79.3398 82.0524
σ̂m 9.6568 9.6993 9.2545
σ̂f 9.4047 9.3158 9.5551

3.2. Dependence models
Sklar [64] introduced the concept of copula to delineate the joint distribution function

of a random vector by separating the behaviors of the marginals and the dependence
structure. According to Sklar’s theorem, for positively correlated and continuous variables
X and Y , there exists a unique copula C :[0, 1]2 → [0, 1] that precisely defines the joint
distribution function of the bivariate random vector (X, Y ).

FXY (x, y) = P (X ≤ x, Y ≤ y) = C (FX (x) , FY (y)) = C (u, v) (3.12)
where u and v show the continuous empirical marginal distribution functions of FX (x)
and FY (y), with uniform distribution U(0, 1), respectively. Originally, the most widely
considered copula families satisfy the exchangeability, i.e. C(u, v) = C(v, u). However,
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the asymmetric copula setting emerges from the unsatisfied exchangeability. According
to the theorem defined by [16], for all α, β ∈ (0, 1) and for all copulas C1 and C2, the
function Cα,β : [0, 1]2 → [0, 1], defined by

Cα,β(u, v) = C1
(
uα, vβ

)
C2(uα, vβ) (3.13)

is a copula, where α = 1 − α and β = 1 − β. Here, an asymmetric copula is formed
ϕ = (α, β, θ), α, β ϵ(0, 1), α ̸= 1/2, β ̸= 1/2. If α = β then Cα,β is symmetric. For two
symmetric copulas, C1 and C2, if Cα,β (u, v) = Cβ,α(v, u) then Cα,β is a symmetric copula.
On the other side, if Cα,β (u, v) ̸= Cβ,α(v, u) then Cα,β is defined as the asymmetric
copula [39,40].
We denote by Txf

and Txm the future lifetimes of women and men, respectively. The sur-
vival function of

(
Txf

, Txm

)
is written in terms of copulas and marginal survival functions.

It is given by

P
(
Txf

> t1, Txm > t2
)

= C̃
(

t1pxf
, t2pxm

)
= t1pxf

+ t2pxm
− 1 + C

(
t1qxf

, t2qxm

)
(3.14)

For a review of existing copula families, see [10, 54]. The Archimedean copula family is
a popular statistical tool in life insurance applications, particularly due to its flexibility
in modeling dependent random lifetimes. For further details, see [15, 19, 68]. This paper
presents a discussion of four well-known Archimedean copulas as given below:
Clayton copula is defined as

C (u, v) =
(
u−θ + v−θ − 1

)− 1
θ ; θ > 0. (3.15)

Frank copula is given by

C (u, v) = −1
θ

log

{
1 + (e−θu − 1)(e−θv − 1)

(e−θ − 1)

}
; θ ≠ 0. (3.16)

Gumbel copula is obtained by

C(u, v) = exp{−
[
(−log (u) )θ + (−log (v) )θ

] 1
θ }; θ ∈ [1, ∞) . (3.17)

Joe copula is given by

C(u, v) = 1 − ((1 − u)θ + (1 − v)θ − (1 − u)θ(1 − v)θ)( 1
θ

); θ ∈ [1, ∞) . (3.18)
Khoudraji copulas are a class of asymmetrical copulas first introduced by [41]. Later,
Liebscher [46] defined its general form. They may model both positive and negative
dependency, and a wide variety of dependency constructs can be captured by varying
their parameters.
In Eq (3.13) for α + α = 1, β + β = 1, if C1 is independent copula C(u, v) = uv, and
C2 is a symmetrical Archimedean copula family with a dependency parameter θ given in
(3.15)–(3.18). Cα,β , I2→I is called Khoudraji copulas and the mathematical model is
defined as

CKC (u, v) = u1−αv1−βC
(
uα, vβ

)
, α ̸= β (3.19)

To select an appropriate model for the data, it is essential to first perform a symmetry
test (or a test for the exchangeability of variables). The literature mentions measures such
as Rn, S∗

n and Tn for this purpose [23]. Here, Cramér-von Mises statistic S∗
n is used for

symmetry testing as

S∗
n =

∫ 1

0

∫ 1

0

{
Ĉn (u, v) − Ĉn (v, u)

}2
dĈn (v, u) (3.20)

If the p-value for this statistic is less than 0.05, the null hypothesis H0 : Ĉn (u, v) =
Ĉn (v, u) , which means the symmetry of the data, is rejected. This indicates that the data
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are asymmetrically dependent. In our study, the exchangeability test was conducted using
the “exchTest” function in the “copula” package in the R software [26].

3.3. Multiple actuarial calculations for annuity and insurance contracts
Multiple life products are insurance policies designed based on the lifetime or health

status of more than one person and are of major importance in terms of actuarial anal-
yses and assessments. These products allow insurance companies to optimize their risk
management strategies and perform more precise and accurate premium calculations. In
addition, multiple life products allow insurance companies to make more comprehensive
and detailed financial projections when determining their long-term liabilities and reserve
requirements. These products, which play an important role in reinsurance agreements
and diversification of insurance portfolios, also help to offer more flexible and appropriate
solutions to customer needs. In summary, the premiums of multi-life insurance are used
in reserve calculations, reinsurance agreements, financial reporting, risk management and
marketing strategies. In this section, actuarial calculations are performed using Canadian
insurance data. Using the equations given in Section 3.1 for joint lives, the necessary
formulas to be able to perform actuarial calculations for annuities and insurance products
are given below. More details can be obtained by [4, 24,37,52].

The net single premium of the term life annuity for two individuals at ages x and y is
calculated by

äxy: n⌉ =
n∑

t=0
vt

tpxy (3.21)

In such annuities, the payments end with the first death. In actuarial science, these
kinds of annuity are called joint life annuities. The net single premium of endowment life
insurance arranged for two individuals at ages x and y is given by

Axy: n⌉ = A1
xy : n⌉ + nExy (3.22)

Here, A1
xy : n⌉ =

∑n−1
k=0 vk+1

k|qxy and nExy = vn
npxy are net single premiums of a term

and pure endowment insurances, respectively. In such insurance policies, the death benefit
is paid at the end of the year in which the first death occurs.

The premium formula used in actuarial pricing for the endowment insurance product is
given by

Pxy: n⌉ =
Axy: n⌉
äxy: n⌉

, mP xy: n⌉ =
Axy: n⌉
äxy: m⌉

(m < n) (3.23)

3.4. Analysis process
The concept of asymmetric dependence, which constitutes the original contribution of

this study, is analyzed on real data obtained from a Canadian insurance company (in Sec-
tion 4). As indicated in the motivation section, these analyzes were performed on datasets
divided into three populations (whole, xm≥xf , xm<xf ). The marginal parameters for
these data sets were estimated using the maximum likelihood method under the assump-
tion of a Gompertz distribution, and the parameter values provided in Section 1 were
used in the analyzes performed in Section 4. Parameter estimation and model selection
were applied only for analysis of real data in Section 4. This analysis process is generally
summarized as follows:

(1) Determination of Dependency Structures
• Conduct Spearman correlation measurements for all populations in the data

set.
• Apply the exchangeability test.

(2) Selection of candidate symmetric and asymmetric models
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• Archimedean (ArchC) copula models: Clayton, Frank, Gumbel, Joe
• Khoudraji (KhoC) copula models: Kho-Cl, Kho-Fr, Kho-Gm, Kho-Joe

(3) Parameter Estimation
• Estimating parameters for ArchC and KhoC models using the Maximum

Pseudo-Likelihood (MPL) method.
(4) Model Selection

• Calculating log-likelihood (LL), Cramer von Mises (Sn), p, AIC and BIC
values for ArchC and KhoC models.

• Determining models that fit the data using the test statistic (p>0.05).
• Selecting symmetric and asymmetric models with the smallest AIC and BIC

values.
(5) Calculation of Actuarial Premiums

• Obtaining joint survival probabilities for independent and dependent scenarios
(Appendices B).

• Calculating single and annual net premiums for annuity and insurance prod-
ucts.

• Illustrating premium calculations comparing the most appropriate symmetric
and asymmetric models.

4. Application
In this section, we analyze dependency structures and actuarial premiums between gen-

der and age groups based on Canadian insurance data. In this dataset, three populations
were created as a whole; (xm≥xf ); (xm<xf ); (m: male, f: female). As described in the
analysis process, the symmetric and asymmetric dependency structures were determined
with the asymmetry test for each of these populations. The parameters were then esti-
mated using the maximum pseudo-likelihood (MPL) method. Then, using the Cramer-von
Mises (Sn) goodness-of-fit test, Akaike Information Criterion (AIC) and Bayesian Infor-
mation Criterion (BIC) the most appropriate ArchC and KhoC models were determined
and the results are given in Table 3. Here, the values in parentheses represent the standard
errors of the parameter estimates.

According to the results of the asymmetry test presented in Table 1, the entire pop-
ulation is determined to be symmetric, while the xm≥xf and xm<xf populations are
identified as asymmetric. Based on the results of the goodness-of-fit test in Table 3, the
Gumbel copula is the best-fitting model for the whole population, while Kho-Gm and
Kho-Fr are the most suitable models for the xm≥xf and xm<xf subpopulations, respec-
tively. Here, among models with p values greater than 0.05∗ for the statistic Sn, the model
with the smallest AIC and BIC values was selected as the model that was best adapted ∗∗.
These results demonstrate that the model selections are consistent with the asymmetry
test results.
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Table 3. The parameter estimation and goodness-of-test results for each copula
model

whole
Model θ̂ α̂ β̂ LL Sn p value AIC BIC
Clayton 1.7175 (0.1803) - - 66.8452 0.2732 0.0026 -131.6904 -128.4277
Frank 8.4524 (0.7435) - - 98.5910 0.0372 0.0129 -195.1820 -191.9193

Gumbel∗∗ 2.5737 (0.1524) - - 107.5388 0.0118 0.6572∗ -213.0776 -209.8149
Joe 3.2680 (0.2052) - - 96.9617 0.0630 0.0077 -191.9234 -188.6607

Kho-Cl 12.9120 (2.6977) 0.8210 (0.0544) 0.6399 (0.0496) 93.0434 0.1182 0.0026 -180.0868 -170.2987
Kho-Fr 12.6803 (1.8705) 0.9227 (0.0467) 0.8475 (0.0552) 101.9542 0.0313 0.0129 -197.9084 -188.1203

Kho-Gm∗∗ 2.6882 (0.2114) 0.9873 (0.0430) 0.9682 (0.0602) 107.6679 0.0120 0.6366∗ -209.3358 -199.5477
Kho-Joe 3.6229 (0.2934) 0.9656 (0.0478) 0.9337 (0.0595) 97.7730 0.0555 0.0026 -189.5460 -179.7579

xm≥xf

Clayton 2.2615 (0.2562) - - 69.2077 0.2435 0.0034 -136.4154 -133.4456
Frank 10.5010 (1.1522) - - 95.5002 0.0457 0.0035 -189.0004 -186.0306

Gumbel∗∗ 3.2054 (0.2806) - - 109.5050 0.0167 0.2862∗ -217.0100 -214.0402
Joe 4.2451 (0.4502) - - 100.3910 0.0467 0.0103 -198.7820 -195.8122

Kho-Cl 9.0243 (2.4914) 0.9969 (0.1033) 0.6931 (0.0866) 89.0878 0.1118 0.0724∗ -172.1756 -163.2662
Kho-Fr 17.5281 (2.9835) 0.9972 (0.0515) 0.7815 (0.0674) 103.9150 0.0407 0.0241 -201.8300 -192.9206

Kho-Gm∗∗ 4.1327 (0.6130) 0.9997 (0.0606) 0.8433 (0.0658) 114.8375 0.0181 0.2931∗ -223.6750 -214.7656
Kho-Joe 5.4445 (0.8553) 0.9923 (0.0894) 0.8388 (0.0777) 107.1481 0.0408 0.0103 -208.2962 -199.3868

xm<xf

Clayton 2.6823 (0.4354) - - 25.9054 0.1184 0.0035 -49.8108 -47.9190
Frank 11.5220 (1.6796) - - 34.9102 0.0364 0.0310 -67.8204 -65.9286

Gumbel∗∗ 3.4914 (0.5374) - - 38.9184 0.0303 0.0862∗ -75.8368 -73.9450
Joe 4.6290 (0.9404) - - 35.9466 0.0525 0.0172 -69.8932 -68.0014

Kho-Cl 12.8407 (7.7880) 0.7653 (0.1207) 0.9988 (0.1436) 42.2354 0.0395 0.2448∗ -78.4708 -72.7953
Kho-Fr∗∗ 37.4053 (1.9693) 0.7133 (0.0778) 0.9820 (0.0714) 45.7855 0.0401 0.1414∗ -85.5710 -79.8955
Kho-Gm 5.3987 (1.8039) 0.8168 (0.1022) 0.9984 (0.1166) 43.4638 0.0281 0.2034∗ -80.9276 -75.2521
Kho-Joe 6.0364 (1.9875) 0.8587 (0.1227) 0.9994 (0.1348) 39.1878 0.0432 0.0310 -72.3756 -66.7001

The goodness-of-fit test results are further supported by the visualizations given in
Figure 1 and Figure 2. Figure 1 presents scatter plots that compare the observed Canadian
age-at-death data (black) with simulated data (red) from the best-fitting ArchC and KhoC
models. Figure 2 shows contour plots of fitted (black, solid) and empirical (red, dashed)
copulas. In both figures, results are shown for the entire population ("whole") and the
subpopulations where the male age at death is greater than or equal to (≥), or less than
(<), that of the female.

Actuarial calculations were performed according to these selected models. Net single
premiums and annual premiums were obtained for some annuities and insurance products
using the Canadian insurance data set consisting of joint lives (xf , xm). In the calculations,
the age pairs (x = 50, y = 60), (x = 55, y = 55) and (x = 60, y = 50) were considered. This
data set was analyzed for three populations: whole, xm≥xf , xm<xf . The joint survival
probabilities are given in Appendices B1 and B2, respectively, under symmetric (ArchC)
and asymmetric (KhoC) dependence for the Canadian insurance dataset with population:
whole, xm≥xf , xm<xf . Using these probabilities, the actuarial calculations according to
the ArchC and KhoC models for all populations are presented in Table 4.
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Figure 1. Scatter plots comparing observed Canadian data (black) with simu-
lated data (red) from the best-fitting copula models presented in Table 3, across
different populations (whole, xm≥xf , xm<xf ) Axes: xf : age at death (female),
xm : age at death (male)

Figure 2. Contour plots comparing fitted (black, solid) and empirical (red,
dashed) copulas for the best-fitting ArchC and KhoC models presented in Table
3, across different populations (whole, xm≥xf , xm<xf )). Axes represent pseudo-
observations u (female) and v (male)

Table 4 presents the net premiums, their relative ratios, and percentage changes across
different populations (whole, xm≥xf , xm<xf ) for the independent, ArchC and KhoC mod-
els. The results show the differences between the independent and dependent models in
terms of annuities (ä), insurance value (A) and net annual premiums (P). Moreover, to
visually assess the impact of dependency structures for different age groups (50-60, 55-
55, 60-55), Figure 3 presents graphs showing the relative ratios of premiums for each
population.
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Table 4. Net premiums, relative ratios, and percentage changes according to the
Independent, ArchC, and KhoC models

Relative Ratios(%) Percentage Changes(%)

Population Net Premiums Ind ArchC KhoC ArchC vs Ind KhoC vs Ind KhoC vs ArchC ArchC vs Ind KhoC vs Ind KhoC vs ArchC

whole ä50:60 : 10⌉ 7.983783 8.088586 8.086820 1.013127 1.012906 0.999782 1.31 1.29 -0.02
ä55:55 : 10⌉ 8.109747 8.231620 8.231060 1.015028 1.014959 0.999932 1.50 1.50 -0.01
ä60:50 : 10⌉ 8.058702 8.170962 8.171078 1.013930 1.013945 1.000014 1.39 1.39 0.00

xm ≥ xf ä50:60 : 10⌉ 7.953622 8.072883 8.050205 1.014995 1.012143 0.997191 1.50 1.21 -0.28
ä55:55 : 10⌉ 8.108063 8.257121 8.243131 1.018384 1.016658 0.998306 1.84 1.67 -0.17
ä60:50 : 10⌉ 8.083915 8.223776 8.225721 1.017301 1.017542 1.000237 1.73 1.75 0.02

xm < xf ä50:60 : 10⌉ 8.039206 8.193682 8.192043 1.019215 1.019011 0.999800 1.92 1.90 -0.02
ä55:55 : 10⌉ 8.079940 8.249342 8.200434 1.020966 1.014913 0.994071 2.10 1.49 -0.59
ä60:50 : 10⌉ 7.931432 8.065682 8.009783 1.016926 1.009879 0.993070 1.69 0.99 -0.69

whole A50:60 : 10⌉ 0.767463 0.764410 0.764462 0.996022 0.996090 1.000068 -0.40 -0.39 0.01
A55:55 : 10⌉ 0.763794 0.760244 0.760260 0.995352 0.995373 1.000021 -0.46 -0.46 0.00
A60:50 : 10⌉ 0.765281 0.762011 0.762007 0.995727 0.995722 0.999995 -0.43 -0.43 0.00

xm ≥ xf A50:60 : 10⌉ 0.768341 0.764867 0.765528 0.995479 0.996339 1.000864 -0.45 -0.37 0.09
A55:55 : 10⌉ 0.763843 0.759501 0.759909 0.994316 0.994850 1.000537 -0.57 -0.52 0.05
A60:50 : 10⌉ 0.764546 0.760473 0.760416 0.994673 0.994598 0.999925 -0.53 -0.54 -0.01

xm < xf A50:60 : 10⌉ 0.765848 0.761349 0.761397 0.994125 0.994188 1.000063 -0.59 -0.58 0.01
A55:55 : 10⌉ 0.764662 0.759728 0.761152 0.993547 0.995410 1.001874 -0.65 -0.46 0.19
A60:50 : 10⌉ 0.768987 0.765077 0.766705 0.994915 0.997032 1.002128 -0.51 -0.30 0.21

whole P50:60 : 10⌉ 0.096128 0.094505 0.094532 0.983116 0.983397 1.000286 -1.69 -1.66 0.03
P55:55 : 10⌉ 0.094182 0.092357 0.092365 0.980623 0.980708 1.000087 -1.94 -1.93 0.01
P60:50 : 10⌉ 0.094963 0.093258 0.093257 0.982046 0.982035 0.999989 -1.80 -1.80 0.00

xm ≥ xf P50:60 : 10⌉ 0.096603 0.094745 0.095094 0.980767 0.984379 1.003684 -1.92 -1.56 0.37
P55:55 : 10⌉ 0.094208 0.091981 0.092187 0.976361 0.978547 1.002240 -2.36 -2.15 0.22
P60:50 : 10⌉ 0.094576 0.092472 0.092444 0.977753 0.977457 0.999697 -2.22 -2.25 -0.03

xm < xf P50:60 : 10⌉ 0.095264 0.092919 0.092943 0.975384 0.975636 1.000258 -2.46 -2.44 0.03
P55:55 : 10⌉ 0.094637 0.092096 0.092819 0.973150 0.980790 1.007851 -2.68 -1.92 0.79
P60:50 : 10⌉ 0.096954 0.094856 0.095721 0.978361 0.987283 1.009119 -2.16 -1.27 0.91

The results in Table 4 and the graphs in Figure 3 show that the selected ArchC and
KhoC models produce higher annuity (ä) values than the independent model, but generally
lower insurance (A) and annual premium (P) values. The relative differences (percentage
changes) for annuity premiums range from 1.30% and 2.10%, while the differences for
insurance values are less than 1%, and for annual premiums range between 1.27% and
2.68%. However, the relative ratios of the premium values calculated according to the
ArchC and KhoC models are generally in the range of 1.000-1.009, indicating that there is
no significant difference between the two models. However, it is expected that the premium
differences between the dependent models and the independent model will increase as the
benefit amounts increase.
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Figure 3. Relative premium ratios of ArchC, KhoC and Independent models by
age groups and populations

The graphs in Figure 3 show the effect of dependency structures on premium values, in
particular that the ArchC model produces higher premiums than the independent model,
but the KhoC model generally produces lower or similar values compared to the ArchC
model. It is also observed that premium rates vary between age groups, with particularly
marked differences in xm≥xf ve xm<xf populations. Although the ArchC model generally
generates higher premiums than the independent model, the KhoC model is found to vary
in different directions compared to both the independent and ArchC models.

Actuarial calculations are performed and interpreted in order to better explain the effect
of the above-mentioned benefit levels on premium differences as follows: Net premium
amounts are calculated for a 10-year annuity, which provides annual benefit payments of
10,000 units, and for a 10-year endowment life insurance policy, which provides a benefit
payment of 10,000 units in the event of the policyholders death. Table 5 displays the
premium differences (DifPr) and total premium differences (Total_DifPr) based on
the selected ArchC and KhoC models for different populations (whole xm≥xf , xm<xf ).
Calculations were performed separately for the Canadian dataset (actual population size
given in Table 1) and a sample size of N=1,000. Here, DifPr represents the difference
in premiums for a single individual, calculated as DifPr = PrAsym − PrSym. The
total difference in premiums, denoted as TotalDifPr = 10, 000 × DifPr × Sample Size,
reflects the overall impact according to the sample size and the amount of benefit. The
interest rate is set at %3, and the premium payment period is considered 10 years.
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Table 5. Differences Based on Selected Copula Models for Sample Sizes in the
Canadian Dataset and N=1,000

Populations Premiums Compared Models DifPr
(single person)

TotalDifPr
(N:Canadian dataset)

TotalDifPr
(N:1,000)

whole ä55:55:10⌉ ArchC-Independent 0.121873 235,214.9 1,218,730
ä55:55:10⌉ KhoC-Independent 0.121313 234,134.1 1,213,130
ä60:50:10⌉ KhoC-ArchC 0.000116 223.88 1,160
A50:60:10⌉ KhoC-ArchC 0.000052 100.36 520
P50:60:10⌉ KhoC-ArchC 0.000027 52.11 270

xm ≥ xf ä55:55:10⌉ ArchC-Independent 0.149058 214,643.5 1,490,580
ä60:50:10⌉ KhoC-Independent 0.141806 204,200.6 1,418,060
ä60:50:10⌉ KhoC-ArchC 0.001945 2,800.8 19,450
A50:60:10⌉ KhoC-ArchC 0.000661 951.84 6,610
P50:60:10⌉ KhoC-ArchC 0.000349 502.56 3,490

xm < xf ä55:55:10⌉ ArchC-Independent 0.169402 83,006.98 1,694,020
ä50:60:10⌉ KhoC-Independent 0.152837 74,890.13 1,528,370
A60:50:10⌉ KhoC-ArchC 0.001628 797.72 16,280
P60:50:10⌉ KhoC-ArchC 0.000865 423.85 8,650

Table 5 shows that when 10-year endowment insurance policies with a 10,000 benefit are
sold to 144 people in the xm≥xf population, the total annual premium difference P50:60:10⌉
for the KhoC-ArchC model is 502.56 units for the Canadian population, while for N=1,000,
this difference increases to 3,490 units. Similarly, for the xm<xf population, the annual
premium P60:50:10⌉ for 49 individuals is 423.85 units for the Canadian population, while
for N = 1,000, this difference reaches 8,650 units. Similar calculations and interpretations
can be made for annuity premiums: for the entire population, the premium difference for
the ArchC independent model is 0.121873, and the total premium difference is 235,214.9
units for the Canadian population and 1,218,730 units for N=1,000. The difference for
the KhoC-independent model is slightly lower. In the xm≥xf population, the premium
difference for the ArchC-independent model is 0.149058 and the total premium difference
is 214,643.5 units for the Canadian population and 1,490,580 units for N=1,000. The
strongest dependence effect is observed in the population xm<xf , where the spread of
the annuity premium reaches 0.169402 and the total spread of the premium is 83,006,98
units for the Canadian population and 1,694,020 units for N=1,000. According to these
results, in all populations, the impact of dependency structures on premium calculations
increases with increasing benefit levels and the highest sensitivity is observed for annuity
premiums. Although the differences between the ArchC and KhoC models are small, both
models produce significant differences compared to the independent model, especially in
annuity premiums. Moreover, as the population size increases, total premium differences
scale linearly and the effect of dependency becomes more pronounced.

In conclusion, the impact of dependency structures on insurance premium calculations
varies according to population type and benefit levels. Therefore, insurance companies
should consider the dependency effect in their premium estimates, especially for long-term
contracts and high-benefit policies. In particular, this suggests that insurance companies
should adopt more cautious reserve policies compared to the independent model. However,
these differences are less pronounced in the whole population, indicating that dependency
structures have a more significant impact in cases where the lifetime of the females ex-
ceeds the lifetime of the males. These findings emphasize the importance of considering
dependency structures in premium calculations, particularly when modeling asymmetric
survival patterns. Since the dependency measure of spouses in a population with such an
asymmetric data structure is unpredictable, it will create riskier portfolios. This implies
that premiums should be overestimated. Otherwise, this deficit calculation will adversely
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affect the economy due to the loss of insurance companies and thus the extra liability to
the state.

These findings reveal the concrete real-world implications of including dependence as
well as asymmetric dependence structures in actuarial calculations. Traditional mod-
els that may not consider dependence and the type of dependence can lead to financial
instability by under- or overestimating premiums. For example, ignoring asymmetric de-
pendence in different populations may lead to mispricing, while setting high premiums in
populations with weak asymmetry may affect the competitiveness of insurance products.
The use of asymmetric copula models allows insurers to refine their pricing strategies so
that premiums accurately reflect the true dependency structure of joint lifetimes. This
not only improves risk management, but also reduces insolvency risks by enabling more
efficient capital allocation. In addition, actuaries can use these findings to improve capital
adequacy to ensure that insurers maintain adequate reserves. Therefore, the integration
of asymmetric dependence into premium calculations is critical for both financial sustain-
ability and policyholder protection. This clearly demonstrates the need for actuaries to
adopt more flexible dependency modeling approaches.

5. Results and discussion
The premiums in the dependent case are lower than in the independent case. However,

the premiums in the asymmetric case are not always higher than in the symmetric case;
they vary depending on the selected model and the dependence structure. In some cases,
asymmetric models yield higher premiums, while in others they result in lower premiums
compared to symmetric models. Therefore, no general rule can be established regarding
the relationship between symmetric and asymmetric premium calculations.

There is no significant difference between the symmetric and asymmetric premium cal-
culations for the entire population. This finding is consistent with the results of the
symmetry test, which confirms that the whole population does not exhibit an asymmetric
structure. However, when the population is divided by age, asymmetry emerges in the
data structures, leading to more pronounced differences in premium calculations. Thus,
when age-based subpopulations are considered, the impact of asymmetry on premium
calculations becomes more significant. This highlights the importance of working with
different age groups rather than treating the entire population as a homogeneous group in
the model selection process.

Actuarial calculations differ on the basis of the independence-dependence and symmetric-
asymmetric cases. Although Gumbel is the best fit model for the whole population, the
Kho-Gm model is the best-fitting model for the xm≥xf population, and the Kho-Fr model
is the best-fitting model for the xm<xf population. For the xm<xf population, which
exhibits an asymmetric dependence, the selected Kho-Fr model generally results in higher
premiums than the Gumbel model under the age intervals considered in this study. How-
ever, this is not a universal trend in all cases. In some cases, the premium differences
between symmetric and asymmetric models are more pronounced than the differences
between models selected for different populations. However, the results show that the rel-
ative ratios of the premium values calculated using the ArchC and KhoC models are low,
indicating that there is no significant difference between the two models. This indicates
that the choice between the ArchC and KhoC models does not have a significant effect
on the premium amounts under current conditions. However, as coverage levels increase,
the premium differences between the dependent models (ArchC and KhoC) and the inde-
pendent model become more significant. This result shows that the impact of dependency
assumptions on premium calculations increases especially in high-coverage insurance poli-
cies and emphasizes that insurance companies should carefully evaluate the dependency
structure in long-term and high-coverage contracts.
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Our study presents results consistent with the literature on modeling joint lifetimes
using copulas. For example, Frees et al. [19] showed that premiums calculated according
to dependent lifetimes are lower than under the independence assumption; this result is
consistent across all subpopulations in our study. However, unlike Frees et al.[19], we fo-
cused on both symmetric and asymmetric dependence structures and found that premiums
calculated according to asymmetric models (e.g., Kho-Fr) are not always higher or lower
than those calculated according to symmetric models (e.g., Gumbel) and vary depending
on the model and subpopulation chosen. On the other hand, Dufresne et al. [15] found
asymmetric structures in dependent lifetimes due to age differences and emphasized that
this should be considered in model selection. Our findings also show that asymmetric
dependency structures occur, especially in subpopulations separated according to the age
of spouses. Moreover, while previous studies such as Carriere [6] and Denuit et al. [14] are
limited to Archimedean copulas, we model asymmetric dependence on real data by includ-
ing Khoudraji copulas and show the impact of this structure on premium calculations. In
this respect, our study emphasizes the importance of asymmetric dependence in insurance
pricing based on joint lifetime and provides a more realistic and sensitive assessment for
heterogeneous populations. Therefore, this study, which comparatively addresses both
symmetric and asymmetric dependence structures, makes a meaningful contribution to
the existing literature.

6. Conclusion
This paper proposes symmetric and asymmetric copula models to model the bivariate

lifetimes commonly observed in joint life insurance applications. Our study aims to exam-
ine the impact of asymmetric dependence, particularly on the pricing of various annuities
and insurance products across different age groups. For this purpose, we perform actuarial
applications on real data sets. Initially, using real insurance data, survival probabilities
for specific ages in single-life scenarios have been computed under the assumption that
the marginal distributions of spouses follow the Gompertz distribution. Subsequently, in
the context of multiple life scenarios, the joint survival probabilities of spouses have been
obtained under the assumptions of independent and dependent future lifetimes. Here,
these probabilities have been derived using Archimedean and Khoudraji copula models,
which allow for both symmetric and asymmetric dependence modeling. To assess the effect
of asymmetric dependence on actuarial calculations, we compute net single and annual
premiums based on selected copula models. Using the Canadian insurance data set, we
categorize populations as a whole, xm≥xf and xm<xf . Through a goodness-of-fit analysis
among candidate models, we identify optimal copula models and compute premiums for
various annuity and insurance products. The results of empirical data indicate differences
in net annual premiums under the dependence versus independence assumptions. In par-
ticular, the findings of the real data highlight significant discrepancies in the premiums
calculated under symmetric and asymmetric models, especially for the population xm<xf .

The results of our applications focusing on the dependence of joint lifetimes suggest
that lifetime dependence and asymmetry should be considered when evaluating the prices
of annuities and insurance products. These results provide valuable insights for the in-
surance industry, particularly in improving pricing accuracy and risk assessment, while
also leading to a more realistic assessment of other actuarial quantities such as lifetime
and reserves. Furthermore, recognizing the significance of asymmetric dependence can en-
hance the design of life insurance products tailored to different demographic groups. For
example, insurers may consider differentiated pricing strategies based on age differences
between spouses, as the findings suggest that certain populations exhibit higher premiums
under asymmetric dependency models. This approach can contribute to more equitable
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pricing structures, ensuring that policyholders pay premiums that reflect their real joint
survival risk.

In future studies, considering other dependency factors, such as age differences, and
conducting similar studies with asymmetric models across different demographic and ge-
ographic regions will further enhance the applicability of these methods. Expanding the
scope of research to include policyholder behavior, health status, and socioeconomic fac-
tors could further refine actuarial models and support the development of more robust
insurance products.
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APPENDIX
Appendix A: Marginal and joint survival probabilities

Table A1. Marginal survival probabilities (whole)

whole
tpxy t=1 t=5 t=10

Age Male Female Male Female Male Female
40 0.998627 0.998419 0.991494 0.990152 0.97738 0.973616
45 0.997696 0.997311 0.985765 0.983299 0.962329 0.955518
50 0.996137 0.995428 0.976226 0.971747 0.937589 0.92549
55 0.993525 0.992233 0.960422 0.952398 0.897489 0.876543
60 0.989158 0.986819 0.934473 0.920354 0.834006 0.799126
65 0.98187 0.977673 0.892489 0.868282 0.737395 0.682774
70 0.969761 0.962303 0.826223 0.786351 0.599741 0.522376
75 0.949772 0.936702 0.725882 0.664304 0.423995 0.331194
80 0.917148 0.894691 0.58411 0.498557 0.236923 0.152513
85 0.864893 0.827485 0.405613 0.305908 0.0892103 0.040757
90 0.7838 0.724518 0.219939 0.133233 0.0173181 0.0043145
95 0.664426 0.577884 0.0787406 0.0323832 0.00110589 0.0000944662
100 0.503519 0.393292 0.0140447 0.00291714 0.0000109274 1.41573 ×10−7

105 0.316154 0.204321 0.000778046 0.0000485316 4.71237 ×10−9 2.21196 ×10−12

110 0.144774 0.0670399 6.05668 ×10−6 4.55777 ×10−8 1.06013 ×10−14 1.46516 ×10−20

Table A2. Marginal survival probabilities (xm≥xf )

xm≥xf

tpxy t=1 t=5 t=10
Age Male Female Male Female Male Female
40 0.998723 0.998341 0.992096 0.989643 0.979 0.972175
45 0.997863 0.997163 0.9868 0.98235 0.965086 0.952881
50 0.996424 0.995153 0.977995 0.970001 0.942228 0.920762
55 0.994019 0.991724 0.963428 0.949238 0.905159 0.868317
60 0.990005 0.985887 0.939519 0.914751 0.846325 0.785445
65 0.98332 0.975983 0.900806 0.858644 0.756245 0.661618
70 0.972227 0.959273 0.83952 0.770538 0.626358 0.493364
75 0.953932 0.931352 0.746091 0.640285 0.456862 0.298673
80 0.924064 0.885467 0.61234 0.466469 0.26935 0.126584
85 0.876131 0.812165 0.43987 0.271367 0.111193 0.0291554
90 0.80137 0.700578 0.252787 0.107439 0.0252744 0.00236628
95 0.690193 0.544089 0.0999829 0.0220245 0.00211507 0.0000322571
100 0.537477 0.353095 0.0211543 0.0014646 0.0000332136 2.07964 ×10−8

105 0.353585 0.168545 0.00157006 0.0000141994 3.16625 ×10−8 7.25686 ×10−14

110 0.175373 0.0475755 0.0000201664 5.11069×10−9 2.76906 ×10−13 3.36303 ×10−23
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Table A3. Marginal survival probabilities (xm<xf )

xm < xf

tpx t=1 t=5 t=10
Age Male Female Male Female Male Female
40 0.998341 0.998648 0.98963 0.991603 0.972081 0.977592
45 0.997154 0.997719 0.982267 0.98587 0.952557 0.962477
50 0.995121 0.996154 0.969754 0.976271 0.919956 0.937498
55 0.991639 0.993518 0.948648 0.960284 0.866576 0.896806
60 0.985692 0.989086 0.913485 0.933896 0.782071 0.832101
65 0.975566 0.981651 0.85614 0.890999 0.655781 0.733319
70 0.958428 0.969231 0.765974 0.82303 0.484696 0.592481
75 0.929709 0.948626 0.632783 0.719878 0.288478 0.413405
80 0.882406 0.914843 0.455888 0.574271 0.118384 0.225223
85 0.806754 0.860538 0.259678 0.392189 0.0256639 0.0808161
90 0.691707 0.776106 0.0988296 0.206064 0.00186049 0.0143332
95 0.531165 0.651982 0.0188252 0.069557 0.000020576 0.000773975
100 0.337567 0.485862 0.001093 0.0111272 9.02531 ×10−9 5.61766 ×10−6

105 0.155038 0.295783 8.25736 ×10−6 0.000504858 1.55483 ×10−14 1.37907 ×10−9

110 0.0407757 0.128008 1.88297 ×10−9 2.7316 ×10−6 1.98725 ×10−24 1.11574 ×10−15

Table A4. The joint survival probabilities under independence

whole xm≥xf xm < xf

t p(x=50,
y=60)

p(x=55,
y=55)

p(x=60,
y=50)

p(x=50,
y=60)

p(x=55,
y=55)

p(x=60,
y=50)

p(x=50,
y=60)

p(x=55,
y=55)

p(x=60,
y=50)

1 0.983007 0.985809 0.984636 0.982361 0.985793 0.985207 0.984260 0.985211 0.981901
2 0.964457 0.970281 0.967857 0.963106 0.970241 0.969040 0.967055 0.969017 0.962136
3 0.944250 0.953320 0.949567 0.942130 0.953244 0.951404 0.948285 0.951313 0.940599
4 0.922286 0.934826 0.929670 0.919334 0.934704 0.932200 0.927849 0.931999 0.917188
5 0.898473 0.914705 0.908071 0.894622 0.914523 0.911335 0.905650 0.910972 0.891809
6 0.872725 0.892861 0.884683 0.867914 0.892605 0.888718 0.881599 0.888137 0.864380
7 0.844971 0.869207 0.859426 0.839139 0.868862 0.864266 0.855615 0.863406 0.834833
8 0.815157 0.843667 0.832234 0.808251 0.843214 0.837908 0.827632 0.836702 0.803125
9 0.783252 0.816176 0.803056 0.775224 0.815598 0.809586 0.797600 0.807963 0.769238
10 0.749252 0.786688 0.771864 0.740069 0.785965 0.779264 0.765496 0.777150 0.733190
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Appendix B: The joint survival probabilities under dependence for Canadian insurance
dataset with population: whole, xm≥xf , xm<xf

Table B1. The joint survival probabilities for Archimedean copula models
(ArchC)

whole
p(x=50, y=60) p(x=55, y=55) p(x=60, y=50)

t Clayton Frank Gumbel Joe Clayton Frank Gumbel Joe Clayton Frank Gumbel Joe
1 0.986569 0.983357 0.984389 0.983119 0.990462 0.986159 0.987292 0.985920 0.988645 0.984979 0.986050 0.984745
2 0.971835 0.965881 0.967971 0.964938 0.979948 0.971728 0.974114 0.970761 0.976182 0.969267 0.971485 0.968328
3 0.955697 0.947495 0.950406 0.945406 0.968369 0.956673 0.960129 0.954483 0.962521 0.952810 0.955974 0.950705
4 0.938050 0.928111 0.931543 0.924477 0.955633 0.940954 0.945203 0.937049 0.947567 0.935552 0.939376 0.931836
5 0.918792 0.907634 0.911266 0.902111 0.941639 0.924526 0.929235 0.918430 0.931222 0.917425 0.921587 0.911689
6 0.897820 0.885959 0.889473 0.878278 0.926286 0.907338 0.912140 0.898605 0.913387 0.898355 0.902515 0.890239
7 0.875037 0.862972 0.866073 0.852957 0.909466 0.889333 0.893842 0.877561 0.893962 0.878261 0.882080 0.867470
8 0.850350 0.838557 0.840987 0.826134 0.891071 0.870446 0.874271 0.855295 0.872851 0.857053 0.860207 0.843375
9 0.823681 0.812596 0.814149 0.797809 0.870993 0.850605 0.853363 0.831813 0.849959 0.834638 0.836831 0.817958
10 0.794966 0.784974 0.785508 0.767995 0.849126 0.829735 0.831063 0.807135 0.825201 0.810916 0.811898 0.791233

xm≥xf

p(x=50, y=60) p(x=55, y=55) p(x=60, y=50)
t Clayton Frank Gumbel Joe Clayton Frank Gumbel Joe Clayton Frank Gumbel Joe
1 0.985819 0.982796 0.984206 0.982519 0.990773 0.986227 0.987854 0.985949 0.989638 0.985630 0.987182 0.985359
2 0.970264 0.964836 0.967548 0.963775 0.980595 0.972010 0.975325 0.970908 0.978261 0.970759 0.973889 0.969691
3 0.953231 0.945998 0.949653 0.943720 0.969379 0.957294 0.962030 0.954848 0.965781 0.955323 0.959748 0.952966
4 0.934616 0.926147 0.930359 0.922311 0.957032 0.942021 0.947824 0.937746 0.952109 0.939249 0.944616 0.935156
5 0.914313 0.905140 0.909537 0.899507 0.943456 0.926122 0.932601 0.919581 0.937151 0.922459 0.928386 0.916241
6 0.892220 0.882826 0.887075 0.875272 0.928547 0.909524 0.916268 0.900339 0.920809 0.904865 0.910963 0.896203
7 0.868242 0.859049 0.862874 0.849572 0.912200 0.892144 0.898740 0.880012 0.902985 0.886372 0.892263 0.875030
8 0.842294 0.833655 0.836844 0.822379 0.894305 0.873892 0.879940 0.858596 0.883580 0.866876 0.872207 0.852715
9 0.814302 0.806496 0.808912 0.793666 0.874753 0.854670 0.859792 0.836093 0.862498 0.846268 0.850722 0.829257
10 0.784215 0.777444 0.779024 0.763414 0.853433 0.834372 0.838228 0.812510 0.839646 0.824432 0.827742 0.804657

xm < xf

p(x=50, y=60) p(x=55, y=55) p(x=60, y=50)
t Clayton Frank Gumbel Joe Clayton Frank Gumbel Joe Clayton Frank Gumbel Joe
1 0.988891 0.984769 0.986564 0.984446 0.990723 0.985733 0.987648 0.985402 0.985650 0.982419 0.984064 0.982092
2 0.976691 0.969098 0.972610 0.967848 0.980482 0.971123 0.974941 0.969828 0.969904 0.964183 0.967267 0.962945
3 0.963310 0.952893 0.957738 0.950178 0.969189 0.956097 0.961462 0.953256 0.952654 0.945137 0.949212 0.942514
4 0.948651 0.936050 0.941792 0.931412 0.956749 0.940576 0.947059 0.935669 0.933793 0.925118 0.929729 0.920761
5 0.932619 0.918460 0.924657 0.911532 0.943061 0.924478 0.931622 0.917053 0.913216 0.903957 0.908685 0.897646
6 0.915113 0.900005 0.906232 0.890519 0.928020 0.907712 0.915055 0.897398 0.890818 0.881477 0.885964 0.873133
7 0.896033 0.880558 0.886423 0.868361 0.911516 0.890181 0.897270 0.876702 0.866505 0.857502 0.861463 0.847185
8 0.875281 0.859988 0.865146 0.845047 0.893438 0.871780 0.878188 0.854963 0.840189 0.831857 0.835091 0.819769
9 0.852761 0.838156 0.842322 0.820569 0.873671 0.852396 0.857731 0.832184 0.811800 0.804383 0.806774 0.790850
10 0.828386 0.814922 0.817883 0.794919 0.852104 0.831913 0.835831 0.808372 0.781286 0.774941 0.776455 0.760397
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Table B2. The joint survival probabilities for Khoudraji copula models (KhoC)

whole
p(x=50, y=60) p(x=55, y=55) p(x=60, y=50)

t Kho-Cl Kho-Fr Kho-Gm Kho-Joe Kho-Cl Kho-Fr Kho-Gm Kho-Joe Kho-Cl Kho-Fr Kho-Gm Kho-Joe
1 0.983768 0.983492 0.984367 0.983135 0.986884 0.986307 0.987283 0.985936 0.986140 0.985127 0.986051 0.984761
2 0.966465 0.966283 0.967915 0.965001 0.973151 0.972210 0.974093 0.970827 0.971856 0.969753 0.971488 0.968393
3 0.947843 0.948158 0.950308 0.945546 0.958513 0.957569 0.960095 0.954631 0.956709 0.953725 0.955979 0.950852
4 0.927770 0.928942 0.931394 0.924721 0.942842 0.942271 0.945152 0.937315 0.940470 0.936914 0.939385 0.932098
5 0.906138 0.908473 0.911057 0.902484 0.926040 0.926217 0.929166 0.918848 0.922978 0.919204 0.921601 0.912100
6 0.882852 0.886601 0.889194 0.878798 0.908020 0.909311 0.912052 0.899207 0.904113 0.900480 0.902534 0.890831
7 0.857829 0.863183 0.865716 0.853634 0.888702 0.891461 0.893731 0.878377 0.883778 0.880628 0.882104 0.868270
8 0.831000 0.838093 0.840543 0.826970 0.868016 0.872573 0.874135 0.856349 0.861889 0.859535 0.860237 0.844407
9 0.802311 0.811218 0.813608 0.798795 0.845897 0.852559 0.853200 0.833125 0.838374 0.837088 0.836867 0.819239
10 0.771728 0.782468 0.784859 0.769105 0.822289 0.831326 0.830870 0.808715 0.813171 0.813179 0.811938 0.792772

xm≥xf

p(x=50, y=60) p(x=55, y=55) p(x=60, y=50)
t Kho-Cl Kho-Fr Kho-Gm Kho-Joe Kho-Cl Kho-Fr Kho-Gm Kho-Joe Kho-Cl Kho-Fr Kho-Gm Kho-Joe
1 0.983278 0.982957 0.983811 0.982567 0.987117 0.986429 0.987611 0.985999 0.987106 0.985853 0.987152 0.985410
2 0.965439 0.965180 0.966638 0.963950 0.973648 0.972588 0.974776 0.971102 0.973959 0.971469 0.973868 0.969891
3 0.946214 0.946315 0.948152 0.944076 0.959279 0.958224 0.961129 0.955268 0.960161 0.956630 0.959767 0.953409
4 0.925467 0.926119 0.928201 0.922876 0.943871 0.943155 0.946529 0.938464 0.945563 0.941182 0.944702 0.935931
5 0.903083 0.904402 0.906662 0.900282 0.927320 0.927230 0.930866 0.920654 0.930059 0.924996 0.928566 0.917430
6 0.878966 0.881008 0.883428 0.876222 0.909531 0.910314 0.914048 0.901808 0.913547 0.907954 0.911264 0.897878
7 0.853029 0.855812 0.858405 0.850628 0.890420 0.892278 0.895989 0.881893 0.895926 0.889942 0.892713 0.877253
8 0.825203 0.828717 0.831514 0.823433 0.869906 0.873001 0.876607 0.860883 0.877083 0.870850 0.872832 0.855534
9 0.795435 0.799652 0.802688 0.794572 0.847917 0.852371 0.855828 0.838749 0.856898 0.850565 0.851549 0.832702
10 0.763697 0.768576 0.771886 0.763991 0.824386 0.830285 0.833582 0.815465 0.835248 0.828973 0.828797 0.808742

xm < xf

p(x=50, y=60) p(x=55, y=55) p(x=60, y=50)
t Kho-Cl Kho-Fr Kho-Gm Kho-Joe Kho-Cl Kho-Fr Kho-Gm Kho-Joe Kho-Cl Kho-Fr Kho-Gm Kho-Joe
1 0.987335 0.985424 0.986631 0.984512 0.987266 0.986276 0.987329 0.985467 0.983265 0.982785 0.983478 0.982154
2 0.974621 0.970918 0.972832 0.968105 0.974058 0.972385 0.974227 0.970078 0.965450 0.964695 0.965933 0.963170
3 0.961287 0.955952 0.958172 0.950745 0.959991 0.957768 0.960299 0.953799 0.946247 0.945228 0.947029 0.942974
4 0.947050 0.940269 0.942487 0.932400 0.944916 0.942172 0.945394 0.936596 0.925509 0.924200 0.926612 0.921493
5 0.931648 0.923696 0.925656 0.913040 0.928718 0.925439 0.929399 0.918440 0.903117 0.901492 0.904559 0.898652
6 0.914855 0.906088 0.907574 0.892635 0.911301 0.907449 0.912219 0.899299 0.878969 0.877009 0.880763 0.874374
7 0.896505 0.887313 0.888144 0.871155 0.892572 0.888107 0.893762 0.879143 0.852975 0.850671 0.855131 0.848579
8 0.876482 0.867242 0.867276 0.848570 0.872447 0.867331 0.873947 0.857943 0.825062 0.822411 0.827583 0.821187
9 0.854700 0.845742 0.844884 0.824851 0.850848 0.845049 0.852695 0.835668 0.795175 0.792180 0.798060 0.792122
10 0.831089 0.822675 0.820891 0.799964 0.827704 0.821200 0.829938 0.812286 0.763282 0.759952 0.766524 0.761312


