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In this study, we investigate three types of q-deformed boson oscillators, focusing on 

their mathematical frameworks and thermodynamic properties. We calculate key 

thermodynamic quantities, such as internal energy and entropy, as functions of the 

deformation parameter q. Our results reveal that these oscillators are eigenstates of 

specific deformed boson annihilation operators. We also analyze their unique 

characteristics and implications in deformed quantum optics. Furthermore, we 

examine the impact of q-deformation on qutrit logic gates, including cycle, self-shift, 

controlled cycle, controlled self-shift, Feynman, ternary Toffoli, and Fredkin gates, 

highlighting their altered computational properties. This research contributes to a 

deeper understanding of q-deformed systems and their applications in quantum 

computing. Overall, it opens new avenues for exploring the interplay between 

deformation parameters and quantum information processing. 

 

1. Introduction 

 

The spin-statistics theorem is a fundamental 

principle in quantum field theory that bridges 

quantum mechanics and statistical mechanics 

[1]. It establishes an important connection 

between the symmetry of particles (especially 

their spin) and the statistical behavior they 

exhibit in many-body systems. This theorem 

states that particles with integer spin (bosons) 

have symmetric wave functions, allowing 

multiple particles to occupy the same quantum 

state simultaneously. In contrast, particles with 

half-integer spin (fermions) have antisymmetric 

wave functions, enforcing the Pauli exclusion 

principle that no two fermions can occupy the 

same quantum state. These symmetrization or 

antisymmetrization requirements are expressed 

through commutation or anticommutation 

relations in the second quantization framework, 

which govern how the creation and annihilation 

operators work for bosons and fermions, 

respectively. This distinction in quantum 

statistical behavior directly affects the number of 

possible states a system can use; It affects the 

collective statistical mechanical description of 

the system by determining the set of occupancy 

numbers and thus shaping macroscopic 

properties such as thermal conductivity and 

specific heat capacity. 

 

In recent years, there has been increasing 

research into quantum statistics, which departs 

from the traditional classifications of bosons and 

fermions. Building on the fundamental 

contributions of Gentile and Green [2, 3], 

researchers have developed various extensions 

beyond these standard statistics. These include 

parastatistics, fractional statistics, quon statistics, 

anion statistics, and quantum group theory, 

which have attracted great attention due to their 

potential applications in various fields of physics. 

In condensed matter physics, these statistics have 

proven vital in elucidating phenomena such as 

the fractional quantum Hall effect and the 

behavior of anionic particles that are neither 

fermions nor bosons, but exhibit unique 

statistical properties [4]. 
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There are two important approaches to 

investigate the statistics and thermodynamics of 

intermediate states, each offering unique 

perspectives and methodologies: One method 

uses Tsallis' non-extensive statistics [5] and 

generalized entropies. Tsallis statistics 

generalize standard Boltzmann-Gibbs statistics 

by introducing a parameter q that modifies the 

entropy formula [6]. The second method involves 

the use of deformed quantum algebras [7-14], 

leading to deformed thermostatistics functions 

[15-39]. Deformed quantum algebras, such as 

quantum groups or q-deformed algebras, 

introduce modifications to the standard 

commutation relations of quantum mechanics. 

These changes affect the formulation of 

statistical mechanics, changing the distribution 

functions and thermodynamic properties of the 

particles. 

 

In recent work, q-deformed theory has found 

applications in a wide range of physics 

disciplines and has contributed to various fields 

such as: In ref [15], generalized thermodynamics 

with q-deformed bosons and fermions has been 

used to describe systems with non-trivial 

quantum deformations, which are conventional 

has worked in ways that extend beyond statistical 

mechanics, Ref. [16]; q-deformed theory has 

been applied to study Bose–Einstein 

condensation, offering new insights into the 

behavior of particles at extreme temperatures and 

densities; Ref. [17], investigations into the 

thermodynamic geometry of deformed bosons 

and fermions have provided geometric insights 

into the statistical properties of quantum systems 

and phase transitions; Ref. [20] used thermosize 

effects in models of q-deformed fermion gases, 

investigating how quantum deformations affect 

the thermodynamic properties and size scaling of 

fermionic systems. Moreover, it has been studied 

a two-parameter deformed boson gas model 

based on commuting Fibonacci oscillators, 

leading to a generalized Fibonacci energy 

spectrum in [23,24]. Friedmann equations and 

Einstein field equations incorporating the 

deformation parameter q were derived in [25,26]. 

A quantum Otto cycle was analyzed using q-

deformed oscillators as the working substance 

alongside classical thermal baths in [29]. Further, 

q-deformed harmonic oscillators were utilized to 

construct qubits and quantum gates in [30,31]. 

Investigations into a single particle's q-deformed 

harmonic oscillator have focused on how 

deformation influences statistical complexity, 

including Shannon information entropy and 

disequilibrium in [32]. A modified cosmological 

scenario was proposed, featuring q-deformed 

Friedmann and Raychaudhuri equations that 

introduce effective dark energy components in 

[33]. 

 

On the other hand, q-deformed qubits are 

generalizations of traditional qubits in which the 

algebra governing quantum states is replaced by 

a deformation parameter q derived from quantum 

groups [30,31]. These generalized states 

introduce a deformation that changes how 

quantum states interact and evolve. This leads to 

changes in the energy spectra, quantum gate 

operations, and overall dynamics of the qubits. 

Such changes can create new avenues for 

quantum state manipulation and lead to more 

generalized forms of quantum systems with 

potential applications in fields such as quantum 

optics and condensed matter physics. In quantum 

information theory, q-deformed qubits can be 

used as a tool to better understand non-standard 

entanglement properties and quantum 

correlations.  

 

Our aim in this work is to perform an analysis of 

quantum algebraic properties associated with 

three types of q-deformed boson oscillator 

algebra models: the Arik-Coon (AC) model, the 

Biedenharn-Macfarlane (BM) model, and the 

Quesne model. These models represent different 

mathematical formulations that incorporate 

quantum deformations into the standard bosonic 

oscillator algebra. We will also examine some 

thermostatic properties of AC and BM models. 

This will include the study of statistical 

mechanics aspects such as their partition 

functions, entropy formulations and 

thermodynamic behavior. Understanding these 

properties is crucial for applications in various 

physical systems where quantum deformations 

play an important role. As an application, we will 

investigate the effect of the Quesne model in 

quantum optics. Quantum optics deals with the 

interaction of light and matter at the quantum 

level [40-42]. For instance, in Ref. [40], photonic 

structural designs have been emphasized to 

enhance light-matter interaction in two 
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dimensional material based optoelectronic 

devices.  

 

Moreover, understanding how q-deformed 

patterns affect photon statistics, coherence 

properties, and other optical phenomena can 

provide valuable information about new regimes 

of light-matter interactions. For example, in Ref. 

[43], it was focused on the study of a multi-level 

atom excited by a laser pulse in the form of a q-

deformed hyperbolic function. The dynamic 

properties of a two-level system excited by a q-

deformed laser beam were analyzed. Also, the 

optical properties of a three-level atom system 

interacting with two electromagnetic fields were 

investigated. 

 

2. AC-type Oscillators Model 

 

In this section, we investigate the quantum 

statistical mechanical properties of q-deformed 

boson oscillators, focusing specifically on Arik-

Coon (AC)-oscillators. The algebraic framework 

of quantum AC-oscillators are characterized by 

the q-deformed Heisenberg algebra, where the 

creation and destruction operators are denoted 𝑎∗ 

and 𝑎, respectively. The q-deformed Heisenberg 

algebra associated with AC-oscillators is 

expressed as [7, 44] 

 
𝑎𝑎∗ − 𝑞𝑎∗𝑎 = 1 

 

[𝑁̂, 𝑎∗] = 𝑎∗,      [𝑁̂, 𝑎] = −𝑎, (2.1) 

 

where 𝑁̂ is the total number operator and q is the 

deformation paramater. Also, the basic number is 

given as 

 

[𝑥] =
𝑞𝑥−1

𝑞−1
. (2.2) 

 

Furtheremore, the Jackson derivative (JD) 

operator for the AC-oscilators is expressed as 

 

𝜕𝑥
(𝑞)
𝑓(𝑥) =

1

𝑥
[
𝑓(𝑞𝑥)−𝑓(𝑥)

𝑞−𝑞−1
],  (2.3) 

 

which reduces to the ordinary derivative when q 

goes to unity. The mean occupation number of 

AC oscillators is defined as [44] 

 

𝑛𝑖 =
1

log𝑞
ln (

𝑧−1𝑒𝛽𝜀𝑖−1

𝑧−1𝑒𝛽𝜀𝑖−𝑞
) (2.4) 

 

where 𝑧 = exp⁡(𝜇/𝑘𝐵𝑇) is the fugacity and 𝛽 =
1/𝑘𝐵𝑇. Following the standard procedure [45], 

one can esaily find  
 
𝑃

𝑘𝐵𝑇
=

1

𝜆3
ℎ5/2(𝑧, 𝑞), (2.5) 

 
𝑁

𝑉
=

1

𝜆3
ℎ3/2(𝑧, 𝑞), (2.6) 

 

where 𝜆 = ℎ/(2𝜋𝑚𝑘𝐵𝑇)
1/2 is the thermal 

wavelength and the generalized Bose Einstein 

functions ℎ𝑛(𝑧, 𝑞) are defined as 

 

ℎ𝑛(𝑧, 𝑞) =
1

log 𝑞
[∑

(𝑧𝑞)𝑙

𝑙𝑛+1
− ∑

(𝑧)𝑙

𝑙𝑛+1
∞
𝑙=1

∞
𝑙=1 ]. (2.7) 

 

The internal energy and the entropy of the AC-

oscillators gas can be found as [44] 

 

𝑈 =
3

2

𝑘𝐵𝑇𝑉

𝜆3
ℎ5/2(𝑧, 𝑞). (2.8) 

 

and 

 
𝑆

𝑁𝑘𝐵
=

5

2

ℎ5/2(𝑧,𝑞)

ℎ3/2(𝑧,𝑞)
− log 𝑧. (2.9) 

 

respectively. Also, from the thermodynamic 

relation 𝐹 = 𝜇𝑁 − 𝑃𝑉, the Helmholtz free energy 

can be derived as  

 

𝐹 = 𝑁𝑘𝐵𝑇 [log 𝑧 −
ℎ5/2(𝑧,𝑞)

ℎ3/2(𝑧,𝑞)
]. (2.10) 

 

3. BM-type Oscillators Model 

 

The symmetric q-deformed algebraic structure of 

BM-type oscillators is characterized by the q-

deformed Heisenberg algebra, with the creation 

operator 𝑐∗, the annihilation operator and 𝑐, and 

the total number operator 𝑁̂ playing central roles. 

In this framework, the BM-oscillators algebra is 

defined as [8, 9, 15] 

 

𝑐𝑐∗ − 𝑞𝑐∗𝑐 = 𝑞−𝑁 

 

[𝑁̂, 𝑐∗] = 𝑐∗,      [𝑁̂, 𝑐] = −𝑐, (3.1) 

 

where q is the real deformation parameter. Also, 

the operators have the following relations [15] 

 

𝑐∗𝑐 = [𝑁̂],      𝑐∗𝑐 = [1 + 𝑁̂]. (3.2) 
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The basic q-deformed quantum number is 

defined as 

 

[𝑥] =
𝑞𝑥−𝑞−𝑥

𝑞−𝑞−1
. (3.3) 

 

Moreover, the Jackson derivative (JD) operator 

for the system is given as 

 

𝐷𝑥
(𝑞)𝑓(𝑥) =

1

𝑥
[
𝑓(𝑞𝑥)−𝑓(𝑞−1𝑥)

𝑞−𝑞−1
],  (3.4) 

 

for any function 𝑓(𝑥).  
 

To investigate the high-temperature properties of 

the BM-oscillators model, we examine the 

logarithm of grand partition function: 

 

ln 𝑍 = −∑ ln(1 − 𝑧𝑒−𝛽𝜀𝑖)𝑖  (3.5) 

 

The mean occupation number is expressed by the 

following form 

 

𝑛𝑖 =
1

𝑞−𝑞−1
ln (

𝑧−1𝑒𝛽𝜀𝑖−𝑞−1

𝑧−1𝑒𝛽𝜀𝑖−𝑞
). (3.6) 

 

The pressure of the BM-oscillators model is 

given as 

 

𝑃 =
𝑘𝐵𝑇

𝑉
∑ ln(1 − 𝑧𝑒−𝛽𝜀𝑖)𝑖 . (3.7) 

 

This relation can be written by using Eq. (3.4) 

 
𝑃

𝑘𝐵𝑇
=

1

𝜆3
𝑔5/2(𝑧, 𝑞), (3.8) 

 

where q-deformed ℎ𝑛(𝑧, 𝑞) function is defined as  

 

𝑔𝑛(𝑧, 𝑞) =
1

𝑞−𝑞−1
[∑

(𝑧𝑞)𝑙

𝑙𝑛+1
− ∑

(𝑧𝑞−1)𝑙

𝑙𝑛+1
∞
𝑙=1

∞
𝑙=1 ]. (3.9) 

 

One can also derive the following 

thermodynamic functions for a gas of BM- 

oscillators: the particle density, internal energy, 

and entropy, respectively 

 
𝑁

𝑉
=

1

𝜆3
𝑔3/2(𝑧, 𝑞), (3.10) 

 

𝑈 =
3

2

𝑘𝐵𝑇𝑉

𝜆3
𝑔5/2(𝑧, 𝑞), (3.11) 

 
𝑆

𝑁𝑘𝐵
=

5

2

𝑔5/2(𝑧,𝑞)

𝑔3/2(𝑧,𝑞)
− ln 𝑧. (3.12) 

 

4. Quesne-type Oscillators Model  

 

Quesne-oscillators algebra is defined as [46, 47] 

 

𝑞𝑎𝑞𝑎𝑞
∗ − 𝑎𝑞

∗𝑎𝑞 = 𝐼,⁡⁡⁡⁡⁡⁡𝑎𝑞𝑎𝑞
∗ − 𝑎𝑞

∗𝑎𝑞 = 𝑞−𝑁−1. (4.1) 

 

where 𝑎𝑞
∗  and 𝑎𝑞 are deformed creation and 

annihilation operators, respectively, and they 

satisfy in the following forms 

 

𝑎𝑞|𝑛 >= √[𝑛]|𝑛 − 1 >,                                 (4.2) 

 

𝑎𝑞
∗ |𝑛 >= √[𝑛 + 1]|𝑛 + 1 >,                         (4.3) 

 

where 𝑎𝑞|0 >= 0 and the q-basic number is 

given as 

 

[𝑥] =
1−𝑞−𝑥

𝑞−1
.                                                   (4.4) 

 

Moreover, q-deformed coherent states are 

expressed as 

 

|𝑧 >= [𝐸𝑞((1 −

𝑞)𝑞|𝑧|2)]−1/2∑
𝑧𝑛

√[𝑛]

∞
𝑛=0 √[𝑛]|𝑛 >                 (4.5) 

 

where q-exponentials are 𝐸𝑞(𝑧) = ∏ (1 +∞
𝑘=0

𝑞𝑘𝑧). 
 

Now, we investigate the geometric and physical 

properties of the new q-deformable coherent 

state ∣z⟩. To achieve this, we need to compute the 

expectation values of various Hermitian 

monomials involving the boson creation and 

annihilation operators 𝑎∗ and 𝑎. These 

expectation values can be expressed in terms of 

derivatives of the function 𝒩𝑞(𝑥) [25] 

 

< (𝑎∗)𝑟𝑎𝑟 >=
𝑥𝑟

𝒩𝑞(𝑥)

𝑑𝑟𝒩𝑞(𝑥)

𝑑𝑥𝑟
,  r=0,1,2….      (4.6) 

 

The last equation can be rewritten as 

 

< (𝑎∗)𝑟𝑎𝑟 >= (𝑧∗)𝑝𝑧𝑟𝑆𝑞
(𝑝,𝑟)(𝑥)                  (4.7) 

 

where  

 

𝑆𝑞
(𝑝,𝑟)(𝑥) =

1

𝒩𝑞(𝑥)
∑ (

(𝑛+𝑝)!(𝑛+𝑟)!

[𝑛+𝑝]![𝑛+𝑟]!
)
1/2 𝑥𝑛

𝑛!
∞
𝑛=0  (4.8) 
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with 𝑟, 𝑝 = 0,1,2, … 

 

Moreover, in two dimensional surface, the metric 

factor can be defined as [25] 

 

𝑤𝑞(𝑥) =
𝑑

𝑑𝑥
< 𝑁 >= (

𝑥𝒩𝑞(𝑥

𝒩𝑞(𝑥
)
′

                      (4.9) 

 

where primes indicate the number of times 

differentiation is performed with respect to the 

variable 𝑥. For 𝑥 ≪ 1, one can easliy reach  

 

𝑤𝑞(𝑥) ≈ 𝑞 [1 −
2𝑞(1−𝑞)

1+𝑞
𝑥 +⋯ ].                 (4.10) 

 

On the other hand, the variance of the number 

operator N is equal to its mean, which can be 

evaluated using deviations from the Poisson 

statistics [46] 

 

𝑄𝑞(𝑥) =
(∆𝑁)𝑞

2−<𝑁>𝑞

<𝑁>𝑞
.                                   (4.11) 

 

From Eq. (4.6), it can be found 

 

𝑄𝑞(𝑥) = 𝑥 (
𝒩𝑞

′′(𝑥)

𝒩𝑞
′(𝑥)

−
𝒩𝑞

′(𝑥)

𝒩𝑞(𝑥)
).                       (4.12) 

 

For 𝑥 ≪ 1, we reach 

 

𝑄𝑞(𝑥) ≈ −
𝑞(1−𝑞)

1+𝑞
𝑥 +⋯.                            (4.13) 

 

5. Possible application of Quesne-type 

Oscillators Model to Quantum Optics 

 

Unlike binary systems, ternary logic gates offer 

more information carrying capacity in quantum 

computing. Qutrits (three-level systems) can 

encode more information than classical qubits, 

which makes quantum circuits more efficient. In 

quantum computers and quantum optics, qutrit 

systems offer advantages such as lower error 

rates, lower energy consumption, and more 

efficient use of physical resources. In addition, 

qutrit logic and ternary gates are an innovative 

research area in quantum information processing 

and are less studied in the current literature.  

 

Therefore, the study of ternary gates within the 

scope of the article is important for the 

advancement of quantum technologies, both 

theoretically and practically. In particular, 

studying the effects of q-deformation on such 

systems can lead to new discoveries. 

 

In this section, we follow the Ref. [31] to 

investigate the impact of q-deformation on qutrit 

logic gates such as cycle, self-shift, controlled 

cycle, controlled self-shift, Feynman, ternary 

Toffoli, and Fredkin gates. These gates can be 

expressed in the framework of angular 

momentum states, where their operations 

correspond to transformations in a quantum 

system characterized by total angular 

momentum. For example, the cycle gate 

effectively permutes the qutrit states, while the 

self-shift gate applies a shifting operation. 

Utilizing the Schwinger representation allows us 

to depict these gates in terms of ladder operators 

acting on the angular momentum states. This 

perspective provides valuable insights into how 

q-deformation alters the algebraic structure and 

functional properties of these gates.  

These gates can be represented in the context of 

angular momentum states as 

 

𝑪𝒏|𝑖 >= |𝑛 + 𝑖 >  (5.1) 

 

𝑺𝒏|𝑖 >= |2𝑖 + 𝑛 >  (5.2) 

 

𝑪𝑪𝒏|𝑖𝑗 >=
𝑖(𝑖−1)

2
|𝑖⁡𝑗 + 𝑛 > +

(2−𝑖)(𝑖+1)

2
|𝑖𝑗 >    (5.3) 

 

𝑪𝑺𝒏|𝑖𝑗 >=
𝑖(𝑖−1)

2
|𝑖⁡2𝑗 + 𝑛 > +

(2−𝑖)(𝑖+1)

2
|𝑖𝑗 >  (5.4) 

 

𝑭𝑮|𝑖𝑗 >= |𝑖⁡𝑖 + 𝑗 >  (5.5) 

 

𝑻𝑻𝑮|𝑖𝑗𝑘 >= |𝑖⁡𝑗⁡⁡𝑖. 𝑗 + 𝑘 >  (5.6) 

 

𝑻𝑭𝑮|𝑖𝑗𝑘 >=
𝑖(3−𝑖)

2
|𝑖⁡𝑗⁡𝑘 > +

(2−𝑖)(𝑖−1)

2
|𝑖⁡𝑗⁡𝑘 >(5.7) 

 

In the context of qubits, quantum gates are 

represented as unitary transformations acting on 

a three-dimensional Hilbert space. A qutrit is a 

quantum system with three possible states, and 

can be represented |0 >, |1 > and |2 >. The 

operators on the left side of equations (5.1) – 

(5.7) above operate on these three quantum states 

to reach a different quantum state. Also, |𝑖𝑗 >
⁡represents a two-qutrit state, which can be 

expressed as |𝑖𝑗 >⁡= |𝑖 > |𝑗 >. The connection 

between q-deformed operators and conventional 

operators is specified as 
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𝑎𝑞 = 𝑎√
𝜙1−𝑞−𝑁𝜙2

𝑁(𝑞−1)
 (5.5) 

 

𝑎𝑞
∗ = √

𝜙1−𝑞−𝑁𝜙2

𝑁(𝑞−1)
𝑎∗ (5.6) 

 

where 𝜙1 and 𝜙2 represent arbitrary constants, 𝑎 

and 𝑎∗ indicate the standard annihilation and 

creation operators, respectively. To create a 

qutrit, the total angular momentum number 𝑗 
must be equal to 𝑗 = 1. Therefore, since 𝑚 =
−𝑗, … ,0, …+ 𝑗, there are three different possible 

states (|1 − 1 >= |0 >, (|10 >= |1 >, (|11 >
= |2 >). So, the q-deformed qutrit states can be 

expressed using the creation operators from the 

q-deformed algebra 

 

|0 >𝑞=
(𝑎2

∗)𝑞
2

√[2]!
|0̃10̃2 > (5.7) 

 

|1 >𝑞=
(𝑎1

∗)𝑞(𝑎1
∗)𝑞

√[1]!
|0̃10̃2 > (5.8) 

 

|2 >𝑞=
(𝑎1

∗)𝑞
2

√[2]!
|0̃10̃2 > (5.9) 

 

where 0̃1 and 0̃2 are ground states of j and m, 

respectively, and [𝑛]! = [1][2]… [𝑛]. A general 

formulation of q-deformed qutrits is 

 

|𝑥 >𝑞=
(𝑎1

∗)𝑞
𝑥(𝑎2

∗)𝑞
(2−𝑥)

√[𝑥]![(2−𝑥)]!
|0̃10̃2 >                    (5.10) 

 

Using Eq. (5.6), Eq. (5.10) can be re-written as 
 

|𝑥 >𝑞= (√
𝜙1−𝑞

−𝑁1𝜙2

𝑁1(𝑞−1)
𝑎1
∗)

𝑥

  

⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡(√
𝜙3−𝑞

−𝑁2𝜙4

𝑁2(𝑞−1)
𝑎2
∗)

(2−𝑥)
1

√[𝑥]![(2−𝑥)]!
|0̃10̃2 >    (5.11) 

Eqs. (5.1)-(5.7) can be re-derived by using Eq. 

(5.11). To meet the requirements of these 

expressions, it’s essential to establish the 

arbitrary parameters. Let’s demonstrate how to 

find these parameters using an example 

 

𝑪𝟏|0 >𝑞= |1 >𝑞                                          (5.12) 

 

In Eq. (5.11), if we put 𝒙 = 𝟎 to find |𝟎 >𝒒 and 

𝒙 = 𝟏 to find |𝟏 >𝒒, we reach 
 

𝐶1 (√
𝜙3−𝑞

−𝑁2𝜙4

𝑁2(𝑞−1)
𝑎2
∗)⁡(√

𝜙3−𝑞
−𝑁2𝜙4

𝑁2(𝑞−1)
𝑎2
∗)

1

√[2]!
 |0̃10̃2 >= 

(√
𝜙1−𝑞

−𝑁1𝜙2

𝑁1(𝑞−1)
𝑎1
∗)⁡(√

𝜙3−𝑞
−𝑁2𝜙4

𝑁2(𝑞−1)
𝑎2
∗) |0̃10̃2 >⁡        (5.13) 

 

From the relation 𝑎∗|𝑛 >= √𝑛 + 1|𝑛 + 1 >, one 

can find 𝜙1 = 𝜙2 = 𝜙3 = 𝜙4. Similarly, 

arbitrary parameters can be obtained using Eqs. 

(5.2)-(5.7) for other gates.  

 

Following Ref. [30], it can be determined qutrit 

gates by utilizing q-deformed three-level 

quantum states 

 

𝑪𝒏𝑞 = ∑ |𝑛 + 𝑗 >𝑞 <𝑞
2
𝑗=0 𝑗|                         (5.14) 

 

𝑺𝒏𝑞 = ∑ |2𝑗 + 𝑛 >𝑞 <𝑞
2
𝑗=0 𝑗|                       (5.15) 

 

𝑪𝑪𝒏𝑞 = ∑
𝑖(𝑖−1)

2
|𝑖⁡𝑗 + 𝑛 >𝑞 <𝑞

2
𝑖,𝑗=0 𝑗⁡𝑖|  

+∑
(2−𝑖)(𝑖+1)

2
|𝑖⁡𝑗 >𝑞 <𝑞

2
𝑖,𝑗=0 𝑖⁡𝑗|                      (5.16) 

 

𝑪𝑺𝒏𝑞 = ∑
𝑖(𝑖−1)

2
|𝑖⁡2𝑗 + 𝑛 >𝑞 <𝑞

2
𝑖,𝑗=0 𝑗⁡𝑖|

 

+∑
(2−𝑖)(𝑖+1)

2
|𝑖⁡𝑗 >𝑞 <𝑞

2
𝑖,𝑗=0 𝑖⁡𝑗|                           (5.17) 

 

𝑭𝑮𝑞 = ∑ |𝑖⁡𝑖 + 𝑗 >𝑞 <𝑞
2
𝑖,𝑗=0 𝑗⁡𝑖|                  (5.18) 

 

𝑻𝑻𝑮𝑞 = ∑ |𝑖⁡𝑗⁡⁡𝑖. 𝑗 + 𝑘 >𝑞 <𝑞 𝑘2
𝑖,𝑗=0 𝑗⁡𝑖|     (5.19) 

 

𝑻𝑭𝑮𝑞 = ∑
𝑖(3−𝑖)

2
|𝑖⁡𝑘⁡𝑗 >𝑞 < 𝑘𝑞

2
𝑖,𝑗=0 𝑗⁡𝑖|

 

+∑
(2−𝑖)(𝑖−1)

2
|𝑖⁡𝑗⁡𝑘 >𝑞 <𝑞 𝑘2

𝑖,𝑗=0 𝑖⁡𝑗|               (5.20) 

 

To build the q-deformed quantum ternary gates, 

we must identify the parameters 𝜙. In the Eq. 

(5.14), if we take 𝑛 = 1, we get 

 

𝑪𝟏𝑞 = |1 >𝑞 < 0| + |2 >𝑞 < 1|𝑞𝑞   

⁡⁡⁡⁡⁡⁡⁡⁡+ |0 >𝑞 < 2|𝑞𝑞                                     (5.21) 

 

where we use the orthogonality relation < 𝑗|𝑖 >
= 𝛿𝑖𝑗. Now, we consider that 𝑪𝟏𝑞 act on the state 

|1 >𝑞, such that 

 

𝑪𝟏𝑞|1 >𝑞= |2 >𝑞                                    (5.22) 

 

Based on the orthogonality relation, it becomes 

clear that the only remaining term is the second 

term of Eq. (5.21). Thus, the parameters can be 

obtained from the orthogonality condition 
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< 1𝑞 |1 >𝑞=< 0̃10̃2|𝑎2 ⁡(√
𝜙7−𝑞

−𝑁2𝜙8

𝑁2(𝑞−1)
) 

𝑎1 (√
𝜙5−𝑞

−𝑁1𝜙6

𝑁1(𝑞−1)
) 

(√
𝜙1−𝑞

−𝑁1𝜙2

𝑁1(𝑞−1)
)𝑎1

∗ (√
𝜙3−𝑞

−𝑁2𝜙4

𝑁2(𝑞−1)
)𝑎2

∗|0̃10̃2 >  (5.23) 

 

In the last Eq., one can find 𝜙1 = 𝜙2, 𝜙3 = 𝜙4, 

𝜙5 = 𝜙6, and 𝜙7 = 𝜙8. Similary, for cases 

𝑪𝟏𝑞|2 >𝑞= |0 >𝑞 and 𝑪𝟏𝑞|0 >𝑞= |1 >𝑞, 

< 2𝑞 |2 >𝑞 and < 0𝑞 |0 >𝑞 can be obtained. 

 

5. Conclusion 

 

In this article, we present a comprehensive 

analysis of q-deformed boson oscillator algebras, 

focusing particularly on their thermo-statistical 

properties and their relationship to quantum 

optics. In the second section, we examine AC 

oscillator algebras. This analysis examines the 

thermo-statistical properties of these algebras in 

detail and investigates how these algebras 

modify the thermal behavior of quantum 

systems. In this context, we provide a 

comprehensive assessment of how thermo-

statistical parameters are modified by these 

algebras, examining how different thermal 

properties and temperature-related behaviors of 

quantum systems are affected. In the third 

section, we focus on the BM oscillator model.  

 

This section examines the thermo-statistical 

properties of the BM model in detail. In this 

context, we delve into various thermo-statistical 

quantities, such as internal energy and entropy, 

and investigate how these quantities differ from 

classical systems. The fourth section is devoted 

to Quesne oscillator algebras, which have not 

received sufficient attention in the literature. In 

this section, we discuss the theoretical 

framework and practical applications of Quesne 

algebras, especially in the context of quantum 

optics. We discuss the mathematical properties of 

Quesne algebras, their effects on quantum states, 

and their potential applications in quantum 

optical systems. We also evaluate possible 

application scenarios on how these algebras can 

be used in quantum optics and innovative 

approaches in this field. In the last section, we 

construct q-deformed qubits by exploiting q-

deformed angular momentum states, which 

allows us to investigate their distinct 

characteristics. We study the effects of logical 

qubit gates on these q-deformed qubits to 

understand how their deformation influences the 

performance of quantum operations.  

 

Although there are similarities in structure 

between the arbitrary parameters obtained with 

Reference 31 and the parameters obtained in 

Section 5, the main difference lies in the 

deformation algebra used. The arbitrary 

parameters obtained in Section 5 depend on the 

q-deformation parameter and the properties of 

these parameters differ from the parameters 

obtained in Reference 31. This difference arises 

due to the use of quantum algebraic properties of 

the Quesne oscillator system in our work. 

However, in Reference 31, different deformed 

quantum algebra is used. Our findings aim to 

contribute to the broader landscape of quantum 

information processing, offering new pathways 

for enhancing computational efficiency and 

enabling innovative quantum technologies. 
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