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Abstract 

Classification is separating data into predefined categories by obtaining descriptive 

features. In the classification process, machine and deep learning algorithms assume 

that the class samples are evenly distributed. In particular, the dataset size used in 

deep learning is significant for classification success. However, obtaining balanced 

data distribution in real-life problems is very difficult. This negatively affects class-

based accuracy. Various methods are used in the literature to overcome the 

unbalanced data problem. This study investigated the effects of GAN, SMOTE, and 

VAE methods on ECG data. For this purpose, the heartbeat signals in the MIT-BIH 

dataset were used. To test the performance of the methods, a performance 

comparison was made using real and synthetic data, and finally, the model trained 

with synthetic data was tested with real data. According to the results, 96.5% 

accuracy was obtained with the real data. The highest classification accuracy of 

100.0% was obtained in VAE when using only synthetic data. In training with 

synthetic data and test results with real data, the highest classification success was 

86.4% with SMOTE. When synthetic and real data sets are used together, the highest 

success rate is 98.6% with VAE. In addition, the accuracy of all classes is evenly 

distributed after data augmentation. 
 

 
1. Introduction 

 

An electrocardiogram (ECG) is the recording and 

graphing of electrical activities in the heart to study 

the heart's working. It is a physiological signal that 

contains important pathological information for 

detecting heart diseases. Therefore, the amount of 

ECG data is often very large. Manually reviewing this 

data by experts is both time-consuming and 

subjective. Computer-aided diagnosis methods are 

used to overcome this problem [1]. Traditional 

computer-aided diagnosis methods consist of two 

stages: feature extraction (discrete wavelet transform, 

time-domain features, frequency-domain features, 

etc.) and classification [2]. Recently, feature 

extraction has not been used as a separate process 

with deep learning models. Deep learning models 

perform the feature extraction process within the 
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model. Convolutional neural network (CNN), one of 

the deep learning models, has shown high 

performance in many studies, such as biosignal 

classification, image recognition, and arrhythmia 

classification [2].   

Traditional and deep learning-based 

computer-aided diagnosis systems assume a balanced 

distribution of class samples. In particular, the dataset 

size used in deep learning is extremely important for 

classification success. However, obtaining balanced 

data distribution in real-life problems is very difficult. 

This negatively affects class-based accuracy. 

Unbalanced data increases classification accuracy for 

classes with more samples [3]. Because some 

arrhythmias in ECG data are rare, unbalanced data is 

much more prominent [1]. 

Undersampling and oversampling methods 

are used to overcome the unbalanced data problem. In 
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the undersampling method, data is discarded from the 

class with more examples, and the number of 

examples is equalized to the class with a smaller 

number of examples. Oversampling, on the other 

hand, is to balance the number of samples for the class 

with a large number of samples by reusing the 

samples in the class with a low number of samples [4]. 

The most basic method used for oversampling in 

image-based studies is to change the dimensional and 

morphological structure of the image. However, both 

methods corrupt the original structure of the data. 

Undersampling leads to data waste. In oversampling, 

it causes an overfitting problem because the same data 

is reused. To overcome these problems, deep 

learning-based synthetic data production methods are 

mostly used. The most widely used method is the 

Generative Adversarial Network (GAN). Also, a few 

studies used the Synthetic Minority Oversampling 

Technique (SMOTE) for oversampling [5] - [9]. 

Another deep learning-based method, Variational 

Autoencoders (VAE), has been used in limited studies 

[10].  

GAN contains two neural networks, a 

generator and a discriminator. The generator 

generates the candidate image, and the discriminator 

evaluates whether the image produced is real or fake. 

Both networks are competitively trained in parallel. 

The discriminator compares the real image with the 

image produced by the generator. The comparison 

result is sent to the generator, which will update itself 

according to the result. This cycle will continue until 

the generator produces images that are more like the 

image held by the discriminator. This process can be 

followed with several iterations, and the loss curve 

[3]. Studies on synthetic data generation and data 

balancing in recent years mostly use GAN [11] - [15]. 

Studies show that the data produced with GAN can be 

used for training purposes [11-13]. Tran et al. (2024) 

produced synthetic data with GAN by converting 

ECG signals into a two-dimensional format. High 

success was achieved with the proposed method, and 

a new benchmark was set for ECG synthesis [14]. In 

the study using Bi-LSTM and CBAM based GAN for 

data augmentation, 99.46% classification success was 

achieved on the MIT-BIH-AR dataset [15]. Hyland et 

al. (2017) used recurrent conditional GANs 

(RCGAN) for the synthetic generation of time series 

data and concluded that they could be used with a 

small drop in performance when tested with real data 

[16]. In the study to overcome the data imbalance 

problem in the MIT-BIH database, the GAN method 

increased the classification accuracy by about 9% [3]. 

Synthetic data generation is not only used with the 

physiological structure of the signal. Wulan et al. 

(2020) used GAN with signal structure, spectrogram, 

and wavelet transform [17]. In another study, a 

SynSigGAN model was proposed for producing 

ECG, EEG, EMG, and PPG synthetic data [18]. 

While the GAN can be designed separately for each 

class in the synthetic ECG data production process, 

there are also class-based models [19].  Zhou et al. 

(2021) proposed the ACE-GAN model, which 

provides class-based data augmentation, and achieved 

99.0% success in the MIT-BIH dataset [2]. The GAN 

method was also used in hybrid form with other 

methods. Zhu et al. (2019) used BiLSTM for the 

generator and CNN for the discriminator in the GAN 

model [20]. Salazar et al. (2021) suggested that GAN 

and vector Markov Random Field based GANSO 

model be used in datasets with a very small number 

of samples [6]. The proposed model was compared 

with SMOTE, and higher accuracy was obtained in 

GANSO. In the study in which the data augmentation 

method called ProEGAN-MS was proposed, the 

results were compared with the GAN, and it was 

determined that the proposed model showed higher 

success [1]. In another study, VAE and GAN were 

used together, and 98.5% accuracy was obtained in 

the MIT-BIH dataset [10]. In the study where the 

transformer and GAN were used together, the 

TCGAN was proposed, and a success of 94.7% was 

achieved in the 1D-CNN and MIT-BIH datasets [21]. 

While creating GAN models, 1D-CNN, 2D-CNN, or 

BiLSTM models are used. In the study in which 

GAN-1D-CNN and GAN-BiLSTM models were 

used, data augmentation was performed with GAN 

and classification with 1D-CNN and BiLSTM [22]. 

According to the results of the study, GAN-BILSTM 

achieved higher success. GAN increased the models' 

classification success by approximately 11% [22]. In 

another study, the ResNet CNN model was used with 

BiLSTM, and the classification success was 99.4% in 

the MIT-BIH dataset [23]. GAN is used not only for 

data augmentation/production but also for noise 

reduction in real data. Global discriminator, local 

discriminator, and GAN were used in the study to 

generate noisy ECG signals due to scanning and 

digitizing ECG recordings [24]. 

SMOTE was first proposed in 2002, and the 

interpolation of the original samples with their 

neighbors was used to generate synthetic samples 

[25]. For the classification of ECG signals, features 

were obtained with wavelet packet decomposition 

and 1D-CNN, and selective ensemble learning 

framework and SMOTE were used. Classification 

success was 96.3% in the MIT-BIH dataset [9]. In 

another study using MIT-BIH and SMOTE, the 

classification success was 98.3% [8]. In another study 

called ArrhyNet, classification success was obtained 

at 92.7% in the MIT-BIH dataset using wavelet 
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transform, SMOTE, and CNN [7]. For ECG 

classification, the hybrid structure is used not only for 

data augmentation but also for classification. The 

results of the study, in which CNN and LSTM were 

used together for classification and SMOTE and 

Tomek were used for data augmentation, showed that 

data augmentation increased the classification success 

by 20% [5]. 

As explained above, GAN is the most 

common method for synthetic data generation in 

recent years. The SMOTE method is an older method 

than the GAN method. However, both SMOTE and 

VAE have been used in limited studies [5-9]. Some 

studies did not detail the results before data 

augmentation while giving the classification accuracy 

[1, 2, 6, 21-23]. This poses a problem when 

comparing the performance of synthetic data. In 

addition, data production methods are not often 

compared in many places. This poses a challenge for 

researchers to formulate a study plan. In this study, 

heartbeat data in the MIT-BIH database were 

obtained, and synthetic data were produced using 

these data with GAN, SMOTE, and VAE methods. 

Then, the performance of the real and synthetic data 

in ECG classification was compared with ten different 

analyses. Therefore, the contributions of this research 

article are as follows: 1) The efficiency of synthetic 

data in ECG classification was analyzed. 2) The 

classification success performances of three different 

data generation methods were compared. 3) The 

performance of the systems trained only with 

synthetic data in classifying real data was examined. 

4) ECG classification success was evaluated when the 

hybrid data set was used by increasing the data. 5) A 

guide was created for researchers working in ECG 

classification on synthetic data generation. 

The remainder of this article is organized as 

follows: Section II contains the dataset and methods 

used in the study. Section III contains the results of 

the analyses performed. Section IV contains the 

conclusion and discussion. 

 

2. Material and Method 

 

2.1. Data Descriptions 

 

The MIT-BIH [26] database, created in cooperation 

with MIT and Beth Israel Hospital, was used. This 

database contains 48 ECG recordings of 47 

participants, 30 minutes long. Annotation of the 

database was done by two or more cardiologists. Each 

recording contains two channels, MLII and V1, V2, 

V4, and V5, and we used the data of the MLII 

channel. Since 90% of the MIT-BIH database 

contains a normal heartbeat, it has a highly 

unbalanced structure [27]. Forty-two ECG recordings 

containing beats belonging to four classes (F: 

ventricular fusion beat, N: normal beat, S: 

Supraventricular premature beat, V: ventricular 

premature beat) were used in the analyses. The 

annotations in the MIT-BIH database and the 

heartbeat distribution used according to the AAMI 

standards are given in Table 1. Since heartbeat creates 

different graphs for the same diagnosis in different 

patients, the records used in the dataset were chosen 

as participant-dependent. 
 

Table 1. Heartbeat distribution used 

AAMI MIT-BIH Beat Count Record Numbers 

F F 749 205, 208, 213, 219, 223 

N N, L, R, e, j 10440 

100, 101, 103, 105, 106, 108, 109, 111, 112, 113, 115, 116, 117, 118, 119, 121, 122, 

123, 124, 200, 201, 202, 205, 208, 209, 210, 212, 213, 215, 220, 221, 222, 223, 230, 

234 

S A, a, J, S 2612 
100, 101, 103, 108, 112, 113, 116, 117, 118, 121, 124, 200, 201, 202, 203, 205, 208, 

209, 210, 213, 215, 220, 222, 223, 228, 232, 233, 234 

V V, E 4428 
105, 108, 109, 111, 114, 116, 118, 119, 121, 123, 201, 202, 207, 208, 209, 213, 214, 

215, 219, 221, 223, 228, 230, 233, 234 

 

2.2 Convolutional Neural Network (CNN) 

 
CNN is a multi-layered perceptron that carries out the 

feature extraction and classification process with the 

help of more than one layer. Therefore, the hardware 

and data it needs is more than that of traditional 

methods. CNN obtains features from the data with a 

certain number of filters and filter sizes in each 

convolutional layer, giving a linear output. The 

activation function is used after the convolutional 

layer to use the model on nonlinear problems. 

Another layer used in CNN architecture is the dropout 

layer. This layer prevents overfitting by removing 

some neurons from the model. The layer used for 

classification in CNN models is the dense layer [28]. 

Within the scope of the study, a simple CNN model 
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was created to perform the analysis. The developed 

model is given in Figure 1. 
 

 
Figure 1. The structure of the 2D-CNN model used in the 

study (FS: FilterSize, NF: NumFilters, S:Stride) 

 

The parameters used in the training phase of 

the created CNN model are given in Table 2. 

 
Table 2. Parameters used for the CNN model 

Parameters Value 

Data selection for Training, 

Validation, and Testing 

Random 

permutation 

The part of the data reserved for 

training, validation, and testing 
70%, 15%, %15 

Optimizer Adam 

Learning Rate 0.001 

Epochs 20 

Mini Batch Size 64 

 

2.3. Generative Adversarial Network (GAN) 

 

The GAN approach was first proposed by Goodfellow 

et al. in 2014 [29]. It is used for data generation in 

many fields, such as image, video, natural language 

processing, audio analysis, and time series. GAN 

includes the generator (G) and discriminator (D) 

model. The generator is used to generate data. It 

generates synthetic data G(z) using random noise z. 

On the other hand, the discriminator tries to determine 

whether the sample is synthetic by taking samples 

from real and synthetic data. The GAN training 

process is defined as a game between two competing 

networks. The discriminator learns to distinguish 

between real and fake samples. The Generator learns 

to deceive the discriminator. The input parameter is x 

representing the data, and the output D(x) is the 

probability that x is real data. The formula for GAN is 

given in Equation 1 [4]: 

min
𝐺

max
𝐷

𝑉(𝐷, 𝐺) = 𝔼𝑥~ 𝑃𝑑𝑎𝑡𝑎(𝑥)[𝑙𝑜𝑔𝐷(𝑥)] +

𝔼𝑧~ 𝑃𝑧(𝑧)[log (1 − 𝐷(𝐺(𝑧)))]    (1) 

 

where D(G(z)) is the probability that network D 

decides that the data produced by G is real. The 

purpose of G is to maximize D(G(z)). The stronger 

D’s ability, the bigger D(x) should be and the smaller 

D(G(x)) should be. Meanwhile, V(D, G) will get 

bigger. Pdata represents the distribution of actual data. 

Pz represents the distribution of noise, usually a 

Gaussian distribution, from which we can form a 

synthetic image. 𝔼x and 𝔼z represent the expected log 

probability from different outputs of both real and 

generated images. 

The model used for synthetic data generation 

with GAN is given in Figure 2. 

 
Figure 2. The structure of the GAN model used (epochs: 

500, minibatchsize: 128, learningrate: 0.0002) 

 

Samples of synthetic images obtained with 

the GAN model are given in Figure 3. 
 

 
Figure 3. Synthetic images obtained with GAN. 
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2.4. Synthetic minority Over-sampling Technique 

(SMOTE) 

 

The SMOTE method, first introduced in 2002, is used 

for oversampling for classes with a small number of 

samples and undersampling for classes with a large 

number of samples [25]. Unlike random sampling 

methods, it produces synthetic samples based on the k 

nearest neighbors of the samples examined. The 

details of the algorithm are given below [30]: 

Suppose we have a dataset D∈Rnxm with m 

number of features and n number of samples and K 

categories. Calculate the Euclidean distance between 

each sample in the minority class T(T∈K) and other 

classes. A sampling rate is then adjusted based on the 

sample imbalance rate to determine the sample 

multiplier N. For each minority sample 𝑋𝑖(𝑖 =
1, … , 𝑛𝑢𝑚(𝑇)), several samples are randomly 

selected among k neighbors 𝑋𝑖
𝑗
(𝑗 = 1, … , 𝑘). For 

each randomly selected nearest neighbor 𝑋𝑖
𝑗
, the new 

sample is synthesized with sample Xi according to the 

formula: 

 

𝑋𝑠𝑦𝑛𝑡ℎ𝑒𝑡𝑖𝑐 = 𝑋𝑖 + (𝑋𝑖 − 𝑋𝑖
𝑗
). 𝑟𝑎𝑛𝑑() (2) 

 

where rand() is a uniformly distributed non-random 

number. Samples of synthetic images obtained with 

SMOTE are given in Figure 4. 

 

 
Figure 4. Synthetic images obtained with SMOTE. 

 

2.5. Variational Autoencoder (VAE) 

 

The main purpose of the autoencoder is to compress 

data with very low losses. It consists of two parts: an 

encoder and a decoder. The encoder compresses the 

data, and the decoder decompresses the compressed 

data. Compression and low-level data representations 

with the encoder are expressed as latent vectors. In 

standard autoencoders, each input (x) is encoded by 

passing through the encoder and converted into a 

latent vector. This vector is called code. Then, the 

code is passed through the decoder and restored to its 

original state (x'). In VAE, conversely, by adding the 

variation term to the autoencoder, the encoder output 

is obtained as mean (zμ) and variance (zσ) values. The 

code (z) is obtained by sampling from these values. 

The decoder part is the same in the autoencoder and 

VAE [10], [31]. 

 

𝑧𝜇 , 𝑧𝜎 = 𝐸(𝑥; 𝑄𝑒), 𝑧 = 𝑧𝜇 + 𝜖𝑧𝜎 = 𝑞(𝑧|𝑥) (3) 

  

As given in Equation 3, the z code is derived from the 

real values of the data, q(z|x). The reconstructed data 

x' is obtained from the distribution expressed by p(x|z) 

(Equation 4). 

 

𝑥′ = 𝐺(𝑧; 𝑄𝑑) = 𝑝(𝑥|𝑧) (4) 

 

For synthetic data generation with VAE over ECG 

signals, a 2-layer CNN architecture is used in the 

encoder and decoder. For the encoder, the filter size 

in the layers is 3x3, and the number of filters is 8 and 

16. For the decoder, the filter size is 3x3 and the filter 

numbers are 16 and 8. Learning rate 0.0001, epoch 

100, and mini batch size 32 were used in the model's 

training process. Samples of synthetic images 

obtained with VAE are given in Figure 5. 

 

 
Figure 5. Synthetic images obtained with VAE. 

 

3. Experimental Results 

 

Our study performed ten different analyses for ECG 

classification with real and synthetic data. The first of 

these analyses was made with real data, and the other 

was performed with synthetic and real data. Three 

analyses were performed for each of the three data 

generation methods. While performing the analyses, 

70%, 15%, and 15% of the dataset were used for 

training, validation, and testing, respectively. 

Specificity, accuracy, recall, and f1-score were used 

to evaluate its performance. 
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3.1. Classification Results with Real Data 

 

Heartbeat images obtained from the MIT-BIH dataset 

were used to analyze real data. The dataset has an 

extremely unbalanced structure in its current form. 

No action was taken to solve the unbalanced problem 

in the data set. The dataset contains 749 samples for 

class F, 10440 for class N, 2612 for class S, and 4428 

for class V. Training and validation curves obtained 

after training with the real dataset are given in Figure 

6. 

 
Figure 6. Training and validation curves with the real 

dataset. 

 

When the graph obtained with the real data set is 

examined, the model's training has been carried out 

successfully, even though the data set is unbalanced. 

In addition, since there is no significant difference 

between training and validation, the overfitting 

problem has not been encountered. To analyze the 

results obtained with the real data in more detail, 

classification was made with the test dataset, and the 

details are given in Table 3. 

 
Table 3. ECG classification metrics with real dataset 

Class 
Acc. 

(%) 
Specificity Recall 

f1-

score 
Overall 

F 74.11 

0.9850 0.9088 0.9283 96.53 % 
N 98.40 

S 93.11 

V 97.89 

 

When the results in Table 3 are examined, the 

overall classification accuracy with the test data set is 

96.53%. When class-based classification accuracies 

were examined, the lowest success was obtained in 

the F class with the lowest number of samples. In 

addition, class-based classification accuracies vary in 

proportion to the number of class samples. 

 

3.2. Classification Results with Synthetic Data 

 

GAN, SMOTE, and VAE methods were used to 

generate synthetic data. With these methods, 1000 

synthetic samples were produced for each class. The 

training and validation curves obtained after training 

the CNN model with the synthetic dataset are given in 

Figure 7. 
 

 
a) 

 
b) 

 
c) 

Figure 7. Training and validation curves with synthetic data a) GAN, b) SMOTE, c) VAE 
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There is no significant difference between 

training and validation values in all three data 

generation methods. After a certain iteration, it 

continued horizontally in three graphs. However, the 

VAE method has higher training and lower loss 

values than the other methods. To test the validity of 

these results obtained after the training process, 

classification was made with the test dataset, and the 

details are given in Table 4. 

 

Table 4. ECG classification metrics with a synthetic dataset 

Method 
Accuracy (%) 

Specificity Recall 
f1-

score 

Overall Acc. 

(%) F N S V 

GAN 100.00 95.33 94.67 96.67 0.9889 0.9667 0.9666 96.67 

SMOTE 98.00 98.67 96.67 98.00 0.9928 0.9783 0.9784 97.83 

VAE 100.00 100.00 100.00 100.00 1 1 1 100.00 

 

When the results given in Table 4 are 

examined, it is seen that the synthetic data are 

classified with high accuracy. Also, class-based 

accuracy rates are evenly distributed. However, the 

fact that all metrics of the VAE model are 100% raises 

the question of whether the model has an overfitting 

problem. Although the training, validation, and test 

data show that there is no overfitting problem, the use 

of real data and synthetic data in the next analysis will 

further clarify the result. 

3.3. Results of Training with Synthetic Data and 

Testing with Real Data 

 

In this analysis, GAN, SMOTE, and VAE models 

trained in the previous analysis were tested with real 

ECG data to examine the effectiveness of synthetic 

data. Random 500 samples from each class of real 

ECG data were used for the test. The results obtained 

are given in Table 5. 

 

Table 5. Results of the test were obtained using synthetic data and training real data 

Method 
Accuracy (%) 

Specificity Recall f1-score Overall Acc. (%) 
F N S V 

GAN 85.25 82.02 75.15 96.97 0.9495 0.8485 0.8476 84.85 

SMOTE 67.88 89.72 90.30 97.58 0.9546 0.8637 0.8616 86.37 

VAE 97.37 94.34 68.69 82.63 0.9525 0.8576 0.8550 85.76 

 

According to the results given in Table 5, the 

three methods provided similar overall accuracy rates. 

However, when class-based accuracies were 

examined, there were differences according to the 

methods. The highest accuracy in the F and N classes 

was obtained with the VAE. In S and V classes, the 

SMOTE method provided higher accuracy than other 

methods.  

 

3.4. Classification Results with Hybrid Data 

 

This analysis created a dataset of 2000 samples for 

each class using 1000 randomly selected samples 

from the real and synthetic datasets. However, since 

the real dataset in the F class is 749, synthetic data is 

used more in this class. This data set was randomly 

divided into 70% training, 15% validation, and 15% 

testing. Then, the training process was carried out 

using the CNN model in other analyses. The training 

and validation curves obtained after training the CNN 

model are given in Figure 8. 
 

 

 

 

 

 

Figure 8. Training and validation curves with 

synthetic and real data a) GAN+Real, b) 

SMOTE+Real 

 

a) 

b) 
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Figure 8. (Continuous) Training and validation curves 

with synthetic and real data c) VAE+Real 

There is no significant difference between 

training and validation values in all three trainings. 

After a certain iteration, it continued horizontally in 

three graphs. However, the VAE method has higher 

training and lower loss values than the other methods. 

To test the validity of these results obtained after the 

training process, classification was made with the test 

dataset, and the details are given in Table 6. 

 

 

Table 6. ECG classification metrics with synthetic and real datasets 

Method 
Accuracy (%) 

Specificity Recall f1-score 
Overall Acc. 

(%) F N S V 

GAN+Real 96.00 95.00 96.00 97.33 0.9869 0.9608 0.9609 96.08 

SMOTE+Real 98.33 99.67 95.67 97.33 0.9925 0.9775 0.9775 97.75 

VAE+Real 98.33 99.67 97.67 98.67 0.9953 0.9858 0.9858 98.58 

 

When the results in Table 6 are examined, the 

combined use of synthetic and real datasets increased 

the overall classification accuracy and contributed to 

the balanced and high class-based accuracies. The 

highest accuracy was obtained with the VAE method 

if analyzed on a method basis. 

 

4. Discussion and Conclusion 

 

ECG contains a visual representation of electrical 

signals related to heart rhythm. The amount of data is 

very large, as these signals can be one day or longer 

depending on the duration of the symptoms. Although 

the amount of data is very large, some arrhythmias are 

rare so that the data can have an extremely unbalanced 

structure. A similar situation exists in the MIT-BIH 

dataset used in this study. When the sample 

distribution of the 4-classes used is examined, there 

are 749 examples in the F class and 10440 in the N 

class. 

This study analyzed the effectiveness of 

GAN, SMOTE, and VAE methods on ECG data to 

solve the unbalanced data problem and generate a 

limited number of data synthetically. For this purpose, 

real datasets, only synthetic datasets, synthetic data, 

and training and testing with real data and analyses 

were made using both datasets. The accuracy of these 

analyses on the test data set is summarized in Table 7. 
 

Table 7. Summary of test accuracies obtained as a result of this study 

Data 
Accuracy (%) Overall (%) 

F N S V  

Real 74.11 98.40 93.11 97.89 96.53 

GAN 100.00 95.33 94.67 96.67 96.67 

SMOTE 98.00 98.67 96.67 98.00 97.83 

VAE 100.00 100.00 100.00 100.00 100.00 

Training GAN Test Real 85.25 82.02 75.15 96.97 84.85 

Training SMOTE Test Real 67.88 89.72 90.30 97.58 86.37 

Training VAE Test Real 97.37 94.34 68.69 82.63 85.76 

GAN+Real 96.00 95.00 96.00 97.33 96.08 

SMOTE+Real 98.33 99.67 95.67 97.33 97.75 

VAE+Real 98.33 99.67 97.67 98.67 98.58 

 

With the real dataset, the overall accuracy is 

96.53%. However, in class-based accuracies, the 

accuracy of the F class is low. Also, class-based 

accuracies are proportional to the number of samples 

it contains. Class-based accuracies were balanced in 

the analysis results made with only synthetic data, and 

VAE achieved 100% classification success. The fact 

that all classes have 100% success in the VAE method 

c) 
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creates the question of whether there may be an 

overfitting problem. However, the highest 

classification success was also obtained with VAE in 

the hybrid dataset. Although training ECG signals 

with only synthetic data and testing with real data is 

lower than other methods, it has achieved a 

classification success of over 85%. The use of data 

augmentation increased the overall classification 

success by 2.05%. 

The comparison of our results with the results 

of studies using the MIT-BIH database and data 

augmentation in the literature is given in Table 8. 
 

Table 8. Comparison of our analysis results with the literature 

Model Data Aug. Acc. (%) References 

CNN SMOTE 92.7 [7] 

CNN TCGAN 94.7 [21] 

CNN GAN 96.08 This study 

CNN SMOTE 97.75 This study 

CNN SMOTE 98.0 [3] 

CNN SMOTE 98.3 [8] 

CNN GAN 98.3 [3] 

CNN VAE-ACGAN 98.5 [10] 

CNN VAE 98.6 This study 

CNN GAN 99.0 [2] 

CNN + (ensemble) CNN-LSTM SMOTE 99.0 [5] 

ResNet-BiLSTM GAN 99.4 [23] 

 

The accuracy rates obtained in this study are 

similar to those of the studies in the literature. The 

most important difference from the literature studies 

is that data augmentation was used, and the 

classification success of synthetic data was also 

investigated. Synthetic data generation is usable for 

representing ECG signals if the results are generally 

evaluated. Models can only be trained with synthetic 

data and used with real data. In addition, how much 

the real data used in the production of synthetic data 

represents, the problem directly affects the results. 

Although the general success of the data generation 

methods used is close, there are differences in class-

based success. Therefore, using hybrid data 

augmentation methods will provide higher 

classification accuracies. Another process that affects 

the production of synthetic data is the architecture of 

the methods used. The layers used for GAN and VAE 

and the parameters of these layers directly affect the 

result. Neighborhood parameters for SMOTE are 

similarly effective in achieving the result. As a result, 

GAN, SMOTE, and VAE methods can be used 

successfully for synthetic data generation and 

positively affect classification success. 

The main purpose of this study is not to 

achieve high classification accuracy. For this reason, 

the CNN model was used at the basic level. In future 

studies, higher success can be achieved by developing 

the CNN model, which is used for synthetic data 

production. In addition, the variability of class-based 

achievements according to the model indicates that 

hybrid data generation methods will show higher 

success. 
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