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Abstract

We deal with the challenges and solutions for two-parameter eigenvalue problems (TPEPs) involving
large-scale various dense coefficient matrices using several numerical methods. We propose a new
method, via fused parameter optimization ( f usedparopt) algorithm using limited-memory Broyden-
Fletcher-Goldfarb-Shanno (L-BFGS) having several variations, for TPEPs. We combine the advantages
of the tensor Rayleigh quotient (RQ), Newton (N) and L-BFGS methods, while avoiding the disadvan-
tages of each method. They are designed for certain TPEPs having real eigenvalue tuples. We test the
performance of our algorithm and compare them with state-of-art algorithms such as twopareigs from
MultiParEig toolbox in Matlab, tensor Rayleigh quotient-Newton (RQ_N) and L-BFGS alone, by using
the coefficient matrices coming from Lamé system and simulations via randomly generated matrices.
We also obtain convergence diagrams for the f usedparopt_LBFGS to understand the convergence
behavior for the number of iterations and computational times via Monte Carlo simulation. We observe
that our algorithms can reduce computation time, diminish divergence problems, and give more stable
solutions for our data set including various matrices for TPEPs. To the best of our knowledge, we
perform the first study including f usedparopt_LBFGS method in this type of eigenvalue problem.

Keywords: Simulation; Lamé system; numerical linear algebra and matrix theory; algorithm for
two-parameter eigenvalue problem; numerical parameter optimization

AMS 2020 Classification: 65F15; 65L10; 65C05; 65F05; 90C31

1 Introduction

In this study, we deal with two-parameter eigenvalue problems (TPEPs) and we propose a new
method via a parameter optimization algorithm for solving TPEPs in large-scale systems. We
validate the proposed method on different testing problems.
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Let the structure of the TPEP be defined as below

A1x = λB1x + µC1x, (1)

A2y = λB2y + µC2y, (2)

where λ, µ ∈ R are eigenvalues of the problem and x ∈ Rn1\{0}, y ∈ Rn2\{0} are corresponding
eigenvectors. Also, A1, B1, C1 ∈ Rn1×n1 , A2, B2, C2 ∈ Rn2×n2 are coefficient matrices. For more
details and fundamental theorems about TPEPs we refer to the works [1–3].

Deterministic grid multi-start approach and random multi-start approach are proposed in order
to find all or selected number of different eigenvalue tuples for three-parameter eigenvalue
problems via our fused algorithm having steepest descent (SD) technique in [4] where we apply
the approaches for the coefficient matrices coming from ellipsoidal wave equation. Unlike [4],
one of the contributions of this paper is that we propose f usedparopt_LBFGS with a focus for
Lamé’s system. Lamé’s system enables applications in engineering and applied physics and it is
used for elasticity theory [5], such as in a plane orthotropic medium [6]. The system is obtained
by applying separation of variables to the Helmholtz equation in sphero-conal coordinates [7, 8].
Moreover, we compare our method with the known algorithm RQ_N on a real application using
Lamé’s system in an electrostatic field for charge-singularity problem at the corner of a flat plate
[9]. Also, we contrast these methods with a state-of-art method of twopareigs from MultiParEig
toolbox [10] in Matlab. Morrison and Lewis [9], Plestenjak et al [7], Bailey [11] and Ji [12] consider
the numerical solution of the charge-singularity problem for a relatively smaller size (on 60 points)
than our simulations (2000 points).

TPEPs appear in numerous science and engineering problems. For example, they emerge from dis-
cretized boundary value problems solved by the separation of variables method in mathematical
physics [3]. In addition, the TPEPs have been used for the stability of delay-differential equations
[13]. They are also employed in power system models such as the power flow equations having
two bus power systems in electrical engineering [14].

It is important to develop numerical solution methods for different kinds of TPEPs because TPEP
can be non-singular, singular, right definite, small or large. The corresponding matrices may have
various properties. In recent years, various numerical methods have been proposed for solving
TPEPs, e.g., continuation method [15], Jacobi-Davidson approach [16, 17], Sylvester-Arnoldi type
method [18], transformation into a non-linear problem [19], steepest descent (called gradient search
method as well) [20–22], homotopy method for quadratic problems [23], alternating method using
affine transformation and Helmholtz equations [24] and studies for singular TPEPs [25, 26]. In
addition, [7, 27, 28] are among the studies in numerical solution methods for three-parameter
and multi-parameter eigenvalue problems. Each method has advantages and limitations under
certain conditions. For example, homotopy methods such as [23, 29] can be considered to compute
all eigenvalues of a multi-parameter eigenvalue problem, while subspace methods such as [17]
may be preferred to compute some selected eigenvalues. Computing the eigenvalues of a non-
symmetric matrix is still a challenging problem. If a matrix A is symmetric or normal, then
its eigenvalues are well-conditioned. However, the problem of computing the eigenvalues of a
non-symmetric matrix is often ill-conditioned [30]. We also deal with nonsymmetric matrices
obtained from real eigenvalue tuples in this paper.

Newton’s method as a solver is an important part of our proposed approach. Generally, it is known
that Newton’s method converges rapidly when the iterations start close enough to a solution. First,
we consider the tensor Rayleigh quotient-Newton (RQ_N) algorithm [15] in Figure 1 for the TPEPs
such as Eqs. (1) and (2). In brief, the algorithm starts with coefficient matrices A1, B1, C1, A2, B2, C2
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and initial eigenvectors x0, y0. Then, the tensor Rayleigh quotient (RQ) [15] computes initial
eigenvalues λ0, µ0 (from Definition 1) with these coefficient matrices and initial eigenvectors for
the starting eigenvalues in Newton’s method. Using all these elements, Newton’s method tries
to approximate the eigenvalues of the problem until the test condition is satisfied. When the test
condition is valid, RQ_N algorithm stops and gives approximate eigenvalues. Also, more details
on RQ_N algorithm can be found in [15]. RQ_N can be useful for the moderate (or small) size
of TPEPs [15, 17]. However, RQ_N method occasionally has limitations for large-scale problems.
In our application on Lamé’s system and simulations (Section 4), we encounter convergence
problems and high-cost solutions in large-scale problems via RQ_N. The main reason for this
situation is that it becomes difficult to determine sufficiently accurate initial conditions when
the size of the problem grows in Newton’s method. Although the RQ is a good alternative for
determining initial eigenvalue approximations, we observe that it is not always sufficient for
large-scale problems in our simulation. Therefore, this situation emerges the requirement to
generate an effective solution for large-scale problems.

Parameter optimization algorithms have various important applications such as physics, engi-
neering, mathematical finance and economics [31–33]. Convergence diagrams via Monte Carlo
simulation are important tools to understand the convergence behavior of iterative methods in
such applications [32–34]. Optimization studies for certain large-scale eigenvalue problems are
also existent [35]. They study the minimization or maximization of the jth largest eigenvalue of an
analytic and Hermitian matrix-valued function and describe subspace procedures [35].

In the literature, we see very interesting optimization studies using a kind of limited memory
BFGS (L-BFGS) method in large-scale problems arising in machine learning applications from
speech recognition, sensor networks, network traffic and internet search [36].

L-BFGS is an alternative method to the SD method. It is an updated BFGS method for large-
scale unconstrained optimization problems, by Nocedal [37]. Besides large-scale problems, it is
also used for parameter estimation [38]. Moreover, it is proposed to use in combination with
Cholesky factorization to develop an algorithm for generalized inverse eigenvalue problems [39].
This method is remarkable for its low storage and cost in computations [40]. Therefore, we first
consider the L-BFGS method alone in the solution of TPEPs. We find that L-BFGS alone does not
converge and is not effective in TPEPs for our data set. Consequently, we also propose L-BFGS
method in our fused algorithm, as an alternative to the f usedparopt_SD method in [4]. It is called
f usedparopt_LBFGS method.

Outline. The remainder of the paper is organized as follows: In the following subsections, we
present the preliminary including the related methods and theorems for this paper. In Section 2,
our new method f usedparopt_LBFGS via fused parameter optimization algorithm for TPEPs
is presented. In Section 3, we provide the related computational complexity of the proposed
algorithm. In Section 4, we illustrate the numerical experiments for performance comparison of
the related methods. First, we consider L-BFGS method alone in the solution of TPEPs. We compare
f usedparopt_LBFGS method versus f usedparopt_SD method for the solution of TPEPs. Then,
we make an application on the trigonometric form of Lamé’s system using f usedparopt_LBFGS,
RQ_N, f usedparopt_SD and state-of-art twopareigs methods. Finally, we present the convergence
diagrams for f usedparopt_LBFGS, RQ_N and f usedparopt_SD methods. Section 5 concludes the
paper.

Tensor Rayleigh quotient - Newton algorithm

The flowchart of RQ_N algorithm [15] is shown in Figure 1.
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Figure 1. RQ_N algorithm

Definition 1 (from [15]) The RQ is 2-tuple (λ0, µ0) such that

λ0 =
(xTC1x)(yT A2y)− (xT A1x)(yTC2y)
(xTB1x)(yTC2y)− (xTC1x)(yTB2y)

,

µ0 =
(xTB1x)(yT A2y)− (xT A1x)(yTB2y)
(xTB1x)(yTC2y)− (xTC1x)(yTB2y)

.

Transformation for TPEPs

In order to implement L-BFGS or the SD technique on TPEP, the Eqs. (1) and (2) are transformed
to the system of equations below.

F(v) =


A1x − λB1x − µC1x

1
2 (1 − xTx)

A2y − λB2y − µC2y
1
2 (1 − yTy)

 =


f1(v)
f2(v)
f3(v)
f4(v)

 = 0.

The system of equations has a solution at v = [x, λ, y, µ]T ∈ Rn1+n2+2 when the function g defined
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by

g(v) =
4∑

i=1

[ fi(v)]2

= (A1x − λB1x − µC1x)2 + (
1
2
(1 − xTx))2

+ (A2y − λB2y − µC2y)2 + (
1
2
(1 − yTy))2,

has the minimal value 0.
Let v = [x, λ, y, µ]T ∈ Rn1+n2+2 be a fixed point and let v + ∆v = [x + ∆x, λ + ∆λ, y + ∆y, µ +

∆µ]T ∈ Rn1+n2+2 be a second point. Then the function w = g(v) changes by an amount ∆w in
going from v to ∆v:

∆w = g(v + ∆v)− g(v)

= g(x + ∆x, λ + ∆λ, y + ∆y, µ + ∆µ)− g(x, λ, y, µ).

Then ∆w can be written in the form:

∆w = ∆x(a + ε1) + ∆λ(b + ε2) + ∆y(c + ε3) + ∆µ(d + ε4),

where a, b, c, d are independent of ∆x, ∆λ, ∆y, ∆µ and ε1, ε2, ε3, ε4 are functions of ∆x, ∆λ, ∆y, ∆µ

such that

lim
∆x→0, ∆λ→0,
∆y→0, ∆µ→0

ε1 = 0, lim
∆x→0, ∆λ→0,
∆y→0, ∆µ→0

ε2 = 0, lim
∆x→0, ∆λ→0,
∆y→0, ∆µ→0

ε3 = 0, lim
∆x→0, ∆λ→0,
∆y→0, ∆µ→0

ε4 = 0.

The linear function of ∆x, ∆λ, ∆y and ∆µ is then termed the total differential of w at the point v
and is denoted by dw:

dw = a∆x + b∆λ + c∆y + d∆µ.

If ∆x, ∆λ, ∆y and ∆µ are sufficiently small, dw gives a close approximation to ∆w. Therefore, the
function w = g(v) is said to be differentiable at the point v.
When g(v) is differentiable, the direction of greatest decrease in the value of g at v is the direction
given by −∇g(v) where

∇g(v) =
(

∂g
∂x

(v),
∂g
∂λ

(v),
∂g
∂y

(v),
∂g
∂µ

(v)
)T

.

L-BFGS algorithm for TPEPs

L-BFGS method (as one of the quasi-Newton (QN) methods) is a useful method for solving large-
scale systems. Although this method offers modest storage requirements, the convergence rate of
this method is linear. More details and the algorithm can be found in [40]. Below, we just give the
L-BFGS algorithm that we use in Section 4 for TPEPs.

vk+1 = vk − αkHk∇gk,
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where αk is the step size and −Hk∇gk is the search direction. In a QN method, a positive definite
matrix Hk is used to approximate the inverse of Hessian matrix ∇2g−1

k , instead of computing exact
second derivatives. Hk is updated at every iteration by the formula

Hk+1 = (I − ρkyksT
k )Hk(I − ρkyksT

k ) + ρksksT
k ,

where

ρk =
1

yT
k sk

, sk = vk+1 − vk, yk = ∇gk+1 −∇gk.

Algorithm 1 L-BFGS algorithm for TPEPs

Input: Initial matrices: Ai, Bi, Ci, i = 1, 2
Initial vector: v = [x0, λ, y0, µ]T

Integer m value: m > 0
Output: Computed vector: v = [xk, λ, yk, µ]T

for k = 0, 1, 2, 3, ... do
Choose H0

k (for example; identity matrix or by using equation (7.20) from [40] )
q← ∇gk
for i = k − 1, k − 2, . . . , k − m do

αi ← ρisT
i q

q← q − αiyi
end for
r ← H0

k q
for i = k − m, k − m + 1, . . . , k − 1 do

β← ρiyT
i r

r ← r + si(αi − β)

end for
pk = −r (Hk∇gk = r)
Compute step size αk (for example, by Backtracking line search method) then
vk+1 ← vk + αk pk
if k > m then

Remove the vector pair {sk−m, yk−m} from storage
end if
Compute and save: sk ← vk+1 − vk and yk ← ∇gk+1 −∇gk

end for (Or continue iteration until test condition is satisfied)

The steepest descent technique

The following definition and theorems are from the references [41] and [42].

Definition 2 (from [41]) Suppose that g : Rn → R be continuously differentiable on Rn and x(0) ∈ Rn.
Let tk is the value of t ≥ 0 that be the minimizer of the function

φk(t) = g(x(k) − t∇g(x(k))), t ≥ 0.
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Then, given an initial point x(0), the SD sequence x(k) defined by the formula

x(k+1) = x(k) − tk∇g(x(k)).

Theorem 1 Let x(k) be the SD sequence for g(x). If ∇g(x(k)) ̸= 0 for some k, then g(x(k+1)) < g(x(k)).

Proof It can be found in [41].

Theorem 2 Suppose that g : Rn → R be a coercive function with continuous first partial derivatives on
Rn. Then, given any initial point x(0) in Rn, the SD sequence x(k) contains a subsequence that converges
to a critical point of g(x).

Proof It can be found in [41].

Theorem 3 Let g : Rn → R be a strictly convex, coercive function with continuous first partial derivatives
on Rn. Then, given any initial point x(0) in Rn, the SD sequence x(k) with initial guess x(0) converges to
the unique global minimizer of g(x).

Proof It can be found in [41].

Theorem 4 Suppose that g : Rn → R is continuously differentiable on the set S = {x ∈ Rn | g(x) ≤
g(x(0))} and that S is closed and bounded set. Then every point x that is a cluster point of the sequence
{x(k)} satisfies ∇g(x) = 0.

Proof It can be found in [42].

Also, the following feature

lim
k→∞ ∥∇gk∥ = 0,

is satisfied [40]. By this aspect of the technique, the problems faced by Newton’s method in TPEPs
including large-scale matrices can be diminished. To see this aspect of the technique, we benefit
from Theorem 1 - Theorem 4.
The purpose is to reduce g(v) to its minimal value of zero, so a convenient choice for v(k+1) is to
move away from v(k) in the direction that gives the greatest decrease in the value of g(v). Hence
we let

v(k+1) = v(k) − α∇z, where z =
∇g(v(k))

∥∇g(v(k))∥ 2
. (3)

Here, the scalar α ≥ 0 is called step size or step length. An appropriate value of α should be
chosen so that g(v(k+1)) will be significantly less than g(v(k)). Therefore, three possible methods
are referred below to determine α.
Quadratic polynomial interpolation. One of the alternative options to assign step size alpha is the
quadratic polynomial interpolation(qpi) method [43]. So, we could consider the single-variable
function as

h(α) = g(v(0) − αz),
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where the value of α minimizes h.

In order to find a minimal value for h, the quadratic polynomial P(α) that interpolates h at α1, α2
and α3 is constructed. Here, α1 < α2 < α3 should be chosen that is close to where the minimum
value of h(α) occurs. So, α is defined in [α1, α3].

We now find the quadratic polynomial P(α) which has a minimum in [α1, α3] to approximate
the minimal value of h(α). For this reason, we use Newton’s forward divided-difference to find
quadratic polynomial P(α) that interpolates the data (α1, g1), (α2, g2) and (α3, g3). The quadratic
polynomial P(α) has the form

P(α) = g1 + h1(α − α1) + h3(α − α1)(α − α2),

where h1 =
g2 − g1

α2 − α1
, h2 =

g3 − g2

α3 − α2
and h3 =

h2 − h1

α3 − α1
.

In our algorithm, first we define α1 = 0 and calculate g1 = g(v(0) − α1z) = g(v(0)). Also, we let
α3 = 1 and calculate g3 = g(v(0) − α3z). Finally, we check for condition g3 < g1. If the condition
does not provide, it should be updated α3 with α3 = α3/2 until the condition is valid. When the
condition is provided, we set α2 = α3/2 and calculate g2 = g(v(0) − α2z).

The minimum value of P(α) on [α1, α3] occurs at the critical point of P(α). So, we have P ′(α) = 0
and from this obtain α = 0.5(α2 − h1/h3). If ĝ = g(v(0) − αz) is smaller than g1 and g3, we assign

v(1) = v(0) − αz.

Backtracking line search. Backtracking line search (bls) is a kind of inexact line search method
that works by choosing a step size α which approximately minimizes a given function [44]. This
method reduce g along {v − α∇g(v) | α ≥ 0} given a descent direction ∇g(v). It is based on
two constants ρ, τ with 0 < ρ < 0.5, 0 < τ < 1. We start with choosing constants ρ = 0.01
and τ = 0.1. The method initializes with step size α = 1 and then reduces it by a factor τ until
stopping condition is satisfied

g(v − α∇g(v)) ≤ g(v)− ρα∥∇g(v)∥2
2.

Therefore, we obtain an appropriate α value for the SD method. Finally, we assign

v(1) = v(0) − α∇g(v0).

Algorithm 2 Backtracking line search

α = 1
while g(v − α∇g(v)) > g(v)− ρα∥∇g(v)∥2

2 do
α = τα

end while

Two-point step size. Two-point step size (tpss) was proposed by Barzilai and Borwein [45] for the
SD method. This method works on the iteration v(k+1) = v(k) − α(k)h(k) where h(k) = h(v(k)) =
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∇g(v(k)) and g : Rn1+n2+2 → R. Therefore, formula of α(k) is given as below

α(k) =
< ∆v, ∆h >

< ∆h, ∆h >
,

and < a, b > denotes the scalar product of the vectors a and b. Here, α(k) minimizes ∥∆v− α∆h∥2,
with ∆v = v(k) − v(k−1) and ∆h = h(k) − h(k−1) = ∇g(v(k))−∇g(v(k−1)). Then we obtain the
iteration in the following form

v(k+1) = v(k) − α(k)∇g(vk).

Convergence of the steepest descent technique for TPEPs

We propose the following theorem about the convergence of the SD technique for TPEPs.

Theorem 5 Suppose that A1, B1, C1 ∈ Rn1×n1 , A2, B2, C2 ∈ Rn2×n2 are coefficient matrices. Suppose
the matrices of size n1n2 × n1n2 obtained by the related tensor products Ti where i = 0, 1, 2. Assume
that tensor product T0 = B1 ⊗ C2 − C1 ⊗ B2 is nonsingular and diagonally dominant. Let S be the set of
feasible solutions for TPEP. Let g be the gradient sequence generated by the SD technique. Suppose that
g : Rn1+n2+2 → R is continuously differentiable on the set S = {v ∈ Rn1+n2+2 | g(v) ≤ g(v(0))}. Then
every point v that is a cluster point of the sequence {v(k)} satisfies ∇g(v) = 0.

Proof The TPEP can be reduced to a system of 2 one-parameter problems as in [2]. Since the
matrix of size n1n2 × n1n2 obtained by the related tensor product T0 is nonsingular and diagonally
dominant, S is closed and bounded set obtained by using the Gershgorin circle theorem [46] with
closed circles and the related bounds for spectral radii coming from [47]. By using the Theorem 4,
every point v that is a cluster point of the sequence {v(k)} satisfies ∇g(v) = 0.

In Section 4, we have an application on Lamé’s system which gives the tensor product T0 nonsin-
gular and diagonally dominant. Also, we use randomly generated matrices in other examples. So,
T0 coming from them is highly likely nonsingular.

2 Proposed method via fusedparopt algorithm using L-BFGS for TPEPs

In order to improve RQ_N algorithm in Figure 1, we have used the SD technique because of being
globally convergent in our paper [4] before. Now, we propose L-BFGS method for an alternative
method to SD in this paper. We can rearrange starting approximations or eigenpairs (during
iteration) by using L-BFGS technique. Therefore, we can use L-BFGS technique in three ways as
seen in Figure 2. So, we call the fused algorithm as f usedparopt_LBFGS algorithm.
The first way is using L-BFGS technique between RQ and Newton’s methods (using just P1
in Figure 2). This means that it can be used before Newton’s method to improve the initial
eigenvectors generated randomly and the initial eigenvalues generated by the RQ. Thus, the
Newton method can start to run in better conditions than before. In the second way, the L-BFGS
technique is mounted inside Newton’s method to upgrade the eigenpairs when needed (using
just P2 in Figure 2). For instance, if we encounter conditions such as divergence or stagnation, we
should upgrade the eigenpairs. The third way occurs in combination with the first and the second
ways (using P1 and P2 together in Figure 2).
When we consider f usedparopt_LBFGS algorithm and the step size method such as bls together,
we could show our fused algorithm in three ways as in Figure 2. These ways are;

• fused algorithm with the first way P1 and the bls method is RQ + LBFGSbls + Newton
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Matrices A1, A2, B1, B2, C1, C2
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yes

no
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Figure 2. Proposed f usedparopt_LBFGS algorithm

• fused algorithm with the second way P2 and the bls method is RQ + Newton[LBFGSbls]

• fused algorithm with the third way (using P1 and P2 together) and the bls method is RQ +

LBFGSbls + Newton[LBFGSbls]

Algorithm 3 Proposed fused RQ_N_I (I: Improver) algorithm with option SD or option L-BFGS
for TPEP. There are two options for RQ_N_I including f usedparopt_SD using steepest descent
and f usedparopt_LBFGS using L-BFGS.

Input: Initial matrices: Ai, Bi, Ci, i = 1, 2
Initial eigenvectors: x0, y0

Output: Computed eigenvalues: λ, µ

Final eigenvectors: x, y
• Calculate the tensor Rayleigh quotient

(λ0, µ0) = rayleighQuotient(x0, y0, A1, B1, C1, A2, B2, C2)
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• Improve initial eigenpairs by
Option-1: the steepest descent technique
(λ1, µ1, x1, y1) = steepestDescent(λ0, µ0, x0, y0, A1, B1, C1, A2, B2, C2)

Option-2: the L-BFGS technique
(λ1, µ1, x1, y1) = LBFGS(λ0, µ0, x0, y0, A1, B1, C1, A2, B2, C2)

• Approximate the eigenvalues by the Newton’s method
Use the values (λ1, µ1, x1, y1, A1, B1, C1, A2, B2, C2)

for k = 1, 2, 3, ... do
• Calculate the vectors pik, qik, i = 1, 2

p1k ← ν−1
1 B1xk, p2k ← ν−1

1 C1xk where ν1 = A1 − λkB1 − µkC1
q1k ← ν−1

2 B2xk, q2k ← ν−1
2 C2xk where ν2 = A2 − λkB2 − µkC2

• Generate the following linear system by the vectors above and solve it[
xT

k p1k xT
k p2k

yT
k q1k yT

k q2k

] [
∆λk
∆µk

]
=

[ 1
2 (xT

k xk + 1)
1
2 (y

T
k yk + 1)

]
• Update the eigenvectors xk+1, yk+1

xk+1 ← ∆λk p1k + ∆µk p2k
yk+1 ← ∆λkq1k + ∆µkq2k

• Update the eigenvalues λk+1, µk+1
λk+1 ← λk + ∆λk
µk+1 ← µk + ∆µk

• Improve eigenpairs for once when the following condition is available
if divergence or stagnation occurs after a certain iteration then

Option-1: the steepest descent technique
(λk+1, µk+1, xk+1, yk+1) = steepestDescent(λk+1, µk+1, xk+1, yk+1, Ai, Bi, Ci, i = 1, 2)
Option-2: the L-BFGS technique
(λk+1, µk+1, xk+1, yk+1) = LBFGS(λk+1, µk+1, xk+1, yk+1, Ai, Bi, Ci, i = 1, 2)

end if
• Continue iteration until the test condition is satisfied
end for

3 Computational complexity for f usedparopt_LBFGS

In this section, we analyze the computational costs of f usedparopt_LBFGS and the alternatives
including RQ_N and f usedparopt_SD. First, we assume that the coefficient matrices Ai, Bi and
Ci (i = 1, 2) have n × n dimensions and are dense. Also, the initial vectors x0 and y0 have n
dimension. In RQ_N algorithm, the RQ requires approximately O(n2) operations and Newton’s
method using Gaussian elimination has the cost of approximately O(n3) operations [48].
The L-BFGS method has O(n) computational complexity alone [40]. There is an additional cost
due to L-BFGS technique in f usedparopt_LBFGS algorithm when it is compared with RQ_N
algorithm.
Let us discuss the effect of SD technique in f usedparopt_SD algorithm. SD technique generally
costs approximately O(n2) operations [48]. In order to compare the costs of step size methods in
SD technique, we need to see costs in a little more detail. We can calculate costs approximately
3n2 f lops for tpss, (2 + k)n2 f lops for bls and (6 + l)n2 f lops for qpi where k and l are given as
unknown operation numbers because of searching appropriate step size value in the algorithms.
Theoretically, f usedparopt_SD algorithm seems more costly than RQ_N algorithm. However, we
find a different situation in practice according to our experiments. The computational cost can
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be saved by reducing the number of iterations for Newton’s method when the SD technique is
utilized in the fused f usedparopt_SD algorithm. In other words, an2 units of workload by SD
technique can be realized instead of potential bn3 units of workload of Newton’s method, where
a and b are unknown numbers of iterations. Therefore, the SD technique can insert negligible
or amortized overhead because the SD technique may eliminate the stagnation of Newton’s
method for nearly singular matrices. Thus, the cost of Gaussian elimination is dominant in RQ_N,
f usedparopt_LBFGS and f usedparopt_SD algorithms.

4 Numerical experiments

In this section, examples are grouped into two different themes. Firstly, we examine L-BFGS
method which is an alternative method for SD. We make simulations to compare SD and L-
BFGS located in our fused algorithms. In the second theme, there is an application on a real
problem. We implement our fused algorithms on Lamé’s system. We use MATLAB R2022a in the
machine having Intel(R) Core(TM) i7-7700 CPU @ 3.60GHz and 16GB RAM memory for testing
our algorithms throughout this section.

Comparing L-BFGS with an alternative method SD

In this part, we use LBFGS method with bls algorithm as one of the quasi-Newton methods,
instead of SD technique, in our proposed fused algorithm. So, we aim to compare the performance
of SD technique against an alternative method in the fused algorithm. We use the iteration of
L-BFGS method as shown below instead of SD iteration (3)

v(k+1) = v(k) − α(k)H(k)∇g(v(k)).

Unlike the SD technique, we also use H(k) which is the inverse Hessian approximation here. In
this method, H(k) is stored by a certain number of vector pairs to reduce storage cost. For example,
the m most recent vector pairs are kept. More details can be found in [40].

L-BFGS method alone in the solution of TPEPs
Example 1 We make a simulation to see the status of L-BFGS method alone in the solution of TPEPs.
By generating all matrices and initial vectors randomly with the help of rand() function in MATLAB, we
create a system of equations in each different size. We solve the systems of equations corresponding to
different values of m (such as m = 3, 17, 21) to a certain number of iterations (Iter = 1015). We give
the convergence results by residual norm (∥A1xi − λiB1xi − µiC1xi∥2 + ∥A2yi − λiB2yi − µiC2yi∥2)

1
2

and the computation time is given in seconds in Table 1. According to the results in Table 1, we observe
that L-BFGS alone does not converge and is not effective in TPEPs to a certain number of iterations
(Iter = 1015).

We have also made tests with m values different from those in Table 1, but we still could not obtain
convergence. This may be related to the fact that the eigenvalue spectrum is too dispersed in
problems involving randomly generated matrices. It may need more iterations for convergence.
In this case, the cost will be very high.

f usedparopt_LBFGS method versus f usedparopt_SD method for the solution of TPEPs
Example 2 We design a new simulation by generating all Ai, Bi, Ci (i = 1, 2) matrices and initial vectors
randomly with the help of rand() function in MATLAB, so that the tensor product T0 of this system is nonsin-
gular. We create 500 different equation systems having matrices of size 2000 × 2000. We solve each system
of equations with the methods RQ_N, f usedparopt_SD and f usedparopt_LBFGS respectively. We use
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Table 1. Results of the L-BFGS method in different sizes of matrices which are generated fully random (Time is
in seconds)

L-BFGS (m=3) L-BFGS (m=17) L-BFGS (m=21)
SIZE Iter. Residual Time Iter. Residual Time Iter. Residual Time
250 1014 2.04E+02 3.04 1014 2.09E+02 3.22 1014 2.10E+02 3.35
500 1014 4.34E+03 35 1014 4.41E+03 36 1014 4.43E+03 36
1000 1014 1.44E+04 126 1014 1.44E+04 127 1014 1.44E+04 127
2000 1014 4.61E+04 457 1014 4.61E+04 458 1014 4.60E+04 459
4000 1014 1.11E+05 1740 1014 1.11E+05 1754 1014 1.11E+05 1758
8000 1014 4.49E+05 7308 1014 4.49E+05 7432 1014 4.49E+05 7464

the bls algorithm for determining the step lengths in f usedparopt_SD and f usedparopt_LBFGS methods
where m = 3 for the L-BFGS method. Therefore, we apply 3 different variations of each f usedparopt
method in the solutions. The convergences are calculated by residual norm (∥A1xi − λiB1xi − µiC1xi∥2 +

∥A2yi − λiB2yi − µiC2yi∥2)
1
2 in this simulation. We run our algorithm until the residual norm < 1e−10

is satisfied. If not satisfied, we stop the algorithm when the iteration number is 1015.

Table 2. Basic statistical results in different methods for 500 cases. (c.time is in seconds)

RQ_N f usedparopt_SD f usedparopt_LBFGS
iter. c.time iter. c.time iter. c.time

Mean 177 56 38 14 38 15
Std. Dev. 331 105 17 6 15 5
Max. Val. 1014 348 154 53 113 42
Min. Val. 11 3 13 6 12 6
Median 46 15 32 13 34 14

IQR 45 15 13 4 12 5

Table 2 contains the basic statistical results including mean, standard deviation(Std. Dev.), maxi-
mum value(Max. Val.), minimum value(Min. Val.), median and interquartile range(IQR) of the
iteration numbers and the computation times for the solutions. According to the Table 2, the
results obtained via f usedparopt_SD and f usedparopt_LBFGS methods are better than RQ_N
method. Moreover, f usedparopt_SD and f usedparopt_LBFGS methods have values close to each
other.

Table 3. The number of winning methods and their proportions among 500 cases

(a) The number of winning methods in f usedparopt_SD

f usedparopt_SD METHODS QUANT PERCENT
RQ + SDbls + Newton 210 42%
RQ + SDbls + Newton[SDbls] 143 28.6%
RQ + Newton[SDbls] 147 29.4%
TOTAL 500 100%

(b) The number of winning methods in f usedparopt_LBFGS

f usedparopt_LBFGS METHODS QUANT PERCENT
RQ + LBFGSbls + Newton 213 42.6%
RQ + LBFGSbls + Newton[LBFGSbls] 127 25.4%
RQ + Newton[LBFGSbls] 160 32%
TOTAL 500 100%
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In Table 3, we see the numbers and proportions of the methods giving the best results in the
simulation. Table 3a gives the number of winning methods in f usedparopt_SD and Table 3b gives
the number of winning methods in f usedparopt_LBFGS. In both Tables, we can say that the
first methods (RQ + SDbls + Newton and RQ + LBFGSbls + Newton) are more effective than the
others.

Table 4. Statistics of the iteration numbers for 100 cases in different sizes of matrices used in the simulation

RQ_N f usedparopt_SD f usedparopt_LBFGS
SIZE Mean StdDev Mdn IQR Mean StdDev Mdn IQR Mean StdDev Mdn IQR
250 162 330 34 34 32 20 26 17 34 16 31 14
500 166 329 37 26 33 16 28 15 34 14 33 13

1000 174 339 38 25 33 15 30 13 36 17 32 13
2000 184 336 47 38 37 16 33 12 37 14 34 11
4000 187 335 49 46 38 13 36 16 40 13 38 13
8000 197 331 58 48 45 15 43 19 50 18 46 18

We show the statistical results of the iteration numbers and the computation times in second
that occur in solving systems of equations having different matrix sizes in Table 4 and Table 5,
respectively. We generate 100 different equation systems in each size in the simulation and then
we solve them. While high-cost solutions are available with the RQ_N method, we can obtain
more effective solutions with the f usedparopt_SD and f usedparopt_LBFGS methods. In addition,
it is seen that the results obtained by these two methods are close to each other. However, we can
say that the f usedparopt_SD method is a little more effective than f usedparopt_LBFGS method
in terms of the average number of iterations and the average computation times.

Table 5. Statistics of the computation time in second for 100 cases in different sizes of matrices used in the
simulation

RQ_N f usedparopt_SD f usedparopt_LBFGS
SIZE Mean StdDev Mdn IQR Mean StdDev Mdn IQR Mean StdDev Mdn IQR
250 0.43 0.87 0.09 0.09 0.10 0.05 0.08 0.05 0.11 0.04 0.11 0.04
500 2.1 4.0 0.47 0.35 0.56 0.22 0.54 0.22 0.65 0.22 0.63 0.25

1000 10 19 2.2 1.5 2.5 0.92 2.3 0.91 2.9 1.1 2.8 1.2
2000 57 104 14 12 14 5 12 5 14 5 13 5
4000 382 688 100 97 86 28 81 35 93 27 90 33
8000 2371 4003 699 540 589 197 568 254 652 235 605 233

Using different m values in f usedparopt_LBFGS method for the solution of TPEPs
Example 3 We design a new simulation by generating all Ai, Bi, Ci (i = 1, 2) matrices and initial vectors
randomly with the help of rand() function in MATLAB, so that the tensor product T0 of this system
is nonsingular. 100 different equation systems are generated in each distinct size from 250 × 250 to
8000 × 8000. We solve each system of equations with the f usedparopt_LBFGS method. Thus, we display
the means of the iteration number and computation times(second), and their standard deviations in Table 6
for m = 3 and 17. When we use m values larger than 17 such as 21, 25 and 29, the results are similar to
those of 17. Table 6 shows that using larger m values in f usedparopt_LBFGS method for these kinds of
problems having large-scale matrices gives a small effect in computational cost at the solution.

As a result, it is known that the L-BFGS method alone has a lower cost than the SD method.
However, we could not see a big difference between solution costs of the fused algorithms
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Table 6. Statistics(means of the iteration number and computation times(second) and their standard deviations)
of the f usedparopt_LBFGS method with different m values for 100 cases in different sizes of matrices

f usedparopt_LBFGS (m=3) f usedparopt_LBFGS (m=17)
SIZE Iter. StdDev Time StdDev Iter. StdDev Time StdDev
250 32 18 0.11 0.06 32 16 0.1 0.04
500 34 15 0.67 0.22 35 15 0.66 0.21
1000 35 13 2.99 0.87 35 13 2.97 0.8
2000 36 11 15 4 37 13 16 5
4000 43 17 96 32 41 12 91 24
8000 50 21 656 258 48 17 625 210

f usedparopt_SD and f usedparopt_LBFGS, since the weight of Newton’s method in the solution
costs is more dominant in our fused algorithms as discussed in Section 3 previously.

An application: Lamé’s system

We consider Lamé’s system in trigonometric form with angle 0 < χ < 2π:

[1 − k2 cos2(ϕ)]L
′′
(ϕ) + k2 sin(ϕ)cos(ϕ)L

′
(ϕ) + [k2ρ(ρ + 1) sin2(ϕ) + δ]L(ϕ) = 0, 0 < ϕ < π, (4)

[1 − k′2 cos2(θ)]N
′′
(θ) + k′2 sin(θ)cos(θ)N

′
(θ) + [k′2ρ(ρ + 1) sin2(θ)− δ]N(θ) = 0, 0 < θ < π/2, (5)

where k = sin(|π − χ|/2) and k2 + k′2 = 1. The boundary conditions are L(0) = L′(π) = 0
and N′(0) = N′(π/2) = 0 if 0 < χ < π or N(0) = N′(π/2) = 0 if π < χ < 2π. This Lamé’s
system of differential Eqs. (4) and (5) can be transformed into a TPEP using Chebyshev collocation.
Therefore, we obtain nonsingular A1 and singular A2 matrices. Here, the fact that A2 is singular
could make the problem solution difficult from time to time. See [7] for more details and other
references.

Comparing methods using given initial values
Example 4 We choose χ = 0.125π and transform differential equations (4) and (5) into TPEPs with
sizes 1000 and 2000 using the function lame_mep in toolbox [10] from Matlab. The initial vectors are
found in files named Lame_initvec_N1000.mat and Lame_initvec_N2000.mat with sizes 1000 and 2000
respectively in supplementary. The convergences are calculated by residual norm (∥A1xi − λiB1xi −

µiC1xi∥2 + ∥A2yi − λiB2yi − µiC2yi∥2)
1
2 and the computation time is given in seconds.

We give examples showing the limitation of RQ_N method in Table 7. It is seen that RQ_N method
has a convergence problem up to 1015 iterations in Table 7a. We can eliminate this problem by
using our proposed fused algorithms. f usedparopt_SD and f usedparopt_LBFGS methods give
solutions around 1e−8 convergence at similar costs in Table 7b and Table 7c.
In addition, we solve these problems using the function twopareigs in toolbox [10]. The twopareigs
method computes solution in 3.30 seconds for size 1000 and in 21.98 seconds for size 2000. These
costs seem to be higher than the costs of our fused algorithms.

Simulation and convergence diagram for Lamé’s system
Example 5 We make a simulation using Lamé’s system that has transformed to a TPEP having size 1000
as in previous Example 4. We generate 500 different initial vectors randomly with the help of rand() function
in MATLAB. We run our algorithms until the residual norm < 1e−7 is satisfied. If not satisfied, we stop
the algorithm when the iteration number is 1015.

Our aim is to have an idea about behaviors for numbers of iterations and computational times on
the obtained solutions in general. We can use convergence diagrams in Figure 3 and Figure 4 to
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Table 7. Some Lamé’s system examples solving in different methods where the same initial vectors are used
(C.TIME is in seconds)

(a) Results obtained with RQ_N method

INITIAL VECTOR METHOD ITER CONV C.TIME
Lame_initvec_N1000 RQ + Newton 1014 3.79E+01 53
Lame_initvec_N2000 RQ + Newton 1014 1.02E+05 282

(b) Results obtained with f usedparopt_SD method

INITIAL VECTOR METHOD ITER CONV C.TIME
Lame_initvec_N1000 RQ + Newton[SDbls] 17 2.70E-08 1.50
Lame_initvec_N2000 RQ + SDqpi + Newton 33 4.54E-08 10.66

(c) Results obtained with f usedparopt_LBFGS method

INITIAL VECTOR METHOD ITER CONV C.TIME
Lame_initvec_N1000 RQ + Newton[LBFGSbls] 19 5.51E-08 1.81
Lame_initvec_N2000 RQ + LBFGSbls + Newton 22 7.58E-08 10.22
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Figure 3. Convergence diagrams according to numbers of iteration for Lamé’s system having size 1000 matrices

examine these behaviors. These diagrams were created based on the average numbers of iteration
or computational times1. We can observe whether numbers of iterations or computational times
converge to an average number or not.
There is a constant tendency to increase in the RQ_N graph. Since too many solutions do not

1 In general, the reason why Monte Carlo simulation works is the Law of Large Numbers (see [34, 49]).
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Figure 4. Convergence diagrams according to computational times for Lamé’s system having size 1000 matrices

satisfy the condition for the residual norm < 1e−7. So, they reach 1015 iterations. However, this
situation is less common in our fusedparopt algorithms. So, our fusedparopt graphs are more
stable than RQ_N graph.

5 Conclusions

In this paper, we present a new method f usedparopt_LBFGS via fusedparopt algorithm having
several variations for TPEPs. Moreover, we show the convergence diagrams of f usedparopt_LBFGS,
RQ_N and f usedparopt_SD algorithms in terms of the number of iterations.
The L-BFGS method alone is less costly than the SD method and this is attractive (see [37], [38],
[50] and [51]). However, we observe that L-BFGS method alone is not robust for small values
of m (such as m = 3, 17, 21) where the m most recent vector pairs are kept, in the solution of
TPEPs. This result is consistent with [40] for different applications. Moreover, we test our fused
algorithm f usedparopt_LBFGS. While high-cost solutions are obtained with the RQ_N method,
we have more effective solutions with the f usedparopt_LBFGS and f usedparopt_SD methods.
In addition, it is seen that the results obtained by the f usedparopt_LBFGS and f usedparopt_SD
methods are close to each other and comparable, depending on the matrix type. Thus, we see that
f usedparopt_LBFGS and f usedparopt_SD methods achieve robustness, reasonable cost and good
performance for TPEPs based on our data set.
According to the application on Lamé’s system, we find clearly that our fused algorithm is more
successful than the RQ_N method. While the RQ_N method has a convergence problem, our
proposed f usedparopt_LBFGS method converges for the same initial conditions. Besides, our
algorithm can converge earlier than the state-of-art twopareigs method ([7, 10]) for the Lamé’s
system.
We plan to compare the proposed method with alternative methods such as subspace methods in



Özer and Duran | 465

another future work.
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