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ABSTRACT 
Purpose: Ensuring both human safety and transportation efficiency simultaneously during the navigation 
of autonomous mobile robots (AMRs) in warehouse logistics is a challenging problem due to dynamic 
environments and diverse obstacles. In this study, a social navigation approach based on artificial 
intelligence was developed to optimize these two critical factors. 
Methodology: RGB images from an Intel_RealSense_D455 depth camera mounted on the PIXER AMR 
were utilized in a YOLOv8-based model to detect humans and reach trucks (RT). For human detection, the 
YOLOv8 model was trained with 4746 images and labels for 362 epochs, while RT detection used 4193 
images and labels for 450 epochs. Each dataset was split into 60% training, 20% testing, and 20% 
validation subsets. The depth feature of the camera was used to measure object distances.  
Findings: Objects detected with at least 80% accuracy had their midpoints identified, and distances were 
calculated using the depth camera. For humans detected within 2 meters, the robot's max_speed was 
reduced to 80%. For RTs detected at 6 meters, a new path was planned.  
Originality: This study provides a novel integration of social navigation and deep learning to address the 
dual challenge of ensuring safety and efficiency in AMR navigation, contributing to advancements in 
warehouse logistics. 
Keywords: Artificial Intelligence, Social Navigation, Warehouse Logistic. 
JEL Codes: C63, L62, R41. 

Yapay Zekâ ve RGB-D Tabanlı Depo İçi Lojistikte Sosyal Navigasyon 
ÖZET 
Amaç: Depo lojistiğinde otonom mobil robotların (AMR) navigasyonu sırasında insan güvenliğini ve taşıma 
verimliliğini aynı anda sağlamak, dinamik ortamlar ve çeşitli engeller nedeniyle zor bir problemdir. Bu 
çalışmada, bu iki kritik faktörü optimize etmek amacıyla yapay zekâ tabanlı bir sosyal navigasyon yaklaşımı 
geliştirilmiştir.  
Yöntem: PIXER AMR üzerine monte edilmiş Intel_RealSense_D455 derinlik kamerasından alınan RGB 
görüntüler, insan ve Reach Truck (RT) algılaması için YOLOv8 tabanlı bir modelde kullanılmıştır. İnsan 
algılama için YOLOv8 modeli 4746 görüntü ve etiketle 362 epoch boyunca, RT algılama için ise 4193 
görüntü ve etiketle 450 epoch boyunca eğitilmiştir. Her bir veri seti, %60 eğitim, %20 test ve %20 doğrulama 
alt kümelerine bölünmüştür. Algılanan nesnelerin mesafeleri, kameranın derinlik özelliği kullanılarak 
ölçülmüştür.  
Bulgular: En az %80 doğrulukla algılanan nesnelerin orta noktaları belirlenmiş ve mesafeleri derinlik 
kamerası kullanılarak hesaplanmıştır. İnsanlar 2 metre mesafede algılandığında robotun maksimum hızı 
%80’e azaltılmıştır. RT’ler 6 metre mesafede algılandığında yeni bir rota planlanmıştır.  
Özgünlük: Bu çalışma, AMR navigasyonunda güvenliği ve verimliliği sağlama ikili problemini ele alan 
sosyal navigasyon ve derin öğrenmenin yenilikçi bir entegrasyonunu sunarak depo lojistiğinde ilerlemelere 
katkı sağlamaktadır. 
Anahtar Kelimeler: Yapay Zekâ, Sosyal Navigasyon, Depo Lojistiği. 
JEL Kodları: C63, L62, R41. 
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1. INTRODUCTION 
With the emergence of Industry 4.0, both academic and industrial studies on autonomous mobile robots 
(AMR) have been increasing. The increasing use of AMR in warehouse logistics has provided significant 
advances in operational efficiency and safety protocols (Gürevin et al., 2024; Fragapane et al., 2022). In 
response to the increasing demands of fast delivery services and e-commerce operations, the integration 
of AMRs into warehouse environments has become inevitable. These robots are designed to navigate 
dynamic environments, interact seamlessly with human employees, and ensure efficient transportation of 
products. However, maintaining transportation efficiency while ensuring human safety poses a major 
challenge (Trakadas et al., 2020; Cognominal et al., 2021). When looking at the literature, artificial 
intelligence-based object recognition systems have been developed in warehouse environments thanks to 
camera sensors on robots. However, these studies are mostly in areas where personnel are checked to 
see if they are wearing safety equipment, human detection is performed, or autonomous personnel tracking 
systems are performed. It does not directly affect AMR navigation in terms of efficiency.  

RT vehicle and human are indispensable personnel in many warehouse environments. It is important for 
AMRs to take these two objects, which are constantly dynamic, into consideration in terms of both 
occupational safety and process efficiency. The situations that AMRs should pay attention to are as follows; 
reach trucks (RT) can cause route congestion due to their large structures and cumbersome movements. 
This has a negative impact on the AMR working process. On the other hand, humans should be considered 
as a constantly moving entity that requires attention. In this study, it is aimed to develop a social navigation 
system that increases both human safety and transportation efficiency in warehouse environments. It is 
aimed to provide a harmonious interaction between robots and their environment by using advanced sensor 
technologies such as depth cameras (Gürevin et al., 2023) and the latest deep learning algorithms.  

The central part of our method is the use of the Intel RealSense D455 depth camera, which provides object 
detection and distance measurement by capturing RGB images and depth data. Object detection and 
distance measurement operations were performed using the images taken from this depth camera in front 
of our robot, which we named PIXER and developed by us (Ottobo Robotics and Artificial Intelligence 
Technologies Inc.). The YOLOv8 model was used for human and RT detection. In the training of each 
model, the epoch values were set to 500. However, the save_period value was set to “-1” and the patience 
value was set to 10. In this way, the training continued until the last 10 epochs, where the verification losses 
did not improve. For this reason, each model could not continue its training until 500 epochs. The human 
detection model was trained using the transfer learning method with 60% training, 20% test and 20% 
validation data ratios for 362 epochs on a dataset containing 4746 images and labels. Similarly, the RT 
detection model was trained using the same data distribution for 450 epochs using transfer learning with 
4193 images and labels. Our system ensures safety by reducing the robot's maximum speed to 80% when 
a human is detected at a distance of 2 meters on the robot navigation route. During navigation, when an 
RT is detected at a distance of 6 m on the route in narrow corridors, an alternative route is planned and the 
robot's path is optimized. The novelty of this research lies in its dual-focused approach to improve both 
safety and operational efficiency through social navigation. By integrating deep learning-based object 
detection and real-time distance measurement, our system provides a robust solution for the evolving 
needs of warehouse logistics.  

The remainder of the paper is structured as follows; Section 2 reviews the existing literature on AMR 
navigation and safety systems. Section 3 details the methodology, including data collection, model training, 
and system implementation. Section 4 presents the experimental results and their analysis. Finally, Section 
5 concludes the study and discusses future research directions. 

2. LITERATURE RESEARCH 
In this section, the existing studies on AMRs in the fields of human-robot interaction and social navigation 
were comprehensively reviewed. In addition, the potential of AMRs to increase operational efficiency and 
safety, the challenges encountered in achieving these goals, and the innovative solutions developed to 
overcome these challenges were discussed. This literature review aims to reinforce the scientific basis of 
our research by allowing us to understand the previous research on which our study is based and the 
methods used. The studies obtained from the literature are as follows;  

Zhu and Zhang conducted a research article on deep reinforcement learning-based navigation studies. In 
their deep learning-based social navigation studies, they provided the generation of speed and volumetric 
(radius) estimates of pedestrians with point cloud data taken from lidar and depth cameras (Zhu and Zhang, 
2021). Francis and his colleagues determined the benchmark criteria for the evaluation of social navigation 
studies conducted by researchers with their comprehensive study. They also defined the social navigation 
robot (Francis et al., 2023). Daza and his colleagues proposed a navigation algorithm that takes into 
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account the interaction of a robot against humans and robots, unlike robot-robot or human-robot interaction. 
They analyzed the proximity of people to each other and the navigation of other robots and provided the 
planning of the robot's behavior. They modeled their work in the Gazebo simulation environment (Daza et 
al., 2021). The performances of various YOLO, SSD, RCNN, R-FCN and SqueezeDet applications were 
evaluated. YOLO v3-416 emerged as an ideal model for embedded platforms by providing relatively 
accurate results in a reasonable time (Kim et al., 2018).  

Mayershofer and his colleagues presented the Logistics Objects in COntext (LOCO) dataset, which is the 
first publicly available object recognition dataset in the logistics field. LOCO contains 39,101 images, and 
the first version includes 5,593 bounding-box labeled images. A total of 151,428 pallets, small load carriers, 
fixed racks, forklifts and pallet trucks were labeled (Mayershofer et al., 2020). Salmerón-García et al. (2015) 
investigated the effects of cloud computing on robotic navigation and demonstrated the advantages of 
performing vision-based navigation tasks over the cloud. In their work, they used a mobile robot based on 
the Robot Operating System (ROS) and processed the information received from stereo cameras on the 
robot on a cloud platform consisting of five bare-metal nodes. (Salmerón-Gar Salmerón-García et al., 2015).  

Kenk and his colleagues addressed the reliable navigation capabilities required by industrial and mobile 
robots to provide safe and comfortable navigation in environments full of people. As a result of their work, 
they were able to ensure that mobile robots could approach pallets to pick up objects while maintaining a 
certain distance from people (Kenk et al., 2019). Wang and his colleagues, starting from the lack of public 
datasets that can be used for object detection in a warehouse environment, collected a large number of 
images in a real warehouse environment and marked them with cameras. This study enabled the accurate 
detection of warehouse objects (Wang and Li, 2023). 

Clavero et al. (2024) presented a new architecture called DMZoomNet in the intralogistics industry. This 
architecture aims to improve object detection performance by combining deep learning-based detectors 
with distance information. In their work, they evaluated their method on the LOCO dataset, one of the few 
open-source datasets specifically designed for intralogistics scenarios (Clavero et al., 2024). In the study 
proposed by Truong and Ngo (2016), an effective human comfort safety framework was proposed for 
mobile service robots to navigate safely and socially in social environments. The dynamic social zone (DSZ) 
based human comfort safety framework enabled the robot to estimate the target position when approaching 
a human or group of humans, allowing the robot to both avoid and approach humans in a socially 
acceptable manner (Truong and Ngo, 2016).  

Mavrogiannis et al. (2023), in their review article, organized a large set of open issues related to robot 
planning, behavior design, and evaluation methodologies to address the challenges of robot navigation in 
crowded environments (Mavrogiannis, 2023). Beyer et al., worked on improving the ability of mobile robots 
to detect people, especially those using mobility aids. For this purpose, they developed DROW, a deep 
learning-based wheelchair and walker detector (Beyer et al., 2018). Jia et al. proposed a person detection 
network that uses an alternative strategy to combine scans obtained at different times. Their work 
outperformed the current state-of-the-art methods on the DROW dataset and was approximately four times 
faster (Jia et al., 2020). 

When the current literature is examined, it is seen that significant progress has been made in human 
detection and social navigation with various approaches and technologies. However, there is a lack of a 
comprehensive approach in the literature that combines human detection and social navigation, takes into 
account both human and mobile obstacles such as RT, and prioritizes safety and efficiency. The studies 
conducted were generally conducted by simulating them in a theoretical virtual environment. Or they were 
limited to object detection only. In this study, a new system has been proposed that detects both humans 
and RT vehicles using the deep learning-based YOLOv8 model and depth camera, and provides integration 
with social navigation strategies. Thanks to this system, the robot in navigation will be instantly made 
sensitive to dynamic objects such as humans and RT in its environment. This innovative approach aims to 
go beyond existing systems and ensure the safe and effective operation of autonomous mobile robots in 
e-commerce warehouses.  

3. METHOD 
In this section, the methods used to develop the social navigation system in the PIXER robot were 
presented in detail. In the study, Intel RealSense D455 depth camera (Intel Realsense, 2024) and YOLOv8 
deep learning framework (Ultralytics, 2024a) were used for human and RT detection. In the images taken 
from the depth camera positioned in front of the robot, which we call PIXER, human and RT were detected 
and their midpoints were determined. Thanks to the depth feature of the camera, the distance of this point 
to the robot was measured instantly. Thus, the human and RT distances on the robot's navigation route 
were measured and the robot was enabled to take the necessary actions. In case a human was detected 
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within 2 m. on the robot's route, the robot's maximum speed was reduced to 80%. Again, in the RT detection 
of the robot in narrow corridors and in the case where RT restricts the robot's movement, the robot was 
provided with a new alternative path planning after a 5-second waiting period. The representative flow 
diagram of the structure mentioned is as given in Figure 1.   

In the following subsections, the dataset used to obtain the artificial intelligence model developed for human 
and RT detection, model training, object detection and distance measurement, and finally system 
integration were discussed.  

 
Figure 1. Social navigation scenario for PIXER AMR 

3.1. YOLOv8 Deep Learning Model  
YOLOv8 algorithm is one of the latest deep learning algorithms for object detection introduced by Ultralytics. 
YOLOv8 is optimized for real-time object detection and offers various model sizes; YOLOv8n, YOLOv8s, 
YOLOv8m, YOLOv8l and YOLOv8x. This flexibility allows the model to be used in a wide range of 
applications with different computational resources. YOLOv8 has the same architecture as previous 
versions, but offers several improvements compared to previous YOLO versions. It integrates both “Feature 
Pyramid Network” (FPN) and “Path Aggregation Network” (PAN) using a new neural network architecture. 
The FPN is an architecture that facilitates multi-scale object detection by efficiently transferring information 
across different layers of a deep neural network. FPN combines high-resolution, low-level features from 
earlier layers with low-resolution, high-level features from deeper layers. This enables the model to detect 
both small and large objects simultaneously. FPN primarily provides an upward flow of information, 
optimizing feature propagation to better interpret objects of various sizes. The PAN, on the other hand, 
complements the upward information flow of FPN by introducing a downward flow of information. PAN 
allows high-level abstract features to be aggregated with lower-level detailed features, creating a 
bidirectional information flow. This enhances detection accuracy and improves the model’s ability to detect 
objects at different scales, especially in complex scenes. PAN is specifically designed to bolster the success 
of multi-scale object detection by refining feature aggregation. The architecture of the YOLOv8 model is 
given in Figure 2 (Reis et al., 2023). In this study, the YOLOv8n artificial intelligence model was used to 
perform social navigation of AMRs actively working in logistics warehouses. The PIXER robot, which is 
actively used in the warehouse environment, has power-consuming industrial sensor systems such as a 
2D LIDAR, a 3D LIDAR and a depth camera. For this reason, the YOLOv8n model was preferred because 
it is a lightweight and fast model that requires less computational resources.  
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Figure 2. YOLOv8 architecture 

3.2. Data Set 
The dataset used in this study was prepared in two separate categories, for human and RT detection. A 
dataset consisting of 4746 images and their corresponding labels was created for human detection. This 
dataset was divided into three groups as 60% training, 20% test and 20% validation. 4193 images were 
used for RT detection. 1% of the images were used as background data. The reason for keeping the 
background data in a small proportion is that this type of data is required in less numbers compared to the 
object to be detected. Because the model does not need a large number of examples to learn the 
background. 1% background data is sufficient to increase the overall performance of the model. Using too 
much may negatively affect the detection success or lead to unbalanced results. This dataset was also 
divided into training, test and validation groups in the same proportions. The dataset distribution is as shown 
in Figure 3.  

 
Figure 3. Dataset distribution 

In creating the datasets, images taken in storage environments were used. In addition, data augmentation 
techniques were used to ensure that the datasets were balanced and diverse. These images were obtained 
from various lighting, angles and positions to reflect real-world conditions. These techniques include 
operations such as rotation, scaling, brightness and contrast adjustments. Some of the human and RT 
images obtained with data augmentation are given in Figure 4.  

 
Figure 4. RT and human images obtained by data augmentation method for model training. 

The human dataset contains a single class, ‘person’. On the other hand, the RT direction dataset contains 
three classes, ‘Reachtruck Rear’, ‘Reachtruck Sides’, and ‘Reachtruck Front’. This distinction was made 
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because the gaze direction of the RT that PIXER will encounter during its movement in the field needs to 
be evaluated. By measuring the gaze direction of the RT and its distance from the robot, it will be possible 
to comment on the direction in which it is moving.  

3.3. Model Training 
The dataset of the model in which the YOLOv8n artificial intelligence model developed for RT and human 
detection was used and the model was trained is as described in the template in Figure 5. In order to 
provide high detection accuracy for both objects and to facilitate the maintenance and development 
processes of the model in R&D studies, training was performed on two different models. The YOLOv8n 
model used for human detection was trained for 362 epochs. The model was trained for RT direction 
detection for 450 epochs. During the training process, hyperparameter optimization was performed to 
increase model performance. The accuracy of the model was measured on the test and validation sets, 
and 75% accuracy was achieved for human detection and 93% for RT direction detection. 

 
Figure 5. Human and RT detection model methodology 

During training, models like YOLO use Focal Loss for DFL Loss, Complete Intersection over Union (CIoU) 
for Box Loss and Binary Cross-Entropy (BCE) for Cls Loss as loss functions (Ultralytics, 2024b). The 
optimization process was performed with Adam optimizer for human detection model and Stochastic 
Gradient Descent (SGD) for reach truck direction detection. For SGD optimizer, learning rate was set as 
lr0=0.01 and momentum was set as 0.9, weight decay was set as 0.0 and 0.0005 for different layers. For 
Adam optimizer, learning rate was set as lr0=0.01 and momentum was set as 0.9, weight decay was set 
as 0.0 and 0.0005 for different layers. Automatic Mixed Precision (AMP) was used in the training process 
to increase speed and memory efficiency. The image size was set to 640, the scaling factor was set to 0.5, 
the initial and final learning rates were set to lr0 and lrf to 0.01. The training period was configured as 1000 
epochs, but the early stopping parameter was set to 50, and the RT direction detection training was 
completed in 450 epochs.  

During training, the YOLOv8n model was trained by applying transfer learning to both models. Early 
stopping with a patience value of 50 was used. YOLO's early stopping mechanism stops training when 
there is no improvement in the validation loss or validation metric (mAP) for a certain period of time (50 
epochs) during model training. This method is used to prevent overfitting and to save time and resources. 
When the model's validation error does not improve, the training process is automatically stopped and the 
training is terminated at the point where the model shows the best performance. In YOLO models, training 
is usually structured with a high number of epochs (e.g. 1000), but thanks to early stopping, training is 
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stopped at the point where the performance peaks. This prevents training for unnecessary epochs and 
ensures efficient use of resources.  

Validation loss based early stopping is a frequently used technique in YOLO models. During model training, 
the loss on the validation set is monitored and if the validation loss does not improve over several epochs, 
the training process is stopped. This prevents the model from being unnecessarily overtrained and 
overlearning, and ensures that the model with the best performance is preserved. In the data augmentation 
technique; HSV values were set as hsv_h: 0.015, hsv_s: 0.7, hsv_v: 0.4, 5 degree rotation and 0.1 
translation are applied to the images. Batch size was set as 16, and the maximum number of objects that 
the model can detect was set as max_det=300. The save_period parameter was set as -1, and the model 
with the highest accuracy was saved. In YOLO models, cross-validation methods are generally not used. 
Instead, training and validation sets are used to evaluate the generalization ability of the model. In this 
study, the performance of the model was evaluated using the validation data set. 

The use of GPU is of great importance to accelerate the training process. For this reason, training was 
performed using Amazon servers with CUDA and CuDNN features. The AMI (Amazon Machine Image) 
used includes the Ubuntu 20.04.6 LTS (GNU/Linux 5.15.0-1048-aws x86_64) operating system, 
535.104.12 NVIDIA driver version, NVIDIA A10G GPU and 12.1 CUDA version.  

3.3.1. Model Performance 
Commonly used metrics to evaluate the performance of object detection models include Precision, Mean 
Average Precision (mAP), Recall and F1. These metrics measure the ability of the model to correctly identify 
objects. Precision is the ratio of true positives to total predictions. Recall is the ratio of true positives to the 
total number of positive examples. F1 score is the harmonic mean of precision and recall. MAP (Mean 
Average Precision) measures the overall accuracy of the model. MAP50 and MAP50-95 express the 
precision of the model in certain correct prediction intervals. These metrics are used to comprehensively 
evaluate the performance of the model in object detection tasks (Önal and Dandıl, 2021). The performance 
evaluations of the models developed in this study were given in Table 1. In addition, a detailed review was 
given in Section 4.  

Table 1. Performances of RT and human detection models 
Model Name Precision (%) Recall (%) F1 (%) mAP50 (%) mAP50-95 (%) 
Person detection model 95 97 97 97 75 
RT detection model 98 99 99 99 93 

The main objective of this project is to obtain maximum efficiency with minimum data. That's why, transfer 
learning (YOLOv8n), data augmentation and error-driven learning techniques, which is one of the active 
learning strategies, were used. The model was developed in a structure that can learn from its errors with 
the principle of error-driven learning. In the first stage, the model was trained and tested with 500 images. 
According to the test results, the erroneously detected data were corrected and added to the training data 
set, thus ensuring that the model learned from errors. The model was retrained with the updated data set 
and its performance gradually improved. This process was repeated in order to continuously improve the 
performance of the model. In order to prevent overfitting, especially in small data sets, the early stopping 
parameter was set to 50 and the dropout rate was applied as 0.5. In this way, the model was able to 
generalize by increasing its overall performance despite being trained with limited data. In addition, 
occlusion tests of the model in difficult scenarios were also performed. The results of these tests are shown 
in Figure 6. The model was evaluated with its ability to detect only partially visible objects during occlusion 
tests. In these tests, situations where objects were covered to a certain extent and were not clear were 
simulated. Especially thanks to YOLOv8’s bounding box strategy, the model managed to make correct 
predictions by evaluating only the visible parts. We would also like to point out that the early stopping and 
dropout parameters were optimized to reduce the risk of overfitting against different scenarios. Thanks to 
this, the model was able to generalize even on small data sets. 
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Figure 6. Occlusion test results for the RT detection model 

YOLOv8’s bounding box strategy is a method developed to increase the precision of the location and size 
of objects and makes object detection more flexible. This strategy works by dividing a bounding box into 9 
small parts in order to detect objects more precisely using a grid-based system. This strategy analyzes 
different parts of the object separately by dividing each bounding box into a 3x3 grid. In this way, the model 
can accurately detect the object even in difficult scenarios such as occlusion by using only the visible parts 
of the object. Especially in difficult scenarios such as occlusion (covering a part of the object) and changing 
light conditions, it enables detection by only using the visible parts of the objects. Thanks to the division of 
the bounding boxes into small parts, the model can make more accurate predictions by analyzing different 
parts of the object and shows high performance in these difficult conditions. This approach provides better 
capture of small objects and strengthens contextual information. Thus, the overall accuracy of the model 
increases and reduces the risk of overfitting.  

3.4. Object Detection and Distance Measurement 
In this section of the study, object detection and distance measurement methods were detailed. The images 
obtained with the RT and human detection models developed using YOLOv8n were enclosed in a bounding 
box around the objects. In order for the RGB and depth images to be compatible, the alignment process 
was performed with the Intel RealSense D455 depth camera, and thus the pixel and position values from 
both cameras (depth and RGB) were matched. Otherwise, although the images taken from the depth belt 
and the RGB camera have the same frame sizes, they have different depth image outputs. The alignment 
situation in question was expressed in the images in Figure 7 and Figure 8.  

In order to increase the accuracy of distance measurement in dynamic environments, sensor noise for 
RealSense D455’s depth data was reduced by various filtering techniques. In this context, “spatial”, 
“temporal” and “hole filling” filters were used while obtaining depth data. Spatial filter was used to reduce 
sudden jumps in distance data by considering the relationship of each pixel with its neighbors. Temporal 
filter was used to ensure temporal accuracy between multiple consecutive frames. Hole filling filtering was 
used to fill the gaps that the camera has difficulty detecting. Thanks to these filtering processes, sensor 
noise that may occur especially while the robot is moving was minimized.  

The midpoints of the detected objects were determined and the distances of these midpoints to the robot 
were calculated using the depth data provided by the Intel RealSense D455 depth camera. In this way, the 
distance information of the detected objects was transferred to the ROS (Robot Operating System) 
environment and the control of the PIXER robot was provided. The flow diagram explaining the object 
detection and distance measurements was given in Figure 9.  

 
Figure 7. RGB (left) and depth image (right) without alignment and filtering operations 
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Figure 8. RGB (left) and depth image (right) with alignment and filtering operations 

 
Figure 9. Flowchart of integration of object detection and distance measurement with RGB-D into 

PIXER navigation 

3.5. PIXER Robot 
The studies carried out in this research were carried out on the industrial AMR developed by us and named 
PIXER. The PIXER robot, which works in logistics companies, has a carrying capacity of 80 kg and is used 
for autonomous product collection based on ROS. Working in large warehouses such as 10000 m2, PIXER 
does not require any extra markers while performing the navigation process with the 3D LIDAR located on 
the tower (top of the robot). In addition, it ensures safety during navigation the 2D LIDAR located at the 
bottom. The features of the PIXER robot are as given in Table 2. In addition, images of the PIXER robot 
are given in Figure 10. To ensure the safety of the robot during navigation; Velodyne 3D LIDAR, RealSense 
Depth Cam and SICK 2D LIDAR sensors wer used. The work presented in this article was designed as an 
additional protection layer to the existing sensors. Even if there are cases where the detection processes 
are faulty, this protection infrastructure prevents accident risks. 

Table 2. PIXER AMR features 
Features Sensor and Capacity 
Navigation 3D - Velodyne LIDAR 
Security 2D - Sıck LIDAR 
Carrying Capacity 80 kg 
Battery 24 V - 44 Ah (Wireless) 
Camera İntel Real Sense 455 
PC  Intel i7, 11. Gen, 16 Gb, 256 SSD 



 
 

 

Bilal Gürevin, Hilal Öztemel, Burhan Turgut Ulutürk, Emre Sebat 

Cilt/ Volume 59 | Sayı / Issue 2 
 

312 

 
Figure 10. PIXER AMR robot 

4. EXPERIMENTS and RESULTS 
In this study, a YOLOv8n-based artificial intelligence model was trained for the purpose of detecting humans 
and RT vehicles. Awareness of humans and RT vehicles was achieved during the robot's navigation by 
utilizing a pretrained model trained with the YOLO algorithm. 

The training was conducted on an AMI (Amazon Machine Image) machine equipped with an NVIDIA A10G 
GPU and CUDA version 12.1. The pixel value corresponding to the midpoint of detected objects in the RGB 
image was also marked in the depth image, enabling distance measurement based on this point. Object 
detection was performed by running the YOLOv8n model on each frame of the RGB images. The central 
coordinates of detected objects, along with their depth information, were utilized to inform the robot's 
movement strategies. In social navigation strategies, when a human was detected within 2 meters in front 
of the robot, the maximum speed was reduced by 80%. Similarly, if an RT vehicle was detected within 6 
meters along the path, an alternative route was generated to plan a new path. These strategies were 
developed to ensure human safety while enhancing operational efficiency. The following sections include 
performance evaluations of the model used and social navigation environment tests. 

4.1. Model Training Evaluation 
In this part, the results reached from experimental test were presented. Object detections accuracy, to 
measure distance accuracy and were evaluated for general performance about social navigation system. 
The performance of the person and RT detection model developed with YOLOv8n was assessed. 
Otherwise, this model was integrated on the PIXER robot and was tested in a warehouse environment. 

4.1.1. Human Detection Model Performance 
A confusion matrix is a useful tool for evaluating the performance of a classification model by comparing 
predicted values to actual values. Figure 11 shows to evaluated model performance about person model. 

 
Figure 11. Confusion matrix of human detection model 
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The evaluation of the matrix is as follows: 

• True Positives (TP) were shown as 971 (in the top left cell). This indicates that the model correctly 
predicted the "person" class 971 times. 

• False Positives (FP) were recorded as 52 (in the top right cell). This means that the model incorrectly 
predicted the "background" class as "person" 52 times. 

• False Negatives (FN) were determined to be 13 (in the bottom left cell), which means that the model 
incorrectly predicted the "person" class as "background" 13 times. 

• True Negatives (TN) were not shown in the bottom right cell. This indicates that the model either could 
not accurately identify the "background" class or completely ignored it. 

The color scale represents the magnitude of the values in the matrix cells; dark blue corresponds to high 
values, while light blue corresponds to low values. Overall, the high number of TPs indicates that the model 
is successful in correctly identifying the "person" class. However, the FP and FN values reveal that the 
model makes some errors. The lack of TN indicates that the model has struggled to predict the 
"background" class. During model training, data belonging to the "background" class was not utilized. It 
was deemed unnecessary to include background data as the model (Yolov8n), having already developed 
its object detection capabilities through transfer learning, is focused on detecting the "person" class. 
Therefore, the accuracy of the background class is not critically important in this application scenario. 

In Figure 12(a), the statement “all classes 0.99 at 0.000” in the recall score graph indicates that the recall 
scores for all classes are 99% when a threshold value of 0 is used. This suggests that the model is able to 
successfully recall all classes even at a very low threshold value. Additionally, the statement “all classes 1 
at 0.926” in the precision score graph in Figure 12(b) indicates that the precision scores for all classes are 
100% when a threshold value of 0.926 is used. This demonstrates that the model has an excellent ability 
to correctly classify all classes when decisions have made above the 0.926 threshold. 

           
(a)                            (b) 

Figure 12. Recall-Confidence and Precision-Confidence score graph of human detection model 

In Figure 12(a), the statement “all classes 0.99 at 0.000” in the recall score graph indicates that the recall 
scores for all classes were 99% when a threshold value of 0 was used. This suggests that the model is 
able to successfully recall all classes even at a very low threshold value. Additionally, the statement “all 
classes 1 at 0.926” in the precision score graph in Figure 12(b) indicates that the precision scores for all 
classes are 100% when a threshold value of 0.926 is used. This demonstrates that the model has an 
excellent ability to correctly classify all classes when decisions have made above the 0.926 threshold. 

In Figure 13(a), the statement “all classes 0.97 at 0.611” in the f1 score graph indicates that the all f1 scores 
for all classes were 97% when a threshold value of 0.611 was used. This suggests that the model is able 
to successfully f1 all classes even at a very high threshold value. Additionally, the statement “all classes 
0.988 at mAP@50” in the precision-recall score graph in Figure 13(b) indicates that the mAP scores for all 
classes are 98%. This suggests that the model is able to successfully recall and precission all classes even 
at a very low threshold value. 
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In Figure 14, it displays the losses and performance metrics of the object detection model during the training 
and validation process. Each of these graphs allows us to analyze a specific aspect of the model and its 
performance in detail. 

       
(a)                      (b) 

Figure 13. F1 and Precision-Recall score graph of the human detection model 

 
Figure 14. Human detection Model Training chart 

Below are the technical comments for each graph related to the human detection model: 

Evaluation of Training Losses 

• train/box_loss: The loss for object boxes started at approximately 1.3 and decreased to about 0.8 after 
200 epochs. This indicates that the model has learned to position objects more accurately. 

• train/cls_loss: The classification loss started at around 1.75 but decreased to 0.5 as training progressed. 
This reduction shows that the model is better at correctly identifying the class labels of the objects. 

• train/dfl_loss: The distribution loss began at a level of 1.1 and fell to about 0.9 after 200 epochs. This 
decrease suggests that the model has reduced uncertainty in its predictions and can make more precise 
predictions. 
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Evaluation of Validation Losses 

• val/box_loss: The loss for object boxes on the validation data started at 1.4 and gradually decreased to 
approximately 0.9 after 200 epochs. This demonstrates that the model can also make accurate box 
placements on new data. 

• val/cls_loss: The classification loss on the validation data shown a similar decrease. Initially at 1.2, it 
dropped to about 0.4 after 200 epochs. 

• val/dfl_loss: The distribution loss started at 1.15 and fell to 0.95 by the end of the training process. This 
indicates that the model can also make more accurate predictions on validation data. 

Metrics for RT Orientation Detection Model 

• metrics/precision(B): The precision value, which was low at the beginning of the training process, rapidly 
increased to about 0.96 and stabilized. This indicates that the model is highly successful in making true 
positive predictions with very few false positives. 

• metrics/recall(B): The recall value, initially low, also rose quickly to approximately 0.95 and stabilized. 
This shows that the model can detect true positives at a high rate, with very few false negatives. 

• metrics/mAP50(B): The mean Average Precision metric at 50 (IoU = 0.5) was initially low but quickly 
rose to about 0.98 and stabilized. This indicates that the model has high overall prediction accuracy. 

• metrics/mAP50-95(B): The mean Average Precision metric from 50 to 95 (IoU = 0.5 to 0.95) started low 
but rapidly increased to approximately 0.77 and stabilized. This indicates that the model demonstrates 
high prediction accuracy across different threshold values. 

4.1.2. RT detection model performance 
The model developed for RT detection was designed to detect RT vehicles and also their gaze directions. 
The model can accurately determine the given images using classification algorithms. The performances 
of the model developed for RT detection, which produces high accuracy results, have been examined in 
the following graphs.  

 
Figure 15. Confusion Matrix of the RT detection model 

The confusion matrix in Figure 15 illustrates the performance of a four-class classification model. These 
classes have been divided into "Reachtruck Rear," "Reachtruck Sides," "Reachtruck Front," and 
"background." For the "Reachtruck Rear" class, the model correctly predicted this class 227 times (top-left 
cell) with no false negatives (FN) for this class. In the "Reachtruck Sides" class, the model made 121 correct 
predictions (second cell in the bottom-left corner), with only 4 incorrect predictions, indicating overall 
accurate classification for this class. For the "Reachtruck Front" class, the model correctly predicted this 
class 223 times (bottom-right corner) and also has no FN in this class. In the "background" class, the model 
correctly identified the "background" class only once (top-right cell), with no false positives (FP) for this 
class. 

The high True Positive (TP) counts and the absence of FN in the "Reachtruck Rear," "Reachtruck Sides," 
and "Reachtruck Front" classes demonstrate the model's strong performance in recognizing these classes. 
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Since detecting the "background" class is not the primary goal of the project, the low performance in this 
class does not negatively impact the model’s overall success. This evaluation highlights the model's high 
performance in the targeted Reachtruck classes, with lower success in the background class. 

During model training, only 1% of the data used was from the "background" class. This proportion was 
strategically chosen to minimize visual confusion between Reachtruck and similar objects. While using 
more background data could improve the model's accuracy in identifying the background, it could also 
increase the risk of overfitting, thereby reducing accuracy. Thus, the 1% background data usage was 
deemed optimal for performance based on experiments. Background data was included specifically to 
prevent Battery Powered Pallet Trucks in the field from being misclassified as Reachtruck classes. Since 
Battery Powered Pallet Trucks and Reachtrucks can visually resemble each other, adding background data 
aimed to enhance the model's ability to distinguish between these objects and reduce misclassifications. 
This approach has improved the model’s object detection accuracy and minimized classification confusion. 

In Figure 16(a), the statement “all classes 1 at 0.706” in the f1 score graph indicates that the all f1 scores 
for all classes were 100% when a threshold value of 0.706 was used for RT direction detection. This 
suggests that the model is able to successfully f1 all classes even at a very high threshold value. 
Additionally, the statement “all classes 1 at 0.891” in the precision score graph in Figure 16(b) indicates 
that the precision scores for all classes are 100% when a threshold value of 0.891 is used. This 
demonstrates that the model has an excellent ability to correctly classify all classes when decisions have 
made above the 0.891 threshold. 

 
     (a)                      (b) 

Figure 16. F1 and Precision-Confidence score graph of the RT detection model 

In Figure 17(a), the statement 'all classes 1 at 0.000' in the recall score graph indicates that the recall scores 
for all classes were 100% when a threshold value of 0 was used. This suggests that the model is able to 
successfully recall all classes even at a very low threshold value. 

Additionally, the statement “all classes 0.995 at mAP@50” in the precision-recall score graph in Figure 
17(b) indicates that the mAP scores for all classes are 99%. This suggests that the model is able to 
successfully recall and precission all classes even at a very low threshold value. 

In Figure 18, it displays the losses and performance metrics of the object detection model during the training 
and validation process. Each of these graphs allows us to analyze a specific aspect of the model and its 
performance in detail. 
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       (a)                      (b) 

Figure 17. Recall and Precision graph of RT detection model 

 
Figure 18. RT detection model training graph 

Below are the technical comments for each graph related to the RT direction detection model: 

Evaluation of Training Losses 

• train/box_loss: This loss value, which represents the error in the positioning of object boxes during 
training, initially starts around 1.0 and decreases to approximately 0.4 after 200 epochs. This decrease 
indicates that the model has been learning to position objects more accurately. 

• train/cls_loss: The classification loss starts at around 3.0 and gradually drops to 0.5 as training 
progresses. This reduction shows that the model has been learning to identify the class labels of objects 
more accurately. 

• train/dfl_loss: The distribution loss starts at 1.05 and decreases to around 0.85 after 200 epochs. This 
reduction indicates that the model has been reducing uncertainty in its predictions and can make more 
precise predictions. 

 

 



 
 

 

Bilal Gürevin, Hilal Öztemel, Burhan Turgut Ulutürk, Emre Sebat 

Cilt/ Volume 59 | Sayı / Issue 2 
 

318 

Evaluation of Validation Losses 

• val/box_loss: The box loss on validation data starts at 0.8 and gradually drops to approximately 0.4 after 
200 epochs, showing that the model can make accurate box placements on new data as well. 

• val/cls_loss: Similar to the training data, the classification loss on validation data decreases from 1.5 
initially to approximately 0.25 after 200 epochs. 

• val/dfl_loss: The distribution loss starts at 0.99 and decreases to 0.85 by the end of training, showing 
that the model is also making more precise predictions on the validation data. 

Metrics for RT Orientation Detection Model 

• metrics/precision(B): Initially low, the precision value rapidly increases to approximately 1.0 and 
stabilizes. This shows that the model is highly successful in making correct positive predictions with very 
few false positives. 

• metrics/recall(B): The recall value, which is initially low, rapidly rises to about 1.0 and stabilizes, 
demonstrating that the model can detect true positives at a high rate with very few false negatives. 

• metrics/mAP50(B): The mean accuracy metric @ 50 (IoU = 0.5) starts low and quickly rises to about 
1.0, indicating high overall prediction accuracy by the model. 

• metrics/mAP50–95(B): The mean accuracy metric @ 50–95 (with IoU thresholds from 0.5 to 0.95) also 
starts low, increases rapidly, and stabilizes around 0.95, indicating that the model shows high prediction 
accuracy across various threshold values. 

The model has also achived successful results on the images from different enviroment conditions and 
various aspects. Through to these features, it has the potential to be used as a reliable solution in 
automated RT recognition systems. 

4.2. Social Navigation Tests 
The developed social navigation system has been integreted into the PIXER robot platform. The system 
has been tested by the warehouse. The PIXER has been assigned to areas within an aisle width of 2.5 m 
and an approximate aisle length of 9 m. In the first situation, PIXER has been provided autonomous 
navigation on an empty way from A point to B point and the arrival time hes been measured as t1=10,6 
seconds. The movement of the robot was monitored in real-time via the PIXER tracking and control 
interface. The real-time status image of PIXER, recorded from the interface, is shown in Figure 19. 

 
Figure 19. In an empty aisle, with the RT detection model deactivated, the process of the PIXER 

robot planning its route globally and initiating movement locally. 

In the second scenario, the RT detection module has been activated on PIXER in the same aisle, and the 
robot has been instructed to move from point A to point B. Initially, PIXER has planned its route globally, 
then has proceeded to plan the local route and has started moving. This situation has been illustrated in 
Figure 20. However, upon detecting an RT along the route, PIXER has planned an alternative path. As a 
result, PIXER, having reached point B from point A, has been measured to have a travel time of t2=30,6 
seconds. PIXER's alternative route planning upon encountering an RT has been shown in Figure 21. 

      
Figure 20. The process of the PIXER robot planning its route globally and initiating movement 

locally with the RT detection model activated. 
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Figure 21. The PIXER robot’s replanning of an alternative route upon detecting an RT along its 

path. 

In the third scenario, the RT detection module on PIXER was deactivated in the same aisle, and the robot 
was instructed to move from point A to point B. Since the RT detection module was inactive on PIXER, it 
attempted to pass by the RT upon reaching its location and waited there. Due to this delay, PIXER 
eventually reached point B with a travel time of t3=49,5 seconds. This situation is illustrated in Figure 22. A 
total of 5 different trials were conducted under 3 different conditions in the same environment. The time 
measurements obtained from these trials are presented in Table 3. 

 
Figure 22. With the RT detection model active, the PIXER robot perceives the RT along its path as 

a regular object and attempts to pass by it. 

 
Table 3. Studies in which the RT detection module is active and deactive 

Test 

Arrival time on 
empty road 

(sec) 

Arrival time (sec) when RT detection 
model is active on the path where 

RT is located 

Arrival time (sec) when RT detection 
model is disabled on the path where 

RT is present 
1 10,6 30,6 49,5 
2 10,9 32,2 50,3 
3 9,5 29,5 49,8 
4 10,8 31,8 50,7 
5 11,2 33,4 51,2 

Average 10,6 31,5 50,3 

Some tests have been conducted by activating and deactivating the human detection model on PIXER. 
Similar to the RT detection model, PIXER has been instructed to move from point A to point B with the 
human detection model active and inactive under the same aisle conditions (Figure 23). The results of 
these tests have been presented in Table 4. For example, looking at the first row of the table: PIXER has 
reached point B from point A in t1=10,8 seconds on an empty path. When the human detection model has 
been active and there has been a person along the route, PIXER has reached point B in t2=14,5 seconds. 
When the human detection model has been inactive and there has been a person along the route, PIXER 
has reached point B in t2=15,3 seconds. The results of 5 different trials conducted in this manner have been 
presented in the table. Additionally, a representative image of human detection from the depth camera on 
PIXER has been shown in Figure 24. 
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Figure 23. The scenario where a human is present during navigation in the aisle. 

 

  
Figure 24. The scenario where a human is present during navigation in the aisle. 

Table 4. Studies in which the human detection module is active and deactive 

Test 

Arrival time on 
empty road 

(sec) 

Arrival time (sec) when the human 
detection model is active on the road 

with people 

Arrival time (sec) when the human 
detection model is disabled on the 

road with people 
1 10,8 14,5 15,3 
2 10 15,2 15,9 
3 9,9 15,6 14,6 
4 10,7 14,9 14,8 
5 11,2 16,1 16,2 

Average 10,52 15,26 15,36 

5. CONCLUSION 
This study has comprehensively evaluated the social navigation performance of the PIXER robot in e-
commerce warehouses, focusing on human and RT detection using YOLOv8n and depth cameras. 
Through the experiments conducted, the impact of active detection models on the robot's efficiency and 
safety has been examined during navigation in a 9-meter-long and 2.5-meter-wide aisle. In scenarios 
without any obstacles, the PIXER robot has successfully reached point B from point A in an average of 10.6 
seconds. When the RT detection model has been active and an RT has been detected, the robot has 
replanned its path and reached its target in an average of 31.5 seconds. In contrast, without an active RT 
detection model, the robot has been unable to detect the RT and has had to wait to bypass the obstacle, 
reaching its target in 50.3 seconds. This situation has been shown in Figure 25. Similarly, the human 
detection model has also played a critical role in ensuring safe and efficient navigation. When the human 
detection model has been active, the robot, upon detecting a human, has reduced its maximum speed by 
80% to pass at a safe distance, reaching its target in an average of 15.26 seconds. Without an active human 
detection model, however, the robot has failed to detect the human presence, faced potential collision risks, 
and experienced significant delays, reaching its target in an average of 15.36 seconds. This situation has 
been illustrated in Figure 26. 
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Figure 25. Average target arrival times (sec.) with the RT detection module active and inactive. 

 
Figure 26. Average target arrival times (sec.) with the human detection module active and inactive. 

When examining scenarios where the human detection model is active and inactive, it has been observed 
that the robot reached its target in approximately similar times in both cases. With the human detection 
model inactive, the robot behaved as if the obstacle were an ordinary dynamic object, slowing down but 
passing by in an unsafe manner without regard for what the object was. Additionally, because it hadn’t pre-
adjusted its speed, the robot approached the object too closely. However, in the case where the model was 
active, the robot detected the human and slowed down safely to avoid a collision. By adjusting its speed in 
advance, the robot avoided approaching the human object unsafely. These findings underscore the 
importance of integrating detection models to enhance the operational efficiency and safety of AMRs in 
dynamic environments. The notable time savings and reduction in collision risk demonstrate the value of 
advanced detection systems in supporting real-time decision-making and adaptive path planning 
processes. 

Similar studies in literature primarily focus on areas such as human detection and maintaining a safe 
distance from humans. Unlike these studies, this research enhances the sensitivity of actively navigating 
AMR in a warehouse environment to dynamically moving objects in its surroundings. As a result, the AMR 
operates more efficiently in terms of both occupational safety and operational time. 

This study was tested in a small-scale warehouse environment with a single AMR. Environments where 
multiple AMRs operate in larger warehouse settings are considered a potential topic for future research. 
Upcoming studies will focus on further optimizing detection algorithms to reduce latency and improve 
accuracy. Additionally, plans include expanding experimental setups to incorporate more complex and 
diverse warehouse environments. The exploration of multi-sensor fusion techniques could provide a more 
holistic perception framework, further enhancing the robot's navigation capabilities. Unlike this study, which 
focused on human and RT detection in social navigation, future work aims to develop new detection models 
for environments with other objects, such as electric pallet jacks. 
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