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Abstract. Let X be a magma, that is a set equipped with a binary operation,

and consider a function α : X → X. We say that X is Hom-associative if, for

all x, y, z ∈ X, the equality α(x)(yz) = (xy)α(z) holds. For every isomorphism

class of magmas of order two, we determine all functions α making X

Hom-associative. Furthermore, we find all such α that are endomorphisms

of X. We also consider versions of these results where the binary operation

on X and the function α only are partially defined. We use our findings to

construct numerous examples of two-dimensional Hom-associative as well as

multiplicative magma algebras.

Mathematics Subject Classification (2020): 08A05, 08A35, 17A01, 17D99,

20N02

Keywords: Nonassociative algebra, magma, Hom-associative

1. Introduction

In the last decades there has risen an intense interest in various Hom versions

of algebraical objects. The defining axioms of these objects are miscellaneous en-

domorphism deformations of its standard axioms. The first example of this seems

to be [5] where Hartwig, Larsson and Silvestrov define Hom–Lie algebras. For such

objects, the usual Jacobi identity is replaced by the so called Hom–Jacobi identity:

[α(x), [y, z]] + [α(y), [z, x]] + [α(z), [x, y]] = 0

where α is an endomorphism of the Lie algebra. Another instance of this is [9] where

Makhlouf and Silvestrov introduce Hom-algebras, where the usual associativity is

replaced by so called Hom-associativity:

α(x)(yz) = (xy)α(z) (1)

where α now is an algebra endomorphism. Similarly, Hom-coalgebras, Hom-

bialgebras and Hom–Hopf algebras have been proposed, see [10,11,13]. In [8]
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Laurent-Gengoux, Makhlouf and Teles define a Hom-group as a nonempty set

equipped with a binary operation satisfying (1), multiplicativity of α:

α(xy) = α(x)α(y) (2)

and having a distinguished member 1 satisfying the unital identity:

1x = x1 = α(x) (3)

as well as some Hom versions of invertibility axioms for X (see [8, Def. 0.1]).

An impetus for studying Hom versions of classical mathematical objects is that

it potentially could give us a language to describe families of involved mathematical

structures using well studied less complicated structures, looking at them through a

Hom lens. There are many such instances. Indeed, in [4] Goze and Remm show that

all three-dimensional algebras are Hom-associative Lie algebras. Another example

is [6, Ex. 2.13-14] where Hassanzadeh describes several non-associative structures

as Hom-groups. For other relevant results on various types of Hom-associative

structures, see [1] and [7] and the references therein.

In this article, we apply this philosophy to the context of magmas, that is sets

equipped with a binary operation (see [2, p. 1]). Classically, these objects have

been categorized into many different types of families, such as groups, semigroups,

Brandt groupoids, quasigroups, multigroups, hypergroups, loops etc. (see e.g. [3]).

We wish to add a Hom perspective to this classification. More specifically, for a

given magma X, we would like to answer the following questions:

• For what functions α : X → X is X Hom-associative in the sense of (1)?

• Which of these functions are magma endomorphisms in the sense of (2)?

To fully answer both of these questions for all magmas is probably a difficult

task. So a first step would be to consider some special classes of magmas. In

this article, we completely answer these questions for magmas of order two (see

Theorem 2.6). Note that finding such Hom structures on magmas is important not

only from the magma perspective, but also from the point of view of algebras over

a field K. Namely, given a function α : X → X, then it induces a natural Hom-

algebra structure on the magma algebra K[X] of X over K, and Hom properties

of α reflects upon algebra properties of K[X] (see Theorem 3.5).

Here is a detailed outline of the article.

In Section 2, we first state our conventions on sets, relations, (partial) func-

tions and (partial) equality of (partial) functions. Then we define various concepts
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of (partial) magmas such as weak/partial homomorphisms, and (partially) Hom-

associative magmas. Thereafter, we consider magmas of order two. We first find all

non-isomorphic multiplication tables of partial magmas of order two. Then we give

a complete characterisation of all (weak) partial endomorphisms of these structures

as well as all (partial) Hom-associative structures defined on them (see Theorem

2.6).

In Section 3, we first recall some classical definitions of multiplicative and Hom-

associative Hom-algebras (see Definition 3.1). After that, we introduce partial

versions of these concepts (see Definition 3.3). Then we show how various Hom

properties of a magma X reflect upon properties of the corresponding magma al-

gebra K[X] (see Theorem 3.5). At the end of this section, we exemplify our main

results for some instances of two-dimensional magma algebras (see Example 3.6).

2. Hom-associative magmas

2.1. Relations and functions. LetX and Y be sets. Suppose that f is a relation

from X to Y . By this we mean that f is a subset of X × Y and we denote this

by f : X → Y . The inverse relation of f , denoted by f−1 : Y → X, is the set

{(y, x) ∈ Y × X | (x, y) ∈ f}. Given x ∈ X we put f(x) := {y ∈ Y | (x, y) ∈ f}
and we say that f(x) is defined when f(x) ̸= ∅. The range and domain of f are

defined to be the sets Rf := ∪x∈Xf(x) and Df := ∪y∈Y f
−1(y) respectively. We

say that f is a partial function if for all x ∈ X the set f(x) has at most one element.

In that case, if f(x) is defined and f(x) = {y}, then we will often, as customary,

write f(x) = y. If f is a partial function with Df = X, then f is called a function.

If g : Y → Z is another relation, then the composition of g and f , denoted by

g ◦ f : X → Z, is the set {(x, z) ∈ X × Z | ∃y ∈ Y (x, y) ∈ f and (y, z) ∈ g}. If

h : X ′ → Y ′ is yet another relation, then f × h : X ×X ′ → Y × Y ′ is the relation

{((x, x′), (y, y′)) | (x, y) ∈ f and (x′, y′) ∈ h}. The identity relation idX : X → X is

the set {(x, x) | x ∈ X}; often we will skip the subscript and just write id. We let

Fun(X,Y ) (Pfun(X,Y )) denote the set of (partial) functions from X to Y . Suppose

that f, g ∈ Pfun(X,Y ). We say that f and g are partially equal, denoted by f ≈ g,

if for all x ∈ X such that f(x) and g(x) are defined, then f(x) = g(x). Note that

the relation ≈ is reflexive and symmetric but not necessarily transitive. Clearly,

the restriction of ≈ to Fun(X,Y ) coincides with the ordinary equality of functions.

2.2. Magmas. Let (X,∇) be a partial magma. By this we mean that X is a

set and ∇ ∈ Pfun(X ×X,X). Note that if ∇ ∈ Fun(X ×X,X), then (X,∇) is a

magma. Let (X ′,∇′) be another partial magma and suppose that α ∈ Pfun(X,X ′).
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Definition 2.1. With the above notations, we say that α is a:

• weak partial homomorphism of partial magmas if α ◦ ∇ ≈ ∇′ ◦ (α × α) as

partial functions. In that case, if α ∈ Fun(X,X ′), then α is called a weak

homomorphism of partial magmas;

• partial homomorphism of partial magmas if α ◦∇ = ∇′ ◦ (α×α) as partial

functions. In that case, if α ∈ Fun(X,X ′), then α is called a homomorphism

of partial magmas;

• homomorphism of magmas if α is a homomorphism of partial magmas and

(X,∇) and (X ′,∇′) are indeed magmas.

We let M (PM) denote the category having (partial) magmas as objects and

(partial) homomorphisms of (partial) magmas as morphisms. We let WPM denote

the category having partial magmas as objects and weak partial homomorphisms of

partial magmas as morphisms. Clearly, M is a subcategory of PM which, in turn,

is a subcategory of WPM. The next result will not be used in the sequel in full

generality. Nevertheless, we record it for its own interest.

Proposition 2.2. Let (X,∇) and (X ′,∇′) be partial magmas and suppose that

α : (X,∇) → (X ′,∇′) is a morphism in WPM.

(a) The map α is an isomorphism in M if and only if α is bijective and for all

x, y ∈ X the equality α(∇(x, y)) = ∇′(α(x), α(y)) holds.

(b) The map α is an isomorphism in PM if and only if α is bijective and for all

x, y ∈ X α(∇(x, y)) is defined ⇔ ∇′(α(x), α(y)) defined, and in that case

the equality α(∇(x, y)) = ∇′(α(x), α(y)) holds.

(c) The map α is an isomorphism in WPM if and only if α|Dα
is bijective and

for all x, y ∈ X α(∇(x, y)) is defined ⇔ ∇′(α(x), α(y)) defined, and in that

case the equality α(∇(x, y)) = ∇′(α(x), α(y)) holds.

Proof. (a) Follows from (b). Now we prove (b). First we show the “only if”

statement. Suppose that α : (X,∇) → (X ′,∇′) is an isomorphism in PM. Then

there is a morphism β : (X ′,∇′) → (X,∇) in PM such that β ◦ α = idX and

α ◦ β = idX′ . Take x, y ∈ X. If α(∇(x, y)) is defined, then, since α is morphism

in PM it follows that ∇′(α(x), α(y)) is also defined. If ∇′(α(x), α(y)) is defined,

then β(∇′(α(x), α(y))) is defined, which, since β is a morphism in PM, implies

that ∇(β(α(x)), β(α(y))) = ∇(x, y) is defined. Thus α(∇(x, y)) is defined. Now we

show the “if” statement. Suppose that α is bijective and for all x, y ∈ X α(∇(x, y))

is defined ⇔ ∇′(α(x), α(y)) defined, and in that case the equality α(∇(x, y)) =

∇′(α(x), α(y)) holds. Put β = α−1 and take x′, y′ ∈ X ′ such that β(∇′(x′, y′)) is
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defined. Take x, y ∈ X with α(x) = x′ and α(y) = y′. Then β(∇′(α(x), α(y)))

is defined. From the assumptions it follows that ∇(x, y) = β(α(∇(x, y))) also is

defined and that β(∇′(x′, y′)) = ∇(β(x′), β(y′)). Thus, β is a morphism in PM.

Clearly, β ◦ α = idX and α ◦ β = idX′ so that α is an isomorphism in PM. The

statement in (c) follows from (b) by restriction. □

Definition 2.3. Suppose that (X,∇) is a partial magma and α ∈ Pfun(X,X).

We say that the triple (X,∇, α) is:

• partially Hom-associative if ∇◦ (α×∇) ≈ ∇◦ (∇×α) as partial functions;

• Hom-associative if ∇ ◦ (α×∇) = ∇ ◦ (∇× α) as partial functions;

• partially associative if (X,∇, id) is partially Hom-associative;

• associative if (X,∇, id) is Hom-associative.

2.3. Magmas of order two. For the rest of this section, (X,∇) denotes a partial

magma with X = {1, 2}. We will write ∇(x, y) = 3 when ∇(x, y) is not defined. A

multiplication table defined by∇(1, 1) = a, ∇(1, 2) = b, ∇(2, 1) = c and∇(2, 2) = d

will be written in short hand as abcd. So, for instance, the multiplication table 2131

is to be interpreted as∇(1, 1) = 2, ∇(1, 2) = 1, ∇(2, 1) is undefined and∇(2, 2) = 1.

Clearly, there are 34 = 81 different such multiplication tables. Put X = X ∪ {3}
and define the function t : X → X by t(1) = 2, t(2) = 1 and t(3) = 3. The

next result is probably folklore. Nonetheless, for the convenience of the reader, we

include it as well as a proof of it here.

Proposition 2.4. Suppose that a, b, c, d, e, f, g, h ∈ X. The multiplication tables

abcd and efgh yield isomorphic partial magmas if and only if a = e, b = f , c = g

and d = h, or t(a) = h, t(b) = g, t(c) = f and t(d) = e.

Proof. Let ∇ and ∇′ denote the partial maps X ×X → X defined by the multi-

plication tables abcd and efgh, respectively. First we show the “if” statement. We

consider two cases. Case 1: a = e, b = f , c = g and d = h. By Proposition 2.2, id

is an isomorphism of partial magmas (X,∇) → (X,∇′). Case 2: t(a) = h, t(b) = g,

t(c) = f and t(d) = e. Then:

t(∇(1, 1)) = t(a) = h = ∇′(2, 2) = ∇′(t(1), t(1))

t(∇(1, 2)) = t(b) = g = ∇′(2, 1) = ∇′(t(1), t(2))

t(∇(2, 1)) = t(c) = f = ∇′(1, 2) = ∇′(t(2), t(1))

t(∇(2, 2)) = t(d) = e = ∇′(1, 1) = ∇′(t(2), t(2)).

Therefore, by Proposition 2.2 again, t is an isomorphism of partial magmas (X,∇) →
(X,∇′). Now we show the “only if” statement. Suppose that F : (X,∇) → (X,∇′)
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is an isomorphism of partial magmas. By Proposition 2.2, F is a bijection X → X

so that F = id or F = t. Case 1: F = id. Then:

F (∇(1, 1)) = ∇′(F (1), F (1)) ⇒ a = e

F (∇(1, 2)) = ∇′(F (1), F (2)) ⇒ b = f

F (∇(2, 1)) = ∇′(F (2), F (1)) ⇒ c = g

F (∇(2, 2)) = ∇′(F (2), F (2)) ⇒ d = h.

Case 2: F = t. Then:

F (∇(1, 1)) = ∇′(F (1), F (1)) ⇒ t(a) = h

F (∇(1, 2)) = ∇′(F (1), F (2)) ⇒ t(b) = g

F (∇(2, 1)) = ∇′(F (2), F (1)) ⇒ t(c) = f

F (∇(2, 2)) = ∇′(F (2), F (2)) ⇒ t(d) = e. □

Proposition 2.5. The 81 multiplication tables of partial magma structures defined

on X is partitioned into the following 45 isomorphism classes:

(1) 3333 (2) 1333 ∼= 3332 (3) 2333 ∼= 3331 (4) 3133 ∼= 3323

(5) 3233 ∼= 3313 (6) 1133 ∼= 3322 (7) 1233 ∼= 3312 (8) 2133 ∼= 3321

(9) 2233 ∼= 3311 (10) 1313 ∼= 3232 (11) 1323 ∼= 3132 (12) 2313 ∼= 3231

(13) 2323 ∼= 3131 (14) 1331 ∼= 2332 (15) 1332 (16) 2331

(17) 3113 ∼= 3223 (18) 3123 (19) 3213 (20) 1113 ∼= 3222

(21) 1123 ∼= 3122 (22) 1213 ∼= 3212 (23) 2113 ∼= 3221 (24) 1223 ∼= 3112

(25) 2123 ∼= 3121 (26) 2213 ∼= 3211 (27) 2223 ∼= 3111 (28) 1131 ∼= 2322

(29) 1132 ∼= 1322 (30) 1231 ∼= 2312 (31) 2131 ∼= 2321 (32) 1232 ∼= 1312

(33) 2132 ∼= 1321 (34) 2231 ∼= 2311 (35) 2232 ∼= 1311 (36) 1111 ∼= 2222

(37) 1112 ∼= 1222 (38) 1121 ∼= 2122 (39) 1211 ∼= 2212 (40) 2111 ∼= 2221

(41) 1122 (42) 1212 (43) 1221 ∼= 2112 (44) 2121 (45) 2211

Proof. This is a straightforward but tedious application of Proposition 2.4. □

A partial map α : X → X will below be encoded by a binary word ab where

a, b ∈ X meaning that α(1) = a and α(2) = b where we put a = 3 or b = 3

when α(1) respectively α(2) is not defined. So, for instance, the word 23 means the

partial map α with α(1) = 2 and α(2) is undefined. Note that with this notation

Pfun(X,X) = {33, 13, 23, 31, 32, 11, 12, 21, 22}. In the next result, we determine the

(weak) partial endomorphisms and the (weak) Hom-associative structures for the

first representative in each of the 45 isomorphism classes in Proposition 2.5. This is

achieved by an elementary case by case analysis using simple MATLAB-programs,

the codes of which can be obtained from the author upon request.
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Theorem 2.6. (a) The set of weak partial endomorphisms for each of the first

representatives in the 45 isomorphism classes in Proposition 2.5 is:

(1) Pfun(X,X) (2) Pfun(X,X) (3) {33, 13, 23, 31, 32, 12, 21, 22}
(4) Pfun(X,X) (5) Pfun(X,X) (6) Pfun(X,X) (7) Pfun(X,X)

(8) {33, 13, 23, 31, 32, 12, 21, 22} (9) {33, 13, 23, 31, 32, 12, 21, 22}
(10) Pfun(X,X) (11) Pfun(X,X) (12) {33, 13, 23, 31, 32, 12, 21, 22}
(13) {33, 13, 23, 31, 32, 12, 21, 22} (14) {33, 13, 31, 32, 11, 12}
(15) Pfun(X,X) (16) {33, 13, 23, 31, 32, 12, 21}
(17) {33, 13, 23, 31, 32, 11, 12, 22} (18) Pfun(X,X) (19) Pfun(X,X)

(20) {33, 13, 23, 31, 32, 11, 12, 22} (21) Pfun(X,X) (22) Pfun(X,X)

(23) {33, 13, 23, 31, 32, 12, 22} (24) {33, 13, 23, 31, 32, 11, 12, 22}
(25) {33, 13, 23, 31, 32, 12, 21, 22} (26) {33, 13, 23, 31, 32, 12, 21, 22}
(27) {33, 13, 23, 31, 32, 12, 21, 22} (28) {33, 13, 31, 32, 11, 12}
(29) Pfun(X,X) (30) {33, 13, 31, 32, 11, 12} (31) {33, 13, 23, 31, 32, 12, 21}
(32) Pfun(X,X) (33) {33, 13, 23, 32, 12, 22} (34) {33, 13, 23, 31, 32, 12, 21}
(35) {33, 13, 23, 32, 12, 22} (36) {33, 13, 31, 32, 11, 12}
(37) {33, 13, 23, 31, 32, 11, 12, 22} (38) {33, 13, 31, 32, 11, 12}
(39) {33, 13, 31, 32, 11, 12} (40) {33, 13, 23, 31, 32, 12} (41) Pfun(X,X)

(42) Pfun(X,X) (43) {33, 13, 31, 32, 11, 12}
(44) {33, 13, 23, 31, 32, 12, 21} (45) {33, 13, 23, 31, 32, 12, 21}

(b) The set of partial endomorphisms for each of the first representatives in the 45

isomorphism classes in Proposition 2.5 is:

(1) Pfun(X,X) (2) {33, 13, 32, 12} (3) {33, 23, 12} (4) {33, 31, 32, 12}
(5) {33, 13, 23, 12} (6) {33, 32, 12} (7) {33, 13, 12} (8) {33, 12}
(9) {33, 23, 12} (10) {33, 32, 12} (11) {33, 13, 12} (12) {33, 12}
(13) {33, 23, 12} (14) {33, 12} (15) {33, 13, 23, 31, 32, 12, 21}
(16) {33, 12, 21} (17) {33, 31, 32, 12} (18) {33, 12, 21} (19) {33, 12, 21}
(20) {33, 32, 12} (21) {33, 12} (22) {33, 12} (23) {33, 12}
(24) {33, 13, 12} (25) {33, 12} (26) {33, 12} (27) {33, 23, 12}
(28) {33, 12} (29) {33, 31, 32, 12} (30) {33, 12} (31) {33, 12}
(32) {33, 13, 23, 12} (33) {33, 12} (34) {33, 12} (35) {33, 12}
(36) {33, 11, 12} (37) {33, 31, 32, 11, 12, 22} (38) {33, 11, 12}
(39) {33, 11, 12} (40) {33, 12} (41) {33, 11, 12, 21, 22}
(42) {33, 11, 12, 21, 22} (43) {33, 11, 12} (44) {33, 12, 21} (45) {33, 12, 21}

(c) The set of partial Hom-associative structures for each of the first representatives

in the 45 isomorphism classes in Proposition 2.5 is:
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(1) Pfun(X,X) (2) Pfun(X,X) (3) Pfun(X,X) (4) Pfun(X,X)

(5) Pfun(X,X) (6) Pfun(X,X) (7) {33, 13, 23, 31, 32, 12, 21, 22}
(8) Pfun(X,X) (9) Pfun(X,X) (10) Pfun(X,X)

(11) {33, 13, 23, 31, 32, 12, 21, 22} (12) Pfun(X,X) (13) Pfun(X,X)

(14) Pfun(X,X) (15) Pfun(X,X) (16) Pfun(X,X) (17) Pfun(X,X)

(18) Pfun(X,X) (19) Pfun(X,X) (20) Pfun(X,X) (21) {33, 13, 32, 12}
(22) {33, 13, 32, 12} (23) {33, 13, 23, 31, 32, 12, 21, 22}
(24) {33, 13, 23, 31, 32, 12, 21, 22} (25) {33, 23, 31, 32, 21, 22}
(26) {33, 23, 31, 32, 21, 22} (27) Pfun(X,X) (28) Pfun(X,X)

(29) {33, 13, 23, 31, 32, 11, 12} (30) {33, 13, 23, 31, 32, 12, 21}
(31) {33, 13, 23, 31, 32, 11, 21, 22} (32) {33, 13, 23, 31, 32, 12, 22}
(33) {33, 13, 23, 31, 32, 12, 21} (34) {33, 13, 23, 31, 32, 11, 21, 22}
(35) Pfun(X,X) (36) Pfun(X,X) (37) {33, 13, 23, 31, 32, 11, 12}
(38) {33, 13} (39) {33, 13} (40) {33, 13, 23, 31, 32, 22}
(41) {33, 13, 32, 12} (42) {33, 13, 32, 12} (43) {33, 13, 23, 31, 32, 12, 21}
(44) {33, 23, 31, 21} (45) {33, 23, 31, 21}

In the 37 cases (1)-(24), (27)-(30), (32), (33), (35)-(37) and (41)-(43) (X,∇) is

partially associative.

(d) The set of Hom-associative structures for each of the first representatives in

each the 45 isomorphism classes in Proposition 2.5 is:

(1) Pfun(X,X) (2) {33, 13, 23, 32, 12, 22} (3) Pfun(X,X)

(4) {33, 13, 31, 11} (5) {33, 23, 32, 22} (6) {33} (7) {33, 12} (8) {33}
(9) {33, 23, 32, 22} (10) {33} (11) {33, 12} (12) {33}
(13) {33, 23, 32, 22} (14) {33, 23, 32, 22} (15) {33, 13, 32, 12}
(16) {33, 23, 31, 21} (17) {33, 13, 31, 11} (18) {33} (19) {33} (20) {33}
(21) {33} (22) {33} (23) {33} (24) {33, 23, 12} (25) {33} (26) {33}
(27) {33, 23, 32, 22} (28) {33} (29) {33} (30) {33} (31) {33} (32) {33}
(33) {33} (34) {33} (35) {33} (36) {33, 11, 12, 21, 22} (37) {33, 11, 12}
(38) {33} (39) {33} (40) {33, 22} (41) {33, 12} (42) {33, 12}
(43) {33, 12, 21} (44) {33, 21} (45) {33, 21}

In the 13 cases (1)-(3), (7), (11), (15), (24), (36), (37) and (41)-(43) (X,∇) is

associative.

3. Hom-associative magma algebras

3.1. Hom-algebras. For the rest of this paper, K denotes a field and A denotes

a K-vector space. Suppose that µ is a K-bilinear map A × A → A and that τ is
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a K-linear map A → A. Recall from [11] that the triple (A,µ, τ) is then called a

Hom-algebra. From [11,12], we extract the following:

Definition 3.1. A Hom-algebra (A,µ, τ) is said to be:

• multiplicative if τ ◦ µ = µ ◦ (τ × τ);

• Hom-associative if µ ◦ (τ × µ) = µ ◦ (µ× τ);

• associative if (A,µ, id) is Hom-associative.

From now on, we fix a K-vector space basis B = {ei}i∈I for A. The maps µ

and τ are uniquely determined by their structure constants Ck
ij , tij ∈ K which are

defined by µ(ei, ej) =
∑

k∈I C
k
ijek and τ(ei) =

∑
j∈I tijej for i, j ∈ I. Note that

given i, j ∈ I (i ∈ I), then Ck
ij = 0 (tij = 0) for all but finitely many k ∈ I

(j ∈ I) making the sums above well defined. The properties in Definition 3.1 can

now be formulated using structure constants. Indeed, from the discussion in [12,

Section 4.4] we extract the following:

Proposition 3.2. A Hom-algebra (A,µ, τ) is:

(a) multiplicative if and only if for all i, j, s ∈ I∑
p∈I

tspC
p
ij =

∑
p,q∈I

tpitqjC
s
pq;

(b) Hom-associative if and only if for all i, j, k, s ∈ I∑
l,m∈I

tilC
m
jkC

s
lm =

∑
l,m∈I

tmkC
l
ijC

s
lm;

(c) associative if and only if for all i, j, k, s ∈ I∑
m∈I

Cm
jkC

s
im =

∑
l∈I

Cl
ijC

s
lk.

We now introduce the following weakening of Definition 3.1:

Definition 3.3. We say that a Hom-algebra (A,µ, τ) is:

• partially B-multiplicative if τ(µ(a, b)) = µ(τ(a), τ(b)) holds for all a, b ∈ B

with τ(µ(a, b)) ̸= 0 ̸= µ(τ(a), τ(b));

• partially B-Hom-associative if µ(τ(a), µ(b, c)) = µ(µ(a, b), τ(c)) holds for

all a, b, c ∈ B with µ(τ(a), µ(b, c)) ̸= 0 ̸= µ(µ(a, b), τ(c));

• partially B-associative if (A,µ, id) is partially B-Hom-associative.

In analogy with Proposition 3.2, it is a straightforward exercise to see that the

properties in Definition 3.3 can be formulated using structure constants:
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Proposition 3.4. A Hom-algebra (A,µ, τ) is:

(a) partially B-multiplicative if and only if for all i, j ∈ I with both(∑
p∈I

tspC
p
ij

)
s∈I

and

(∑
p,q∈I

tpitqjC
s
pq

)
s∈I

nonzero,

then
(∑

p∈I tspC
p
ij

)
s∈I

=
(∑

p,q∈I tpitqjC
s
pq

)
s∈I

;

(b) partially B-Hom-associative if and only if for all i, j, k ∈ I with both( ∑
l,m∈I

tilC
m
jkC

s
lm

)
s∈I

and

( ∑
l,m∈I

tmkC
l
ijC

s
lm

)
s∈I

nonzero,

then
(∑

l,m∈I tilC
m
jkC

s
lm

)
s∈I

=
(∑

l,m∈I tmkC
l
ijC

s
lm

)
s∈I

;

(c) partially B-associative if and only if for all i, j, k ∈ I with both(∑
m∈I

Cm
jkC

s
im

)
s∈I

and

(∑
l∈I

Cl
ijC

s
lk

)
s∈I

nonzero,

then
(∑

m∈I C
m
jkC

s
im

)
s∈I

=
(∑

l∈I C
l
ijC

s
lk

)
s∈I

.

3.2. Magma algebras. Suppose (X,∇) is a partial magma and α ∈ Pfun(X,X).

We now show that ∇ and α induce, in a natural way, a Hom-algebra structure

on the so called magma algebra K[X] of X over K (see Theorem 3.5 below).

Recall that the elements of K[X] are formal sums
∑

x∈X kxx, for some kx ∈ K,

satisfying kx = 0 for all but finitely many x ∈ X. Take k ∈ K. Suppose that

a :=
∑

x∈X lxx ∈ K[X] and b :=
∑

x∈X mxx ∈ K[X]. If we put

ka =
∑
x∈X

(klx)x and a+ b =
∑
x∈X

(lx +mx)x,

then, with these operations, K[X] is a K-vector space having the elements of B :=

X as a basis. Let τα : K[X] → K[X] be defined in the following way. Take x ∈ X.

Put τα(x) = α(x), if α(x) is defined, and τα(x) = 0, otherwise. Using structure

constants this means that for all x, y ∈ X:

txy =

 1 if α(x) is defined and y = α(x);

0 if α(x) is not defined, or α(x) is defined but y ̸= α(x).

Then we K-linearly extend τα to K[X]. Let µ∇ : K[X]×K[X] → K[X] be defined

in the following way. Take x, y ∈ X. Put µ∇(x, y) = ∇(x, y), if ∇(x, y) is defined,

and µ∇(x, y) = 0, otherwise. In the language of structure constants, this amounts
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to saying that for all x, y, z ∈ X:

Cz
xy =

 1 if ∇(x, y) is defined and z = ∇(x, y);

0 if ∇(x, y) is not defined, or ∇(x, y) is defined but z ̸= ∇(x, y).

Then we K-bilinearly extend µ∇ to K[X]×K[X]. With the above notations:

Theorem 3.5. Let (X,∇) be a partial magma and let α ∈ Pfun(X,X).

(a) (K[X], µ∇, τα) is a Hom-algebra;

(b) (K[X], µ∇, τα) is (partially X-)multiplicative if and only if α is a (weak)

partial endomorphism of partial magmas;

(c) (K[X], µ∇, τα) is (partially X-)Hom-associative if and only if (X,∇, α) is

(partially) Hom-associative;

(d) (K[X], µ∇) is partially X-associative if and only if (X,∇) is partially

associative;

(e) (K[X], µ∇) is associative if and only if (X,∇) is associative.

Proof. (a) This is clear. The statement in (b) follows from K-linearity and the

fact that the equalities

(τα ◦ µ∇)(x, y) = (α ◦ ∇)(x, y)

(µ∇ ◦ (τα × τα))(x, y) = (∇ ◦ (α× α))(x, y)

hold for all x, y ∈ X for which the left hand sides above are nonzero. The statement

in (c) follows from K-bilinearity and the fact that the equalities

(µ∇ ◦ (τα × µ∇))(x, y, z) = (∇ ◦ (α×∇))(x, y, z)

(µ∇ ◦ (µ∇ × τα))(x, y, z) = (∇ ◦ (∇× α))(x, y, z)

hold for all x, y, z ∈ X for which the left hand sides above are nonzero. The

statements in (d) and (e) follow from (c). □

Example 3.6. We now exemplify Theorems 2.6 and 3.5 for some instances of

Hom-algebras H := (K[X], µ∇, τα) when (X,∇) is a magma of order two.

(a) Let ∇ = 2232. This is magma (35) in Proposition 2.5. Then:

– H is partially X-multiplicative ⇔ α ∈ {33, 13, 23, 32, 12, 22};
– H is multiplicative ⇔ α ∈ {33, 12};
– H is partially X-Hom-associative ⇔ α ∈ Pfun(X,X);

– H is Hom-associative ⇔ α = 33;

– H is multiplicative and Hom-associative ⇔ α = 33;

– H is partially X-associative but not associative.
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(b) Let ∇ = 2111. This is magma (40) in Proposition 2.5. Then:

– H is partially X-multiplicative ⇔ α ∈ {33, 13, 23, 31, 32, 12};
– H is multiplicative ⇔ α ∈ {33, 12};
– H is partially X-Hom-associative ⇔ α ∈ {33, 13, 23, 31, 32, 22};
– H is Hom-associative ⇔ α ∈ {33, 22};
– H is multiplicative and Hom-associative ⇔ α = 33;

– H is not partially X-associative and hence not associative.

(c) Let ∇ = 1221. This is magma (43) in Proposition 2.5. Note that (X,∇) is

a group so that H is the group ring K[X]. Then:

– H is partially X-multiplicative ⇔ α ∈ {33, 13, 31, 32, 11, 12};
– H is multiplicative ⇔ α ∈ {33, 11, 12};
– H is partially X-Hom-associative ⇔ α ∈ {33, 13, 23, 31, 32, 12, 21};
– H is Hom-associative ⇔ α ∈ {33, 12, 21};
– H is multiplicative and Hom-associative ⇔ α ∈ {33, 12};
– H is associative and hence partially X-associative.

(d) Let ∇ = 2121. This is magma (44) in Proposition 2.5. Then:

– H is partially X-multiplicative ⇔ α ∈ {33, 13, 23, 31, 32, 12, 21};
– H is multiplicative ⇔ α ∈ {33, 12, 21};
– H is partially X-Hom-associative ⇔ α ∈ {33, 23, 31, 21};
– H is Hom-associative ⇔ α ∈ {33, 21};
– H is multiplicative and Hom-associative ⇔ α ∈ {33, 21};
– H is not partially X-associative and hence not associative.

(e) Let ∇ = 2211. This is magma (45) in Proposition 2.5. Then:

– H is partially X-multiplicative ⇔ α ∈ {33, 13, 23, 31, 32, 12};
– H is multiplicative ⇔ α ∈ {33, 12};
– H is partially X-Hom-associative ⇔ α ∈ {33, 13, 23, 31, 32, 22};
– H is Hom-associative ⇔ α ∈ {33, 22};
– H is multiplicative and Hom-associative ⇔ α = 33;

– H is not partially X-associative and hence not associative.
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