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 Visual data-based analysis of explosion events is important in areas including security, 
disaster management and industrial safety. Understanding the distribution of these events not 
only helps detect them as they happen, but also facilitates informed decision making for 
mitigation and intervention strategies. Various experimental methods have been used in the 
literature on this subject and empirical formulas have been produced. These formulas are still 
used today, but they are based on limited experimental data. Statistical methods measure the 
distribution of these data, allowing measurements such as frequency and spatial clustering to 
identify patterns in the analyzes obtained from the experimental data. Visualization tools 
further explain these findings, helping to understand and support decision. During and after 
the explosion, various effects arise from the explosion. These effects are effects such as sound, 
explosion-induced flash of light, blast wave, craters, tremors. Various sensors are used to 
measure these effects. These sensors can be damaged during explosion or when used for 
experimental methods and are very costly. The aim of the study is to increase the predictability 
of security measures and to reduce the need for high-cost devices by using classical image 
processing methods. Explosion images were obtained using a high-speed camera for this 
study. The aim of the study is to analyze blast waves, which are the most fundamental and 
most destructive effect of the explosion event. Explosion waves occur at a speed imperceptible 
to the human eye and are damped in very short periods of time. These waves were tried to be 
detected by using a high-speed camera and image processing methods, and it was aimed to 
obtain information about explosive charges from these waves. As a result of the study, blast 
waves have been successfully detected and explosive loads have been successfully analyzed 
using experimental studies in the literature. 
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1. Introduction  
 

Explosions can occur in various ways, controlled or 
uncontrolled, due to natural disasters, terrorist attacks, 
security vulnerabilities or experimentally [1]. Detecting 
explosions before they occur or fully analyzing their 
effects after they occur is of critical importance to reduce 
the negative effects of such events and provide rapid 
intervention. Explosion is basically an event that 
suddenly spreads in the air environment with high heat, 
high sound and high energy, which occurs when three 
sources: ignition source, oxygen and explosive material 
come together, and is damped when the pressure 
equalizes the pressure in the air environment [2]. It can 
be fatal due to the high temperature and high pressure it 
contains. Explosion basically occurs in two different 

ways including controlled. and uncontrolled explosions. 
Controlled explosions are carried out under expert 
control. Explosions occur in two distinct ways, including 
controlled and uncontrolled. Controlled explosions, 
which are carried out under expert control, serve various 
purposes, such as building destruction, mine exploration, 
road construction, and scientific studies [3]. On the other 
hand, uncontrolled explosions occur spontaneously and 
without precautions, including terrorist attacks, gas 
compression, and ammunition explosions [4]. 

Being able to analyze the effects of an explosion event 
is important in many respects. At the same time, it is very 
important to know the effects of a possible explosion 
before it occurs. Many experimental studies have been 
conducted in the past to analyze these effects. As a result 
of the experimental studies, many empirical formulas 
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and explosion data were obtained. All studies in the 
literature and the methods obtained from these studies 
have some limitations. For instance, the area where the 
explosion occurs and the resulting blast wave form, the 
amount of the explosive and the distance to the explosive 
location are some of these. In addition, determining blast 
loads and analyzing their possible effects is time-
consuming because it is based on empirical formulas. 

Various methods are used to detect the distribution of 
blast waves, including image analysis, machine learning 
and artificial intelligence, integration of sensor data and 
statistical methods. Furthermore, the effects of an 
explosion are directly related to the type and amount of 
explosive. It is also related to the location of the explosive 
and the form the blast wave takes. After the explosion, 
many loads called blast loads occur. Blast load 
parameters are essential for information about the 
explosive and for analyzing the explosion effects. These 
loads are calculated using different methods depending 
on the explosive's location, type, and shape. Explosion 
occurs in three different ways depending on the location 
of the explosive. These are free air explosions, air 
explosions and surface explosions. In free air explosions, 
the explosive is detonated on the air and hits the 
structure before reaching the surface [5]. The explosion 
wave is outward and spherical. In air explosions, the 
explosive is detonated in the air and reaches the 
structure after hitting the ground [5]. After hitting the 
ground, a Mach wave is formed. The blast wave is 
outward and spherical, as in a free air explosion. Surface 
explosions are detonated on the ground or at very close 
distances to the ground. The explosion wave propagates 
hemispherically and outwards [5]. 

With today's technologies, these explosions are made 
in a controlled manner and explosion data are obtained 
from these experimental explosions. While these 
explosions are carried out, the amount of explosive and 
the type of explosive are determined in advance. 
However, in the event of a possible explosion or 
uncontrolled explosion, the amount of explosives is 
unknown, and their damage can only be determined after 
the explosion occurs. In addition, the damages of possible 
terrorist attacks in city planning and various structures 
and security applications cannot be known without an 
explosion. For these reasons, it is aimed to use image 
processing methods to detect the number of explosives 
and to provide solutions to the mentioned problems.     

Researchers in the study [6] modelled the three-
dimensional blast wave using background Schlieren 
imaging. The researchers prepared an experimental 
setup by using four cameras. Then, the background 
images were analyzed using Schlieren imaging. After the 
analysis process, edge extraction operations were 
performed on the images, and the waveform of an 
explosion was predicted. Study [7] describes an 
experiment of the background-oriented schlieren 
method (BOS) for quantitative visualization of open-air 
explosions. This method allowed quantitative 
visualization of the propagation curve of shock waves 
and the diffraction angle behind the shock waves. The 
results obtained using high-speed camera recordings and 
numerical analysis were compared. The results 
presented in the paper show that the BOS method can 

provide quantitative and conventional visualization 
results for outdoor experiments, and that better results 
can be achieved with the increased spatial resolution of 
high-speed cameras. Moreover, the obtained results 
show that the predicted overpressure distribution 
during the passage of shock waves is consistent with the 
values recorded by the pressure transducers at the test 
site. Experimental studies were carried out in study [8]. 
Experiments were performed using an open-ended 
shock tube, and a Canny edge detection algorithm was 
used to track the instantaneous positions of the shock 
waves. Additionally, information is given about a 
software system developed for more efficient and 
accurate processing of high-speed schlieren and 
shadowgraph images. This software system is developed 
based on MATLAB GUI and image processing toolbox [9]. 
The methods presented in the article can be used for 
visualization and analysis of high-speed flows. It has 
been stated that the developed software system and the 
methods used are an effective tool for the visualization 
and analysis of high-speed flows. In the experiments, it 
has been shown that the methods used to process 
schlieren and shadowgraph images are useful for 
tracking and analyzing the instantaneous positions of 
shock waves. Additionally, it has been stated that thanks 
to the developed software system, large data sets can be 
processed more efficiently and accurately. In conclusion, 
it is concluded that this study provides an effective 
method and tool that can be used for the visualization 
and analysis of high-speed flows. There are very few 
studies in this field in the literature. For this reason, the 
studies are limited. However, as seen in the studies 
reviewed, image processing is used as an effective 
method in determining shock waves. In this study, shock 
waves were analyzed with image processing and, unlike 
other studies in the literature, blast loads were also 
predicted. 

This study aims to detect the blast wave from the 
images obtained from the explosion events carried out in 
a controlled manner, using image processing methods, 
and after detecting the blast wave on the image, it is 
aimed to determine the explosive weight, shock front 
velocity, blast wave pressure and positive phase 
durations. Explosion data were obtained from the 
Kingery-Bulmash polynomial formula, one of the 
empirical methods. Explosion images were obtained by 
controlling the detonating TNG (Trinitroglycerin) 
explosives of different weights. A high-speed camera was 
placed at a certain distance from the explosion area, and 
the moment of the explosion was recorded. These 
recorded images are then divided into frames. The 
resulting millisecond image frames were processed using 
image processing methods to obtain a blast wave from 
these images. Then, the aim was to predict the blast load 
parameters from the explosion waves obtained. The 
highlights of the study can be summarized as follows: 

 Since experimental explosions are very few, 
there is not enough study in this field in the 
literature. Therefore, this study will 
contribute to the literature. 

 When the studies were examined, only the 
explosion wave was analyzed using image 
processing methods. In this study, the 
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explosion wave was analyzed, and the blast 
loads were also predicted. 

 In uncontrolled explosions, predicting blast 
loads with traditional approaches is time-
consuming. However, with the method in this 
study, these loads could be predicted from a 
single image. 

The remainder of the study is organized as follows. In 
the second section, a limited number of studies in this 
field in the literature are mentioned. In the third section, 
the data used in the study and the stages of obtaining 
these data are mentioned. In addition to these, the image 
processing techniques used are also highlighted in this 
section. In the fourth section, the application is 
emphasized, and the results obtained are supported with 
various images. In addition, a discussion was made in this 
section and the advantages and disadvantages of the 
study were explained. In the last section of the study, the 
study is summarized and the contribution of this study to 
the literature is mentioned. 
 
2. Related Works 
 

In addition to image processing, explosion images can 
also be analyzed using artificial intelligence and machine 
learning methods. 

Researchers in the study [10], researchers utilized 
deep learning to predict pressure wave parameters in 
their study. Initially, a simulation environment was 
created to conduct an analysis of explosive effects. 
Through this simulation, accurate predictions were made 
for the intense pressure waves following an explosion, 
and their impacts on both individuals and structures 
were assessed. Additionally, a Deep Neural Network 
(DNN) was employed to identify overpressure data 
resulting from the explosions, specifically predicting 
pressures within the range of 1 to 5 meters. The 
classifier's performance was evaluated using Mean 
Square Error (MSE), resulting in a concluding Mean 
Square Error value of 20.84 for the Deep Neural Network 
model. In a separate investigation, scientists developed 
an early warning system by designing a deep learning 
model based on shock wave diagrams. Researchers in the 
study [11] commenced by converting a shock wave 
diagram into digital representations using a solver. 
Subsequently, edge extraction was executed, and 
Convolutional Neural Network (CNN) architecture was 
employed to detect the edges. The final step involved 
utilizing the Rectified Linear Unit (ReLU) activation 
function to extract crucial information pertinent to the 
study's objectives. This approach facilitated the 
acquisition of features for subsequent classification. In 
the classification phase, Long/Short Term Memory 
(LSTM) and Support Vector Machine (SVM) were applied 
as classifiers. The performance of each classifier was 
assessed and compared using accuracy as the evaluation 
criterion. At the conclusion of the study, the LSTM model 
exhibited a prediction accuracy of 92%, whereas this rate 
declined to 72% with the SVM model. Researchers in the 
study [12], investigators assessed the impact of 
explosions in an urban setting through simulation. The 
initial phase involved the utilization of aerial images, 
which were categorized through a semantic 

segmentation process. Subsequently, a 3D model was 
generated, incorporating the designed geometric 
structure. The study involved simulating explosions with 
weights of 1, 10, 100, and 1,000 kg. Throughout the 
prediction process, the analysis focused on the extent of 
damage to windows and glass breakage. The study 
concluded that, based on the simulation program, 1 kg of 
explosives could result in the breakage of 46 windows, 
10 kg in 105 windows, 100 kg in 319 windows, and 1,000 
kg in 363 windows. Researchers in the study [13], the 
researchers examine the injury potential and effects of 
shock waves, which are responsible for the primary 
effect. This study was carried out by creating two 
separate controlled explosions of varying power and 
capturing the moments of the explosions with the help of 
a high-speed camera, and then analyzing and using these 
images after recording. A fast camera recording 9,000 
frames per second was used to record the images. In the 
first test, 100 g of TNT was detonated under a 70 kg 
display mannequin filled with gel. In the second test, 
1000 g of C4 was placed at a height of 30 cm above the 
ground to simulate a bomb trap explosion in an open 
area. Mannequins placed around these blast sites were 
also used to observe the blast effects. The explosions 
were carried out with an electric detonator and the 
images were captured by placing a Photron Fastcam-APX 
RS2 fast digital camera 250 meters away from the 
explosion point. The velocities of the shock waves, blast 
wind and shrapnel fragments were calculated by using 
the distance they traveled on the images, the time 
elapsed in the recording and the frame numbers. 
Inferences were made about the injury profiles of the 
mannequins by examining their behavior during the 
explosion, their damage after the explosion and the 
number of shrapnel entry holes. 
 
3. Material and Methods 
 

Under this section, information about imagery, 
experimental methods used for blast loads calculations, 
image processing methods and blasting loads is given. 
 
3.1. Blast Load Parameter Calculations 
 

Understanding scaled distance requires an 
understanding of the scaling laws. In physics, the 
relationship between quantities that scale with each 
other is described by scaling laws. Force is usually scaled 
in relation to area or volume. The pressure factor used to 
calculate blast loads is a measure of the forces resulting 
from the blast [14]. Therefore, blast pressure effects at 
different distances can be estimated using scaled 
distance. 

The effects of an explosive charge at a scaled 
distance are scaled with distance. The scaled distance is 
denoted by the letter 'Z'. In the calculated explosive 
charge graphs, the scaled distance refers to the 
horizontal plane. Scaled distance is one of the primary 
methods that should be used to calculate blast load 
parameters. There are 2 types of scaling methods, 
Hopkinson- Cranz and Sachs. 

The Hopkinson Cranz scaling method uses the 
distance to the blast point and the explosive weight for 
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the scaled distance. It is also known as the cube root 
scaling law. Hopkinson-Cranz method is the most 
preferred method for calculating the scaled distance. 
Equation 1 shows the Hopkinson-Cranz scaling law. 
 

𝑍 =
𝑅

√𝑊
3                                                                                       (1) 

 
In Equation 1, Z represents the scaled distance, R 

represents the distance to the explosive material and W 
represents the weight of the explosive material. 

The Sachs scaling method is used to calculate blast 
loads that occur at heights where atmospheric conditions 
can change. Ambient conditions are important for the 
blast wave. This is because the wave travels through the 
air. At high altitudes, atmospheric (air) pressure and air 
density decrease. There are many experimental formulas 
for the calculation of blast loads in the literature. The 
Kingery-Bulmash method is the most widely accepted 
method in the field of engineering and is commonly used 
by military units. Kingery-Bulmash used polynomial 
formulations derived from experiments for both 
spherical and hemispherical blast wave calculations. The 
equations are derived from data obtained from explosive 
tests using explosive weights ranging from 1 kg to 40,000 

kg. For hemispherical blast waves, Z=0.05 𝑚 √𝑘𝑔
3⁄  can be 

applied up to a scaled distance. Equation 2 and equation 
2 give the general polynomial form of the Kingery- 
Bulmash method [14]. 
 
𝑈 = 𝐾0 + 𝐾1 ∗ 𝑇                                                                   (1) 

𝑌 = 𝐶0 + 𝐶1𝑈 + 𝐶2𝑈
2 + 𝐶3𝑈

3 +⋯+ 𝐶𝑛𝑈
𝑛                 (2) 

 
In Equations 1 and 2, 𝑌 denotes the blast wave 

parameters, 𝐶0, 𝐶1, 𝐶2, ... 𝐶𝑛, and 𝐾0, 𝐾1 are the constants. 
In Table 1 the constant values are given and an example 
formula calculation is shown. The formula calculates the 
incident pressure. 
 
Table 1. Kingery-Bulmash Constants 
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𝑪𝟎 𝑪𝟏 
2.7807691 - 1.695898 

𝑪𝟐 𝑪𝟑 
0.15415937 0.51406073 

𝑪𝟒 𝑪𝟓 
0.098853436 0.026811234 

𝑪𝟔 𝑪𝟕 
0.10909749 0.0016284675 

𝑪𝟕 𝑪𝟖 
0.021463103 0.000145672 

 

In Table 2 the constant values are given and an 
example scaled distance range is shown. The formula 
calculates the event pulse. 

 
 
 
 
 
 

Table 2. Scaled distance and constants for event pulse 

Constants for U 

         (0.6<Z<0.9) 

𝑲𝟎 𝑲𝟏 

2.0676190 3.076032 

 

Constants for Y=𝑖𝑠 

(0.6<Z<0.9) 

𝑪𝟎 𝑪𝟏 

2.5245562 - 0.50299276 

𝑪𝟐 𝑪𝟑 

0.17133564 0.045017696 

 
Table 3 shows the constants used to calculate the 
reflected pressure. 
 
Table 3. Calculation constants for reflected pressure 

 

Constants for U 

 

𝑲𝟎 𝑲𝟏 

-0.24065732 1.3663771 

 

Constants for Y=𝑃𝑟 

 

𝑪𝟎 𝑪𝟏 

3.4028321 - 2.2103087 

𝑪𝟐 𝑪𝟑 

-0.21853658 0.89531958 

𝑪𝟒 𝑪𝟓 

0.2498900 - 0.56924943 

𝑪𝟔 𝑪𝟕 

0.1179168 0.22413116 

 
Using the Kingery-Bulmash method, a table of 

constants can be derived for each explosive charge 
parameter. The method is still accepted and used today 
because it provides high accuracy for both spherical and 
hemispherical waves. All parameters of this method are 
used to calculate the positive phase charges. The method 
is not used for negative phase parameters. 
 
3.2. Image data 
 

Explosion images were obtained by performing a 
controlled explosion in an isolated area. For this purpose, 
a high-speed camera, the Sony RX 10-4 (1,000 FPS) 
model, was used. This camera is resistant to dust and 
moisture and has a fast-focusing feature. The technical 
information about the camera is given in Table 4. 
 
Table 4. Technical information about the camera 

Info Value 

Pixel 20,1 

Maximum resolution 5472 x 3648 

Aspect ratio 1:1, 3:2, 4:3, 16:9 

Sensor type CMOS 

Sensor size 1 

 
 The experimental setup designed for the explosion 

event is shown in Figure 1. 
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Figure 1. Experimental setup 
 

The experimental setup in Figure 1 shows that the 
explosion test was performed in an isolated field. 
Necessary precautions were taken at the time of the 

explosion and no living being was harmed. In the 

experimental setup, explosives were placed on the concrete 

previously placed in the explosive field and a surface 

explosion was carried out. Figure 2 shows an image of the 

moment of explosion. 

 

Figure 2. Image of the moment of explosion 
 

The image shown in Figure 2 is one of the images that 
appeared at the moment of the explosion. As can be seen 
from the image, the resulting blast wave is not visible to 
the human eye. For this reason, various image processing 
techniques were employed, and the image of the blast 
wave was obtained. 

The Sony RX 10-4 camera was positioned 250 meters 
away from the blast point. Explosion images were 
obtained with the camera at normal speed. The explosive 
was placed on concrete slabs to avoid a crater at the blast 
point. It was thought that the crater would distort the 
form of the blast wave. TNG was used as explosive 
material. TNG is similar to TNT in terms of its chemical 
structure but has a higher energy density. In order to 
determine the wave more clearly, the type of explosive 
with higher energy density, in terms of explosives close 
to TNT, was chosen.   

 
3.3. Image processing techniques 
 

Image processing is generally used to clear noise on 
images, make image improvements, sharpen images, and 
obtain meaningful information as a result of image 
analysis. Nowadays, it is used in many areas including 
health [9, 15], security [16-17], traffic control [18-19], 
agriculture [20-21], robotics [22-23], civil engineering 
[24], agricultural [25-26], etc. 

Image processing is generally used to clear noise on 
images, make image improvements, sharpen images, or 
obtain meaningful data as a result of analyzing images 

[15, 27-28]. It takes place in four stages and these stages 
are given in Figure 3. 
 

 
Figure 3. Image processing processes 
 

Images used according to the purpose are collected 
during the image acquisition phase. Direct processing of 
the collected images may be ineffective in obtaining 
sufficient information, which is why the pre-processing 
stage is needed [29]. Furthermore, it is important to 
choose the right parameters [30]. 

At this stage, scaling, transitions in color space, noise 
removal, histogram operations, filtering, and 
morphological operations are applied. In the third stage, 
thresholding, labelling, edge extraction, and 
segmentation are performed. In the last stage, the 
process is completed by finding meaningful data from the 
image. 

In this study, four different image processing methods 
were employed to detect the blast wave, with color 
transformation being the most significant among them. 
Through this process, the colored pixels of the explosion 
image were altered. Following color transformation, 
Fourier transform was employed to discern the image 
components in the frequency domain. Subsequently, 
conservative smoothing was implemented to reduce the 
intricacies within the explosion image. Finally, 
subtraction was carried out to calculate the disparity in 
pixel values between the two consecutive images. Figure 
4 shows the steps of the image processing stage. 

These approaches were specifically selected to 
effectively detect the blast wave in the image data. The 
color transform was used to highlight critical features of 
the blast, facilitating the identification of the key 
elements of the blast. The Fourier transform allowed the 
analysis of frequency components, which are essential 
for understanding the key patterns in the image. 
Conservative smoothing was applied to simplify the 
image by reducing noise, thus facilitating the detection of 
significant changes. Subtraction was then used to identify 
changes between successive images, important for 
capturing the dynamics of the blast wave. 

The methods used are well established in the field of 
image processing and have been successfully applied in 
various studies to improve the detection and analysis of 
complex phenomena such as blast waves. This approach 
not only provides sensitive detection, but also 
contributes to the growing literature on the application 
of image processing techniques in the analysis of 
dynamic phenomena. 
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Figure 4. Flow chart of image processing methods 
applied to determine the blast wave 
 

When the flowchart is examined, after the explosion 
video was obtained, the image was divided into frames. 
First, a color space transformation was performed on 
two consecutive frames (BGR RGB). Then the input 
images were converted into gray level images. As the 
second step, noise removal operations were performed 
on the input images. For this process, a Fourier transform 
was first performed on the input image and then 
conservative smoothing was applied. The reason for 
performing the process in this order is primarily to 
preserve the image quality and to protect the input image 
from high frequency components. The same process was 
then applied to the second image. First, color space 
transformation was performed on the two images. The 
images were converted to RGB model and the 
differencing process was performed. The application was 
completed by detecting the blast wave on the image. 

The blast wave image obtained by image processing 
was analyzed using the Kingery-Bulmash method, which 
is the most accepted experimental method in the 
literature [31-32] and compared with the values 
obtained from experimental data. To compute the blast 
loads, the image containing the detected wave was 
initially considered. The distance covered by the blast 
wave along the ground surface was then measured. This 
process involved determining the distance using the 
Manhattan distance metric. The Manhattan distance is 
the sum of the total differences between two points on 
the vertical and horizontal axes of the matrix [33-34]. 
Image processing often involves grid layouts between 
pixels, and the Manhattan distance matches these 
layouts. The Manhattan distance only considers 
horizontal and vertical movements. For some 
applications, this can better model real-world distances, 
especially when movements occur only in these axes.  
The two endpoints of the wave identified on the output 
image were connected to calculate the length of the wave, 
thereby establishing the starting and ending regions of 
the detonation wave. Figure 5 shows the explosion wave 
image resulting from image processing. 
 

 

 

 
Figure 5. Steps of image processing and the resulting 
blast wave, a) Sample explosion image, b) Gray color 
image, c) Fourier transform applied image, d) 
Conservative smoothing applied image, e) Image 
subtraction 
 
3.4. Blast loads 
 

There are many experimental methods for calculating 
blast loads in the literature, but most of these methods 
are used in the analysis of spherical explosion waves 
[20]. Since surface explosion was performed in the study, 
the explosion wave form is hemispherical. For this 
reason, since the Kingery-Bulmash method uses a 
polynomial formula valid for hemispherical blast waves, 
this method was chosen in the analysis step and the loads 
of the blast were calculated. The Kingery-Bulmash 
method is the most accepted method in the field of 
engineering and commonly used by military units [35-
36]. The formula generated was derived from data 
collected across a range of explosive weights, spanning 
from 1 kg to 40,000 kg. Explosion loads are composed of 
several parameters, as outlined in Table 5. 
 
Table 5. Blast load parameters 

Parameter Explanation 

Arrival time 

(s) 

Time for the blast wave to 

reach peak pressure 

Incident 

pressure (kPa) 

Pressure corresponding to the 

blast wave 

Reflected 

pressure (kPa) 

The pressure of the reflected 

wave that returns after the incoming 

blast wave hits the surface 

Reflected 

impact (kPa-ms) 

The impact of the reflected 

wave 

Event impact 

(kPa-ms) 

Impact effect corresponding to 

the blast wave 

Shock front 

velocity (m/s) 

Velocity of the blast wave at the 

shock front 

Weight (kg) Weight of explosive material 

Distance (m) Distance to explosive material 
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There are two more important parameters that need to 
be taken into consideration when calculating blast loads, 
apart from experimental methods [37-38]. These; TNT is 
the unit of equivalent weight and scaling laws. Since 
there are many explosives of different types and 
structures, a common unit must be used to calculate blast 
loads. For this reason, TNT Relative Effect Factor (REF) is 
preferred in experimental studies. TNT explosive type 
has been standardized as the type of explosive widely 
used in many test explosions and explosion experiments, 
and its explosion charge characteristics are similar to the 
charge characteristics of most explosives [7]. TNT 
equivalent weight is calculated when an explosive type 
other than TNT will be used.  

Scaling laws are used to show the relationship 
between distance and pressure. At scaled distance, the 
effects of an explosive charge scale with distance. Scaled 
distance is indicated by the Z. In the calculated explosive 
load graphs, the scaled distance refers to the horizontal 
plane. There are two different scaling laws including 
Hopkinson-Cranz and Sachs. Hopkinson-Cranz scaling 
law states that the effects and parameters of two 
different explosives with the same dimensions at the 
same distances are the same, provided that the ambient 
conditions are the same for both. It is also known as the 
cube root scaling law. On the other hand, Sachs scaling 
law is a scaling method used in calculating blast loads 
occurring at altitude where atmospheric conditions [39] 
may change. 

In this study, TNG (Trinitroglycerin) explosive was 
used as the explosive type. In the selection of explosives, 
the type of explosive that was most easily accessible and 
whose chemical structure was closest to TNT was chosen 
to be used in the experimental study. This is because the 
TNT equivalent weight is close due to this chemical 
structure. The TNT REF value of the TNG explosive was 
found to be approximately '1.23' and is shown in Table 6. 
As a result of the study, existing methods were reviewed 
and the importance of explosive location and explosive 
waveform in the selection of methods for the calculation 
of blast load parameters was emphasized. 
 
Table 6. TNG REF value 

Parameter 
TNG 

(Trinitroglycerin) 
TNT 

(Trinitrotoluene) 
Ratio 

Detonation 
Velocity 

(m/s) 
7700 6900 ≈1.12 

Energy 
Content 
(MJ/kg) 

6.3 4.7 ≈1.34 

Average 
REF Value 

≈1.23 

 
To calculate blast load parameters, first, it is 

necessary to determine the weather conditions in which 
the explosion will occur or have occurred. If the air is 
atmospheric, Sachs scaling law should be used, if it is not 
atmospheric, Hopkinson-Cranz scaling law should be 
used. The type of explosive used or will be used later 
must be known. Accordingly, the TNT equivalent weight 
should be calculated. To determine the effects of the 
explosive and the form of the blast wave, it must be 
selected whether the explosion is free air, air or surface 
explosion. Then, the methods for calculating the blast 

load parameters must be decided. Once the method is 
determined, explosion load parameters can be 
calculated. 

As can be seen from these explanations, there are 
various steps involved in determining the blast loads of a 
particular explosion. All these steps take time and 
require processing load. In order to avoid these limits, in 
this study, the wave of the explosive was determined 
using image processing methods and the blast n loads 
were estimated from the shock wave images. A visual 
summary showing all these processes of the study is 
given in the flow chart in Figure 6. 
 

 
Figure 6. Flow chart of the study 

 
4. Application Results and Discussion 
 

The main purpose of the study is to predict blast loads 
from the image of the blast wave. In traditional 
approaches, empirical formulas are used to determine 
the loads of a blast, but these formulas are more effective 
in areas where controlled explosions are carried out. In 
places where uncontrolled explosions occur, the use of 
these formulas takes time and requires a large number of 
analysis procedures. However, with the application 
developed in this study, blast loads could be determined 
from only one image. The explosion wave is difficult to 
see with the naked eye, so the waveform was obtained 
using image processing methods. The resulting 
waveform is shown in Figure 7. 
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Figure 7. The explosion wave determined at the end of 
the image processing process 
 

An application has been developed that takes the 
Manhattan distance as a parameter on the image from 
which the waveform is obtained. Accordingly, the 
application calculates the horizontal length of the blast 
wave using the Manhattan distance method, makes unit 
conversions and calculates it in meters. The distance of 
the blast wave is given in Figure 8. 

 
Figure 8. Distance of a blast wave 
 

The value of the distance given in Figure 7 was 
initially calculated as 1,102 inches by using the 
Manhattan Distance method in combination with pixel 
measurements. To obtain the real distance, the pixel 
measurements were scaled using a reference dimension, 
resulting in a real distance of 28 meters. After converting 
the distance to meters, the shock front velocity was 
calculated, and blast loads were predicted using the 
positive phase duration from the data generated by the 
Kingery-Bulmash method. In Table 7, the blast loads 
obtained as a result of the prediction process and the 
blast loads calculated with Kingery-Bulmash are 
compared. 
 
Table 7. Predicted blast loads and calculated blast loads 
by the Kingery-Bulmash method 

Parameter Predicted Calculated 

Arrival time (s) 73.08 73.1 

Incident pressure (kPa) 3.98 3.92 

Reflected pressure (kPa) 8.11 7.97 

Reflected impact (kPa-ms) 20.44 20.17 

Event impact (kPa-ms) 11.53 11.39 

Shock front velocity (m/s) 345.90 345.83 

Weight (kg) 1 1 

Distance (m) 28 28 

 
When the results given in Table 7 are examined, it is 

seen that the values of the calculated data and the 

predicted data (arrival time, incident pressure, reflected 
pressure, reflected impact, event impact, shock front 
velocity, weight, distance) are quite close. Using the 
distance-velocity relationship of the image of the blast 
wave taken after the explosion, the time since the 
beginning of the explosion was determined and the 
explosive weight was decided. Other blast loads were 
correlated with the shock front velocity value and 
calculated. In steps calculated with Kingery-Bulmash, the 
distance of a 1 kg explosive is 28 m. Since the distance 
calculated as a result of image processing was 28 m, in 
the data set created with Kingery-Bulmash, the part 
where the distance was 28 m was selected and the blast 
loads of this part were compared. According to the 
experimental formula, the arrival time of a 1kg explosive 
was calculated as 73.1 s, but as a result of the analysis 
made with image processing, this result was predicted as 
73.08 s. While the incident pressure was predicted as 
3.98 kPa, the actual value was calculated as 3.92 kPa. The 
reflected pressure, as determined through image 
processing, was predicted at 8.11 kPa, while the reflected 
pressure was predicted at 20.44 kPa/ms. However, upon 
examination of the actual data, the reflected pressure 
was found to be 7.97 kPa, and the reflected pulse was 
computed to be 20.17 kPa/ms. The event impact and 
shock front velocity loads were nearly identical in their 
predicted values. Through the prediction process, the 
event impact was determined as 11.53 kPa/ms, whereas 
the Kingery-Bulmash method yielded a slightly lower 
calculation of 11.39 kPa/ms for this rate. The shock front 
velocity determined by the Kingery-Bulmash method 
was 345.83 m/s. Through the prediction process, the 
calculated shock front velocity closely matched the actual 
value at 345.90 m/s. 

In order to clearly demonstrate the performance of 
the method, the relative error was calculated. Relative 
error provides a scale-independent comparison of the 
error to the true value. This helps to understand the 
difference in error between small and large values when 
evaluating model performance [40]. The relative error 
results are given in Table 8. 
 
Table 8. Relative error values calculated for each blast 
load 

Parameter Error Rate 

Arrival time (s) 0.0274 

Incident pressure (kPa) 1.51 

Reflected pressure (kPa) 1.73 

Reflected impact (kPa-ms) 1.32 

Event impact (kPa-ms) 1.21 

Shock front velocity (m/s) 0.0202 

 
Upon reviewing the findings presented in Table 8, it 

becomes evident that the predicted data closely aligns 
with the results obtained from the experimental study, 
displaying a high degree of similarity. The reflected 
pressure exhibited the highest error value, whereas the 
error was minimal for the shock front velocity. In critical 
systems such as healthcare, aviation, automotive safety, 
and nuclear energy management, it is crucial to minimize 
error margins, often aiming for values approaching zero. 
Overall, none of the error percentages surpassed 2%, 
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underscoring the effectiveness of the image processing 
procedure. 

It has been observed that the calculated data have 
almost the same values as the data recorded from the 
experimental data. Since the weight information of the 
explosive was not entered into the application, the 
weight of the explosive was also calculated and found to 
be the same as the weight used in the explosion. A TNG 
type explosive weighing 1 kg was used in the explosion, 
and application estimates ultimately estimated the 
weight of the explosive as 1 kg. Figure 9 and Figure 10 
show the graphs of the blast loads calculated and 
predicted by the Kingery-Bulmash method, respectively. 

 

 
Figure 9. Blast loads chart calculated with Kingery-
Bulmash 
 

 
Figure 10. Blast loads chart predicted by the proposed 
model 

When the given graphs are compared and examined, 
it is seen that the obtained values almost completely 
coincide with the data obtained from the calculated data. 

Although effective results were obtained in this study, 
the study has several limitations. These can be expressed 
as follows:  

 It is more suitable to use high-speed, slow-
motion cameras to detect the wave image, so 
that the wave can be obtained by image 
processing methods.  

 A wider database can be obtained by 
controlled detonation of explosives of 
different weights. With the image data 
obtained, sufficient test data can be created 
for artificial intelligence methods. It is a 
known fact that as the number of data 
increases, the prediction accuracy becomes 
more reliable, regardless of the study [41]. 

 By adding measurement sensors to the 
explosion area, realistic calculated data can 

be obtained for analysis and prediction of 
wave effect.  

 Using thermal cameras, the area where the 
explosion occurred, and the explosion 
waveform can be predicted. 

5. Conclusion  
 

In this study, blast loads were predicted from the 
blast wave by using image processing techniques and the 
results were compared with the data obtained with 
experimental formula. The study consisted of four stages. 
In the first stage, a video recording of the explosion was 
made. In the second stage, images were obtained from 
videos and converted to the image frames. In the third 
stage, various image processing methods were applied 
on the images obtained and a blast wave form was 
determined. In the last stage, explosion loads were 
predicted based on the blast wave form. The study's 
analysis unequivocally demonstrates the considerable 
value of employing image processing for predicting blast 
loads. The effective utilization of diverse image 
processing techniques and computer vision algorithms 
not only highlights the promise of this approach but also 
signifies the possibility of exploring novel avenues for 
future research and applications. To conclude, the results 
of this study underscore the efficacy of image processing 
for predicting blast loads, showcasing its potential 
influence across multiple domains including safety, 
structural engineering, and disaster management. Future 
research endeavors focusing on refining and advancing 
these methodologies will undoubtedly enhance 
predictive technologies and safety protocols in contexts 
involving blast loads.  

Very low error rates (0.0274% and 0.0202%) were 
obtained for arrival time and shock front velocity. This 
shows that the method is very successful in estimating 
these two parameters. The error rates for incident 
pressure, reflected pressure, reflected impact and event 
impact ranged between 1.21% and 1.73%. This shows 
that the predicted values are quite close to the calculated 
values, but the model is not perfect in these parameters. 
Further improvements can be made in these parameters. 
TNG explosives of different weights were detonated in 
the air and on the surface, and images were taken and 
stored with a high-speed camera for use in this study and 
future studies. 
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