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1. Introduction  
The rapid proliferation of the Internet and connected 
devices has increased cyber threats and made network 
security a critical concern for organizations and 
individuals. Network Intrusion Detection Systems (NIDS) 
are essential tools for identifying and mitigating potential 
threats in network traffic. Traditional machine learning 
models for NIDS are typically centralized, requiring data 
from multiple sources to be aggregated into a central 
repository for training. While this approach is practical, it 
poses significant data privacy, security, and scalability 
challenges. 

Federated Learning (FL) has emerged as a promising 
solution to these challenges. It enables decentralized 
model training across multiple nodes without transferring 
raw data to a central server. This approach addresses 
privacy concerns, reduces the risk of data breaches, and 
increases scalability.  

 

 

 

 

In FL, a global model is trained collaboratively by 
aggregating locally computed updates from multiple 
clients, ensuring sensitive data remains on local devices. 
By using federated learning for attack prediction, 
organizations can collaboratively train machine learning 
models without centralizing sensitive data. Each 
participating entity can train the model on its local 
dataset and only share model updates rather than raw 
data. This helps maintain privacy and security while 
allowing collective insights from diverse datasets. 
Federated learning also enables organizations to benefit 
from a broader range of threat intelligence without 
directly exchanging sensitive information. It empowers 
collaborative predictive modeling across different entities 
or sectors within the cybersecurity ecosystem, leading to 
more robust attack predictions. However, challenges 
exist with federated learning, such as potential 
communication overhead, ensuring consistency across 
decentralized models, and addressing issues related to 
bias and fairness.  
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A comprehensive benchmark for network intrusion 
detection, the UNSW-NB15 dataset extracts data from 
Network traffic, including both standard and malicious 
activities. It offers various features. This dataset is ideal 
for evaluating the performance of FL in detecting network 
attacks. Leveraging federated learning with the UNSW-
NB15 dataset for attack prediction has promising 
potential in cybersecurity research and practice. It 
enables collaborative model training while maintaining 
data privacy and security, contributing to enhanced 
threat intelligence and improved attack prediction 
capabilities. 

This paper investigates the effectiveness of FL in 
predicting network attacks using the UNSW-NB15 
dataset. In order to assess these aspects and ultimately 
determine the effectiveness of Federated Learning in 
predicting network attacks using UNSW-NB15, empirical 
studies and experiments could be conducted comparing 
Federated Learning against centralized approaches 
concerning model performance, privacy preservation, 
and scalability specifically within a cybersecurity context 
utilizing this dataset for intrusion detection research. 
Leveraging FL, we aim to show how decentralized 
learning can achieve high accuracy and low false 
negative rates in attack detection while preserving data 
privacy. The work involves implementing an FL 
framework, training a neural network model on UNSW-
NB15 training data, and evaluating its performance using 
a confusion matrix. 

The rest of the paper is organized: Section 1 reviews 
related work on applying machine learning and FL for 
intrusion detection in various fields. Section 2 describes 
the methodology, including the FL framework and 
experimental setup, and details the dataset used. 
Section 3 presents the results and analysis of the 
model's performance. Chapter 4 discusses the 
implications of the findings and potential challenges. 
Finally, By examining the application of FL on the 
UNSW-NB15 dataset, this paper contributes to the 
growing body of knowledge on privacy-preserving 
machine learning techniques for cybersecurity. It 
highlights the potential of FL in enhancing network 
security in decentralized environments. 

This work makes several significant contributions to 
network intrusion detection and privacy-preserving 
machine learning. It demonstrates the use of Federated 
Learning (FL) as an effective method to decentralize the 
training process, enabling privacy-preserving and 
improved scalability when dealing with sensitive network 
traffic data. It also highlights the comparative advantages 
of FL over traditional centralized machine learning 
approaches, including reduced privacy risks, improved 
scalability, and a broader range of threat intelligence.  

1.1 Literature Review 
Li et al. [1], the SELSTM model combining NSENet and 
LSTM provided a robust solution for IoT attack detection 
by improving feature extraction capabilities, optimizing 

model convergence, and providing effective detection 
with limited computational resources. Experimental 
results confirmed its superiority over traditional models 
in terms of sensitivity, accuracy, and generalizability in 
attack detection, and they achieved an accuracy value of 
82.14%. Sharma [2] proposed a method that works in 
three stages. First, they used the ExtraTrees classifier 
(ELM) to individually select relevant features for each 
attack type. They then used an ELM ensemble to detect 
each attack type individually. Finally, the results of all 
ELMs were combined using a softmax layer to improve 
the results and further increase the accuracy. The 
accuracy rate obtained was 91.26%. Gharaee et al. [3] 
proposed an anomaly-based IDS with a new feature 
selection method using a genetic algorithm and a 
Support Vector Machine (SVM). The new model used a 
Genetics-based feature selection method including an 
innovation in the fitness function. It reduces the data 
size, aiming to increase true positive detection and 
simultaneously reduce false positive detection. Salman 
et al. [4] investigated detecting and categorizing 
anomalies. They used two supervised machine learning 
techniques: linear regression (LR) and random forest 
(RF). As a result, they achieved 93.6% accuracy. Zhang 
et al. [5] implemented a filter-based feature reduction 
technique using Artificial Neural Networks (ANN) and 
Decision Trees (DT). Our experiments considered both 
binary and multi-class classification configurations. The 
results showed that the XGBoost-based feature 
selection method enabled methods such as DT to 
increase the testing accuracy from 88.13% to 90.85% for 
the binary classification scheme.   Salim et al. [14] 
focused on securing IIoT environments by using a 
Federated Learning-based CTI framework (FL-CTIF) to 
detect anomalous traffic patterns, including ARP 
poisoning tool attacks, SSL-based attacks using 
encrypted traffic, and DNS flood-based DDoS traffic. 
They achieved successful results. Boabalan et al. [15] 
proposed the FusionFedBlock framework, which 
combines Blockchain with Federated Learning in 
Industry 5.0. This approach addresses the dual 
challenges of secure data sharing and collaborative 
learning, leading to more resilient and intelligent 
industrial systems. 

2. Materials and Methods 
 

2.1 Data Set 
The UNSW-NB15 dataset was developed by the 
Australian Center for Cyber Security (ACCS) and is 
widely used in research on intrusion detection systems. 
This dataset includes nine different attack types along 
with regular network traffic. It was created using the IXIA 
PerfectStorm tool to create a hybrid of actual modern 
normal activities and synthetic contemporary attack 
behaviors. The dataset comprises 49 features, including 
the class label and 2,540,044 records. The table below 
provides an overview of the features of the UNSW-NB15 
dataset: 
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Table 1 Dataset Column Description 

No. Feature Description No. Feature Description 

1 scrip Source IP address 26 res_bdy_len Length of the response body 

2 sport Source port number 27 sjit Source jitter 

3 dstip Destination IP address 28 djit Destination jitter 

4 sport Destination port number 29 time Source time 

5 proto Protocol type 30 ltime Destination time 

6 state State of the connection 31 sintpkt Source inter-packet arrival time 

7 dur Duration of the connection 32 dintpkt Destination inter-packet arrival time 

8 bytes Source to destination bytes 33 tcprtt TCP round-trip time 

9 bytes Destination to source bytes 34 synack Time between SYN and SYN-ACK packets 

10 sttl Source to destination time to live 35 backdate Time between SYN-ACK and ACK packets 

11 dttl Destination to source time to live 36 is_sm_ips_ports If source and destination IP addresses and port 
numbers are equal 

12 sloss Source packets retransmitted or 
dropped 37 ct_state_ttl Number of connections with the same state and 

time-to-live 

13 dloss Destination packets retransmitted or 
dropped 38 ct_flw_http_mthd Number of connections with the same HTTP 

method 

14 service Network service (e.g., HTTP, FTP, 
ssh) 39 is_ftp_login If the FTP session is authenticated 

15 load Source bits per second 40 ct_ftp_cmd Number of FTP commands issued 

16 dload Destination bits per second 41 ct_srv_src Number of connections to the same service from 
the source IP 

17 spots Source to destination packet count 42 ct_srv_dst Number of connections to the same service to the 
destination IP 

18 dpkts Destination to source packet count 43 ct_dst_ltm Number of connections to the same destination IP 

19 swin Source TCP window advertisement 44 ct_src_ltm Number of connections from the same source IP 

20 Edwin Destination TCP window 
advertisement 45 ct_src_dport_ltm Number of connections from the same source IP 

and destination port 

21 stcpb Source TCP base sequence 
number 46 ct_dst_sport_ltm Number of connections to the same destination IP 

and source port 

22 dtcpb Destination TCP base sequence 
number 47 ct_dst_src_ltm Number of connections to the same source and 

destination IP 

23 smeansz Mean packet size transmitted by the 
source 48 attack_cat Category of the attack 

24 dmeansz Mean packet size transmitted by the 
destination 49 Label Binary label of the attack (0 for normal, 1 for attack) 

25 trans_depth Number of layers traversed in a 
single connection    

 
 

 
 



MALATYA TURGUT OZAL UNIVERSITY JOURNAL of ENGINEERING and NATURAL SCIENCES Volume 5, Issue 2 (2024) 1-7 

 
 

4 
 

2.2 Federated Learning Framework 
Federated Learning (FL) is a machine learning paradigm 
that allows models to be trained on multiple 
decentralized devices or servers, each holding local data 
samples and not modifying them. This framework is 
beneficial for applications where data privacy and 
security are paramount. FL is an evolving machine 
learning scheme that addresses the data island problem 
while preserving data privacy. Decentralized machine 
learning settings refer to multiple clients coordinated with 
one or more central servers. Google introduced it in 2016 
to predict user text input on tens of thousands of Android 
devices while keeping the data on them [6]. 

Federated learning is a setup where multiple clients 
collaborate to solve machine learning problems under 
the coordination of a central aggregator. This setting also 
allows training data to be decentralized to ensure data 
privacy for each device. Federated learning depends on 
two main ideas: local computing and model 
transmission, reducing some of the systematic privacy 
risks and costs introduced by traditional centralized 
machine learning methods. The client's original data is 
stored locally and cannot be modified or moved. With the 
implementation of federated learning, each device uses 
local data for local training and then uploads the model 
to the server for collection. Finally, the server sends the 
model update to the participants to achieve the learning 
goal [5]. 

This approach offers several advantages: 

Privacy Protection: FL reduces the risk of data disclosure 
and protects user privacy by ensuring sensitive data 
remains on local devices. 

Enhanced Security: By keeping data distributed across 
multiple nodes, FL minimizes the risk of a single point of 
failure and reduces the attractiveness of targets for cyber 
attacks. 

Scalability: FL leverages the computing power of multiple 
devices, making it easy to train large-scale models 
without the need for centralized data processing. 

2.3 The Proposed Method   
To prepare the training data for federated learning in the 
proposed model, it was divided into multiple subsets, 
each representing data held by different devices. A 
TensorFlow dataset was created for each device subset.  

The model architecture in this study includes three 
essential layers: 

Input Layer: This layer defines the shape of the input 
data, corresponding to the number of features in the 
dataset. It serves as the entry point for data into the 
neural network. 

First Dense Layer: A fully connected layer with 10 
neurons, where each neuron is connected to every input 
feature. It applies a linear transformation followed by a 
ReLU (Rectified Linear Unit) activation function, enabling 
the network to model complex patterns. 

Second Dense Layer: Another fully connected layer with 
a single neuron. This layer outputs a value between 0 
and 1 using a sigmoid activation function, making it 
suitable for binary classification tasks. 

. 
 
 
  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 1 Architecture of the Proposed Model 

The preprocessing step involved transforming both 
numeric and categorical features. Numeric properties 
were standardized using StandardScaler, and 
categorical properties were encoded using 
OneHotEncoder. A simple neural network was designed 
using TensorFlow Keras. The model consisted of an 
input layer, a hidden dense layer with ReLU activation, 
and an output dense layer with sigmoid activation. The 
federation average algorithm was used to train the 
model. An iterative process was created in which the 
global model was updated in multiple rounds of 
federation learning. The process model is shown in detail 
in Figure 1 

3. Results and Discussion 
The FL framework was implemented using the PySyft 
library. Each node in the FL setup was trained with a 
subset of the UNSW-NB15 training data. The model 
architecture included a simple neural network with two 
hidden layers. The training process was conducted over 
ten communication rounds, each consisting of local 
training followed by global model collection. 

Preprocessing 
[StandardScaler]  
[OneHotEncoder] 

Preprocessing 
[StandardScaler]  
[OneHotEncoder] 

Split Dataset Across Devices 
[Device 1 Dataset]  
[Device 2 Dataset]  
[Device 3 Dataset] 

Converting TensorFlow Datasets to TFF Format [TF 
Dataset Creation] 

Creating a Keras Model [Defining Model Layers] 
[Creating the Model with Keras] 

Federated Averaging Process 
[Converting the Model to TFF Format] [Defining the 

Federated Averaging Algorithm] 

ATTACK  NON-
ATTACK  
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Specific hyperparameters were used to train the 
federated learning model. Table 2 states the following 
parameters during the training process. 

Table 2  Parameters of FL 

Batch Size 20 
Num Devices 3 
Learning Rate 0.02 
Number of Rounds 10 

These parameters have been carefully chosen to train 
the model efficiently and optimize its performance. The 
batch size value was determined as 20, which provided 
sufficient data to update the model at each training step. 
Model training was distributed using three devices, thus 
shortening the training time. The learning rate was 
determined to be 0.02, and the aim was to make 
balanced progress in the model's learning process. The 
training continued for ten rounds, and the model's 
performance was observed in each round. 

 
Figure 2 Confusion Matrix of FL 

When the confusion matrix is examined in Figure 2 the 
following findings were derived: 

Ø True Negatives (TN): The model correctly classified 
55,877 negative examples as unfavorable. This 
indicates that the model can accurately describe 
average data. 

Ø False Positives (FP): The model incorrectly classified 
123 negative samples as positive. This indicates that 
the model perceives some average data as an attack. 

Ø False Negatives (FN): The model has 0 false 
negative examples. This means the model correctly 
classified all positive examples and did not miss any 
attacks. 

Ø True Positives (TP): The model correctly classified 
119,341 positive examples as positive. This shows 
that the model can describe attack data quite 
successfully. 

When Table 3 is examined the following conclusions 
were highlighted: 

Table 3 Performance of the proposed model 

Acc. (%) Spec. (%) Sens. (%) Pre. (%) F1 (%) 

99.93 99.80 100 99.90 99.95 

The model achieved an accuracy of 99.93%. The 
specificity of the model is 99.80%. Sensitivity (or recall) 
was 100%, meaning it correctly identified all positive 
samples in the test set. This excellent sensitivity score 
indicates that the model has no false negatives, making 
it highly reliable in detecting the presence of the target 
class. The accuracy of the model is 99.90%. The F1 
score, the harmonic mean of precision and sensitivity, is 
99.95%. This high F1 score reflects a balanced 
performance of the model, indicating that it maintains a 
high level of precision and sensitivity. 

As shown in Table 4 and Figure 3, the performance of 
the proposed model was compared with other models 
from the literature, and the results were highly promising. 
The accuracy rates of other studies in the literature are 
as follows: [1] 82.14%, [2] 91.26%, [3] 99%, [4] 93.6%, 
[5] 90.95%. Our study's model exceeded the best results 
in the existing literature by reaching an accuracy rate of 
99.93%. 

Even the slight difference in our accuracy rate (about 
0.93%) compared to work [3] demonstrates the superior 
performance of our model. This difference shows that 
significantly improved results can be achieved in real-
world applications. 

Table 4 Performance of relative studies 

Researches Acc (%) 
 Li at al. [1] 82.14 
J. Sharma at al. [2] 91.26 
H. Gharaee at al. [3] 99 
T. Salman at al. [4] 93.6 
C. Zhang at al. [5] 90.95 
Our Study 99.93 

 
 

 
Figure 3 Accuracy of relative studies 

4. Conclusion 
As a result, our developed model has achieved a 
significantly higher accuracy rate than existing methods, 
making it a crucial reference point for future research in 
this domain. This remarkable success is a testament to 
the model's ability to generalize more effectively across 
the dataset, highlighting the robustness of the approach 
and the substantial improvements introduced during the 
training process. The enhancements made in model 
architecture, optimization techniques, and preprocessing 
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steps have collectively contributed to this superior 
performance, underscoring the potential of our approach 
to set new benchmarks in the field. 

Moreover, Federated Learning (FL) has emerged as a 
promising solution to the challenges associated with 
traditional centralized learning methods. FL allows 
decentralized model training across multiple nodes or 
devices, enabling data to remain on the local devices 
while only sharing model updates with a central server. 
This approach not only enhances data privacy by 
keeping sensitive information localized but also improves 
the scalability and adaptability of the model across 
diverse and distributed data environments. By leveraging 
FL, our model can harness multiple nodes' 
computational power and data diversity, leading to a 
more robust and generalized model that can perform 
effectively across various scenarios. This innovation 
addresses vital concerns in data security, privacy, and 
computational efficiency, paving the way for more secure 
and efficient machine learning applications in the future. 

The combination of our model's high accuracy and the 
advantages of Federated Learning establishes a strong 
foundation for subsequent studies, suggesting that this 
approach could become a standard practice in related 
fields. The success of this model not only demonstrates 
the feasibility of using FL in complex scenarios but 
encourages further exploration and refinement of these 
techniques to tackle even more challenging problems. 
The positive outcomes from our study serve as an 
encouraging indicator that similar methodologies could 
yield comparable benefits in other applications, thereby 
broadening the impact and applicability of Federated 
Learning and advanced machine learning models. 

5. Limitation and Future Work 
Communication Overhead: FL introduces significant 
communication overhead, especially in scenarios with 
large numbers of participating devices or frequent model 
updates. Strategies to mitigate this overhead will be 
critical in the experimental setup. 

Data Heterogeneity: The variability in data across 
different clients (i.e., non-iid data) can lead to challenges 
in model convergence and performance consistency. 
The study must account for these discrepancies when 
evaluating FL performance. 

Bias and Fairness: Biases in local datasets can 
propagate through the FL model, leading to fairness 
issues. The study will analyze potential biases in the 
UNSW-NB15 dataset and their impact on FL 
performance. 

Model Synchronization: Ensuring consistent model 
updates across decentralized nodes is challenging. The 
research will explore mechanisms for synchronizing 
model updates and maintaining consistency in a 
distributed setting. 

Privacy-Preservation Trade-offs: While FL inherently 
provides privacy benefits, there is often a trade-off with 
model accuracy. The study will evaluate this trade-off 

and seek to quantify the impact of privacy-preserving 
measures on model performance. 
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