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A B S T R A C T  A R T I C L E  I N F O   

This paper presents a novel key generation algorithm for Rebalanced-RSA and RPower-

RSA that accelerates encryption and decryption processes by utilizing smaller modular 

exponents. Subsequently, two of these variants are modified by altering the key 

generation process. A theoretical analysis of all variants, including the proposed 

modifications, demonstrates that these key generation algorithms improve the encryption 

process compared to the original variants, and since the encryption key size and one of 

the decryption key sizes are approximately equal in length, they achieve a more balanced 

computational effort between encryption and decryption. 
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1. Introduction 

 

In cryptography, there are two types of cryptosystems: secret-

key and public-key. Secret-key cryptosystems use a single 

key, referred to as the secret key, for both encryption and 

decryption processes. In contrast, public-key cryptosystems 

utilize two distinct keys: a public key and a private key. The 

public key is used for the encryption, while  the private key is 

used for the decryption process. This allows  secure 

communication over a insecure communication channel 

without the need to share the private key. Therefore, public 

key cryptosystems are widely used for information security 

and digital signatures worldwide.  

The RSA algorithm and its variants have played a significant 

role in modern cryptography, providing a foundation for 

secure communication and data protection. The RSA 

cryptosystem, first introduced by Rivest, Shamir, and 

Adleman [1], is one of the most widely recognized public-key 

cryptosystems. Many researchers have proposed varius 

variants to enhance the efficiency of RSA [2]. Most of these 

efforts focus on reducing computational cost to shorten the 

duration of encryption or decryption.  

The variants enhance decryption efficiency by speeding up the 

process through the use of the Chinese Remainder Theorem 

or the selection of shorter decryption keys. 

 

Quisquater and Couvreur [3] proposed an RSA variant known 

as CRT-RSA, which utilizes the Chinese Remainder Theorem 

(CRT) to accelerate the decryption process. Fiat [4] 

introduced Batch RSA, a variant that employs a small public 

exponent for the same common modulus enabling the 

decryption of the two ciphertext at the cost of one. Wiener [5] 

suggested a key generation algorithm called Rebalanced-

RSA, which uses small private keys to the decryption speed 

of CRT-RSA, 

Collins et al. [6] introduced MultiPrime-RSA, where the 

modulus 𝑛 is modified using 𝑘 primes instead of just two, as 

in CRT-RSA. Takagi [7] proposed MultiPower-RSA, which 

defines the common modulus 𝑛: = 𝑝𝑘𝑞 and uses the Hensel-

Lifting method for decryption [17]. Paixão and Filho [8] 

introduced an efficient variant called Rprime RSA, which 

combines MultiPrime-RSA and Rebalanced-RSA to improve 

the efficiency of MultiPrime-RSA. Grag and Verma [9] 

further combined Rebalanced-RSA and MultiPower-RSA to 

create a variant called RPower-RSA.  
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The Rebalanced-RSA, RPrime-RSA, and RPower-RSA 

variants expedite the decryption process by utilizing shorter 

decryption keys. However, these algorithms increase the 

encryption time by generating larger-sized encryption keys. 

This is the primary motivation for modifying these algorithms 

is to improve encryption performance, making them more 

efficient in terms of computational costs.  This paper focuses 

on proposing a novel key generation algorithm tailored for 

Rebalanced-RSA and RPower-RSA variants. 

Initially, a concise overview of Standard RSA and its 

efficiency-enhancing variants is provided. 

2. The RSA Cryptosystem 

The RSA cryptosystem, like other asymmetric encryption 

algorithms, consists of three fundamental components: key 

generation, encryption, and decryption. An overview of the 

original RSA scheme, commonly referred  to as standard 

RSA, follows the general procedure for key generation in the 

following order:  

Firstly, two distinct large strong prime numbers [10], 𝑝 and 𝑞 

of equal bit lengths are chosen, and  𝑛 ∶=  𝑝𝑞 and 𝜑 ∶=  (𝑝 −
1)(𝑞 − 1)  are computed. Second, a random integer 𝑒 is 

selected such that 1 <  𝑒 <  𝜑 and g𝑐𝑑(𝑒, 𝜑) =  1. Finally, 

the integer 𝑑 is computed such that 𝑑: = 𝑒−1 mod 𝜑 using the 

Extended Euclidean Algorithm. The integer  𝑛 serves as the 

common modulus, the public key 𝑒 is used for encryption, and 

the private key 𝑑 is used for decryption. The formula (1.1) is 

used to encrypt the plaintext 𝑀 ∈ 𝑍𝑛. 

𝐶: = 𝑀𝑒 mod 𝑛 (1.1) 

 

                                                                 

The formula (1.2) gives the decrypted text from the ciphertext 

𝐶. 

𝑀: = 𝐶𝑑  mod 𝑛                                          (1.2) 

 

It’s easy to see that the cost of both encryption and decryption 

processes depends roughtly on the bit size of the keys and the 

modulus since it includes operations of modular 

exponentiation. [11-13]. For example, Fast Modular 

Exponention alorithm uses (log 𝑒)2 log 𝑛 bit operations to 

find 𝑎𝑒 𝑚𝑜𝑑 𝑛 [22]. 

 

To significantly speed up RSA encryption, one may try to  use 

a much smaller  public key. In this case, However, various 

threat assumptions are presented by Coppersmith [14].  

Similarly, to speed up RSA decryption one may try to  use a 

much smaller  private key. However, Wiener [5] showed that 

when 𝑑 <
1

3
√𝑛
4

 public modulus 𝑛 can be factored easily. 

Later, Boneh and Durfee [15] presented a vulnerability called 

short private key exponent attack, and suggested an increase 

in this bound up to 𝑑 < 𝑛0.292. 

3. Overview of RSA Variants and Their Improvements 

 

 

All variants of RSA primarily aim to reduce the computational 

cost and shorten the encryption or decryption times of the 

RSA cryptosystem. We can classify these developed variants 

by categorizing into two classes [16,19]. The first class uses 

the Chinese Remainder Theorem (CRT)  to enhance the speed 

of the RSA. The algorithms in this class include CRT-RSA, 

MultiPrime-RSA, and MultiPower-RSA. The second class 

speeds up  the encryption process by adjusting the key size 

used in the algorithms from the first class. The variants in this 

class  include Rebalanced-RSA, RPrime-RSA, and RPower-

RSA. In all variants, the encryption process resembles the 

standard RSA. 

3.1.  CRT-based RSA variants 

To speed up the RSA decryption, the key generation process 

has been modified in this variants. The variants in this class 

improve the decryption process by implementing the Chinese 

Remainder Theorem (CRT) algorithm, which accellerates 

decryption compared to standard RSA. However,  the 

encryption operations remains like that of standard RSA, 

resulting in encryption time being equivalent to that of 

standard RSA. 

  

CRT-RSA: This variant of the RSA cryptosystem utilizes the 

CRT to accelerate of the RSA decryption. During key 

generation,the public key 𝑒 is selected first, o speed up 

decryption, the private keys 𝑑𝑝 and 𝑑𝑞 are computed such that  

𝑑𝑝: = 𝑒−1 mod (𝑝 − 1)

𝑑𝑞: = 𝑒−1 mod (𝑞 − 1)
 (3.1) 

To determine the plaintext , in decryption process are used the 

CRT or the Garner algorithm as: 

𝑀: = 𝑀𝑝 + 𝑝[(𝑀𝑞 − 𝑀𝑝)𝑝−1 𝑚𝑜𝑑 𝑞]                 (3.2) 

such that 

𝐶𝑝: = 𝐶 mod 𝑝                                                                   (3.3) 

𝑀𝑝: = 𝐶𝑝
𝑑𝑝   mod 𝑝 (3.4) 

𝐶𝑞: = 𝐶 mod 𝑞 (3.5) 

𝑀𝑞: =  𝐶𝑞
𝑑𝑞  mod 𝑞 (3.6) 

Its decryption approximately about four times faster than the 

standard RSA in theoretically.  

MultiPrime-RSA: In this variant are used 𝑘 primes and the 

common modulus are calculated as 𝑛: = 𝑝1. 𝑝2. … . 𝑝𝑘.  Similar 

to  CRT-RSA, Like CRT-RSA, the key generation process 

involves selecting the public key 𝑒 first, and the private keys 

are computed as 𝑑𝑝𝑖
: = 𝑒−1 mod (𝑝𝑖 − 1). The decryption 

preccess is an extension like CRT-RSA, to determine  the 

plaintext 𝑀 are computed as  

𝑀: = ∑ [𝑀𝑖 . (
𝑛

𝑝𝑖
) . ((

𝑝𝑖

𝑛
)   mod  𝑝𝑖) ]  mod 𝑛

𝑘

𝑖=1

 

such that 𝐶𝑝𝑖
: = 𝐶 mod  𝑝𝑖, 𝑀𝑖: = 𝐶𝑝𝑖

𝑑𝑖  mod  𝑝𝑖. The speed of 

decryption is approximately about 2𝑘 times faster than the 

standard RSA in theoretically. 

MultiPower-RSA: In this variant, the common modulus is 

calculated  as 𝑛: = 𝑝𝑘𝑞, where 𝑘 ≥ 2 is an integer. When 

http://www.journals.manas.edu.kg/
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generating keys, the public key 𝑒 and private keys 𝑑𝑝 and 𝑑𝑞 

are calculated like CRT-RSA.  While decrypting the chipper 

text 𝐶,  to begin with, the values of 𝑀𝑝 and 𝑀𝑞 are calculated 

and then the values of 𝑀𝑝𝑘 and 𝑀𝑞 are combined via CRT 

algorithm as  

𝑀 = 𝑀𝑝𝑘 + 𝑝𝑘. [((𝑀𝑞 − 𝑀𝑝𝑘). 𝑝−𝑘) mod 𝑞]                    (3.7)                             

such that 𝑀𝑝𝑘 ≡ 𝑀 mod 𝑝𝑘 which is can be calculated by  

using the Hensel-Lifting method was introduced by Takagi 

[17]. For example, it is calculated using the following formula 

(for k=2) 

 

𝑀𝑝2 = 𝑀𝑝 + [(𝐶 −

𝑀𝑝
𝑒 mod 𝑝2)(𝑒−1 mod 𝑝)(𝐶𝑝

𝑑𝑝−1 mod 𝑝)] mod 𝑝2       (3.8)         

 

This approach speeds up the decryption process by leveraging 

the power of the modulus about 3 times faster than CRT-RSA 

[6].  

3.2. RSA variants using shorter decryption keys 

The algorithms in this class shorten the decryption process by 

selecting shorter decryption keys in CRT-based RSA variants, 

but, it is important to note that the encryption process becomes 

more time-consuming compared to both the standrad RSA and 

the algorithm in the first class. 

Rebalanced-RSA: To shorten the time of decryption process 

CRT-RSA. Initially, when generating keys, private keys 𝑑𝑝 

and 𝑑𝑞 are chosen short size, satisfying gcd(𝑑𝑝, 𝑝 −

1) =gcd(𝑑𝑞, 𝑞 − 1) = 1.  The integer 𝑑 is computed using 

the Garner algorith, such that:  

𝑑 = 𝑑𝑞 + (𝑞 − 1). [((𝑑𝑞 − 𝑑𝑝). (𝑝 − 1)−1) mod (𝑞 − 1)] 

to obtain the public key as 𝑒 = 𝑑−1 mod   𝜑.  

In this algorithm, the encryption and decryption process are 

like standard RSA. The private keys are chosen to be shorter 

in size, which speeds up the decryption process and the 

decryption time is significantly faster. However, since the bit 

size of the encryption key is approximately equal to the bit 

size of 𝜑, the encryption time increases compared to standard 

RSA. 

. 

Rprime-RSA (Rebalanced MultiPrime-RSA): for 𝑛: =
𝑝1. 𝑝2 … . 𝑝𝑘 (k primes) the private key generation is similar to 

Rebalanced-RSA to further improve the decryption speed of 

MultiPrime-RSA and the decryption process is considered as 

MultiPrime-RSA. To shorten the decryption are chosen short 

private keys 𝑑𝑖. The integer 𝑑 is calculated with CRT such that 

𝑑: = 𝑑𝑝𝑖
 mod ( 𝑝𝑖 − 1) to get 𝑒: = 𝑑−1 mod 𝜑.  Note that, we 

can calculate the private key as 𝑑𝑘−1 by applying Garner 

algorithm successively as follows: 

𝑑1 = 𝑑𝑝1
+ (𝑝1 − 1)[(𝑑𝑝2

−𝑑𝑝1
)(𝑝1 − 1)−1 𝑚𝑜𝑑 (𝑝2 − 1)] 

 

𝑑2 = 𝑑1 + (𝑝1 − 1)(𝑝2 − 1) [(𝑑𝑝3
−𝑑1)((𝑝1 − 1)(𝑝2 − 1))

−1
 

𝑚𝑜𝑑 (𝑝3 − 1)] 
 

𝑑3 = 𝑑2 + ∏(𝑝𝑖 − 1)

3

𝑖=1

[(𝑑𝑝4
−𝑑2) (∏(𝑝𝑖 − 1)

3

𝑖=1

)

−1

 𝑚𝑜𝑑 (𝑝4 − 1)] 

 

… 
 

𝑑𝑘−1 = 𝑑𝑘−2 + ∏(𝑝𝑖 − 1)

𝑘−2

𝑖=1

[(𝑑𝑝𝑘−2
−𝑑2) (∏(𝑝𝑖 − 1)

𝑘−2

𝑖=1

)

−1

 𝑚𝑜𝑑 (𝑝𝑘−2

− 1)] 

 

Its decryption process is approximately 8 times faster than the 

CRT-RSA and about 27 times faster than the standard RSA 

theoretically (for 2048 bits) [8]. However, like Rebalanced-

RSA the encryption time increases compared to MultiPrime-

RSA. 

RPower-RSA (Rebalanced MultiPower-RSA): Similarly, 

in RPrime-RSA, the key generation process is modified to 

enhance the decryption performance of MultiPower-RSA. 

The private key generation is  like that of Rebalanced-RSA, 

when generating keys, firstly, private keys 𝑑𝑝 and 𝑑𝑞 are 

chosen and the public key is calculated as 𝑒 = 𝑑−1 mod 𝜆 

such that 𝜆 = (𝑝 − 1)(𝑞 − 1) and the integer 𝑑 is calculated 

with the CRT.  

The decryption process is the same as MultiPower-RSA, and 

it achives a speed gain of approximately 56 times over the 

RSA cryptosystem [18]. 

 

4. A Modified Key Generation Algorithm for 

Rebalanced-RSA and Rpower-RSA  

In this section, we present two new modified key generation 

algorithms for Rebalanced-RSA and RPower-RSA to 

minimize the gap between encryption and decryption times. 

The encryption and decryption operations are performed in the 

same way as in the variants under consideration. 

In standard RSA, key generation begins with selecting an 

integer 𝑒, followed by computing 𝑑. In CRT-RSA, 𝑒 is 

selected first, and then 𝑑𝑝 and 𝑑𝑞 are computed. Rebalanced-

RSA, on the other hand, reverses the process: 𝑑𝑝 and 𝑑𝑞 are 

chosen first, followed by the computation of 𝑒. The modified 

Rebalanced-RSA algorithm changes this sequence slightly, 

starting with the selection of 𝑑𝑝, then computing 𝑒, and finally 

𝑑𝑞. This adjustment ensures that the bit size of 𝑒 and one of 

the decryption keys is approximately equal, balancing 

encryption and decryption times. A similar approach is 

applied to RPower-RSA, achieving comparable 

improvements.   

4.1. Modified key generation algorithm for 

Rebalanced-RSA 

To achieve the encryption and decryption times close for 

Rebalanced-RSA we first select 𝑑𝑝 with a very short bit size 

such that gcd(𝑑𝑝, 𝑝 − 1) = 1. Then, the integer 𝑒 and 𝑑𝑞 are 

http://www.journals.manas.edu.kg/
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calculated consecutively. The key generation scheme is as 

follows: 

A distinct prime number 𝑝 and 𝑞 are chosen, and 𝑛: = 𝑝 ⋅ 𝑞 is 

calculated. A random short integer 𝑑𝑝 is chosen such that 

gcd(𝑑𝑝, 𝑝 − 1) = 1 (4.1)  

.  

The integer 𝑒 is then calculated as follows: 

𝑒: = 𝑑𝑝
−1 mod (𝑝 − 1) (4.2) 

If gcd(𝑒, 𝑞 − 1) ≠ 1, the integer 𝑑𝑝 is reselected in the 

previous step. Next, the integer 𝑑𝑞 is calculated as: 

𝑑𝑞: = 𝑒−1 mod (𝑞 − 1) (4.3) 

The values {𝑒, 𝑛}represent the public keys, and the values 

{p, q, dp, dq} represent the private keys. The encryption 

process follows the same steps as in the standard RSA, and the 

decryption process is identical to that of CRT-RSA. 

We can validate the keys for the presented algorithms as 

follows: 

From equation (4.1) and (4.2), we have: 

𝑒−1: = (𝑑𝑝
−1)

−1
 mod (𝑝 − 1) 

As a result, we obtain: 

𝑑𝑞 ≡ 𝑒−1 mod (𝑞 − 1) (4.4) 

                                                       

Therefore, from equations (4.2) and (4.3), we can deduce that 

the key generation process of the proposed algorithm is 

equivalent to the private key generation process in CRT-RSA, 

as described in section 3.1.  

 

Numerical Example:  

Key generation: 

𝑝 = 170141183460469231731687303715884105757 

(128 bits) 

𝑞 = 255211775190703847597530955573826158773 

(128 bits) 

𝑛 =  4342203346399357328383911937825796548317 

2939936490554038560393687183405356161(255 bits)                 
 𝑑𝑝 = 49157 (16 bits) 

Using the formula provided in equation (4.2), 

𝑒 =  70808803044007558288074106626107309957 

(126 bits) 

Using the formula provided in equation (4.3), 

𝑑𝑞 =  9385252853084983990113022393578920585  

(123 bits) 

Encryption: 

𝑀 = 1000000000000000000000000000000000000000 

Using the formula provided in equation (1.1), 

𝐶 =  2867984525195645912899553497828015699893 
872953197401515209673598356851516618 

Decryption: 

Using the formula provided in equations (3.3), (3.4), (3.5) 

and (3.6). 

𝑀𝑝 =  149294082697653841341563481420579471215 

𝑀𝑞 =  23436467442788845720740713327852152368 

Finally, the plain text 𝑀 is obtained using equation (3.2). 

4.2. Modified key generation algorithm for RPower-

RSA 

Additionally, the key generation scheme described in Section 

4.1 is applicable to RPower-RSA. For 𝒏: = 𝒑𝒌. 𝒒, the integer 

𝒅𝒑 is first chosen such that gcd(𝒅𝒑, 𝒑 − 𝟏) = 𝟏, and then the 

integers 𝒆 and 𝒅𝒒 are calculated sequentially using equations 

(4.2) and (4.3). This key generation process ensures the 

encryption and decryption efficiency for RPower-RSA, like 

the modifications made for Rebalanced-RSA. 

Numerical Example: 

Key generation: 

𝑝 =  9223372036854775837 (64 bits size) 

𝑞 =  255211775190703847597530955573826158773 

(128 bit size) 

𝑛 =  2171101673199678677844652243378928956594 

7422118128751705692722185353209991837(254 bit 

size) 

𝑑𝑝 =  49157 (16 bit size) 

𝑒 =  3321817412382304685 (62 bit size) 

𝑑𝑞 =  170151490439940554373010335073770611753 

(128 bit size) 

Encryption: 

For 𝑀 =  10000000000000000000000000000000000000000 

𝐶 =  1129619802184247522679153905991809429450 

2131613273499167461670535269609333398 

Decryption: 

𝐶𝑝 =  4957498867100872130 

𝑀𝑝 =  4788622440386139474 

𝐶𝑞 =  22020261606487972598132348770903966498𝑧 

𝑀𝑞 =  46740767562549943696292732620779807853 

Using the formula provided in equation 2.8, 

𝑀𝑝2 =  46740767562549881106490090524271083550 

Finally, the plain text 𝑀 is obtained using equation (3.7). 

4.3.  Security and Validity  

If 𝑀 < 𝑝 or 𝑀 < 𝑞, then 𝑀𝑝 = 𝑀𝑞 = 𝑀. In this case, the 

proposed scheme becomes vulnerable to an active attack, as 

discussed in references [20-21]. Therefore, it is essential to 

ensure that 𝑀 satisfies the conditions 𝑀 > 𝑝 and 𝑀 > 𝑞 to 

maintain the security of the scheme. 

For the modified Rebalanced-RSA, from equations (3.1), 

(4.3), and (4.4), we can observe that the theoretical validity of 

the keys is equivalent to the validity of the Rebalanced-RSA 

key generation algorithm. Considering the validity of the 

Rebalanced-RSA encryption and decryption processes, the 

formal proof of their correctness in the presented algorithm 

can be easily established. Similarly, the validity of the 

modified RPower-RSA encryption and decryption processes 

is equivalent to RPower-RSA. 

 

5. Comparison 

http://www.journals.manas.edu.kg/
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The encryption and decryption times in Rebalanced-RSA and 

RPower-RSA are generally longer than in standard RSA due 

to the increased bit size of the public key exponent 𝑒, which is 

equal to the bit size of 𝜑. However, the key generation 

algorithms presented in Section 4 address this by modifying 

the bit sizes of the keys. In the proposed method, the bit size 

of 𝑒 is approximately equal to the bit size of 𝑝, resulting in a 

shorter encryption time compared to the original variants. 

Additionally, the bit size of one decryption key is 

approximately equal to the bit size of 𝑞, leading to encryption 

and decryption times that are closer to each other.  

In the modified key generation algorithm for Rebalanced-

RSA, the bit size of 𝑒 being roughly equal to the bit size of 𝑝 

significantly reduces the encryption time compared to the 

original Rebalanced-RSA. Likewise, the bit size of one 

decryption key being approximately equal to 𝑞 ensures 

encryption and decryption times are well-balanced. In the 

modified RPower-RSA key generation algorithm, the same 

principle is applied. Furthermore, when computing 𝑀𝑝𝑘, the 

exponent 𝑒 is used, enhancing the efficiency of the encryption 

process compared to the original RPower-RSA. These 

modifications collectively improve the overall performance of 

both encryption and decryption operations. 

To compare RSA and its variants with the two new key 

generation algorithms presented in this paper, a table 

containing the key lengths was created for 𝑛 = 1024 bit size. 

 

 

  

Table 5. 1: Key Length of Algorithms(bit size) 

 

Algorithms Primes  Public key Private key(s) 

RSA 𝑝 = 𝑞 = 512 𝑒 = 16 𝑑 = 1024 

CRT-RSA 𝑝 = 𝑞 = 512 𝑒 = 16 𝑑𝑝 = 𝑑𝑞 = 512 

MultiPrime-RSA (for k=4 primes) 𝑝1 = 𝑝2 = 𝑝3 = 𝑝4 = 256 𝑒 = 16 𝑑1 = 𝑑2 = 𝑑3 = 𝑑4 = 256 

MultiPower-RSA (for 𝑝3𝑞) 𝑝 =  𝑞 = 256 𝑒 = 16 𝑑𝑝 =  𝑑𝑞 = 256 

ReBalanced-RSA 𝑝 =  𝑞 = 512 𝑒 = 1024 𝑑𝑝 =  𝑑𝑞 = 16 

Modified Rebalanced-RSA 𝑝 = 𝑞 = 512 𝑒 = 512 𝑑𝑝 = 16, 𝑑𝑞 = 512 

Rprime-RSA 𝑝1 = 𝑝2 = 𝑝3 = 𝑝4 = 256 𝑒 = 1024 𝑑1 = 𝑑2 = 𝑑3 = 𝑑4 = 16 

Rpower-RSA (for 𝑝3𝑞) 𝑝 =  𝑞 = 256 𝑒 = 512 𝑑𝑝 =  𝑑𝑞 = 16 

Modified Rpower-RSA (for 𝑝3𝑞) 𝑝 =  𝑞 = 256 𝑒 = 256 𝑑𝑝 = 16, 𝑑𝑞 = 256 

 

As shown in Table 5.1, in the new algorithms, when one of the private keys is selected to be very short, the size of the public 

key is reduced. Additionally, the bit size of the other private key is approximately equal to the bit size of 𝑒 in this scheme. As 

a result, the encryption and decryption times will be closer to each other. 

 

6. Conclusion 

In this paper, we propose two novel key generation algorithms 

as modifications to Rebalanced-RSA and RPower-RSA. The 

first proposed algorithm reduces the encryption time 

compared to Rebalanced-RSA, while maintaining a balance 

between encryption and decryption times, ensuring a more 

efficient computational effort. Similarly, the second proposed 

algorithm reduces the encryption time relative to RPower-

RSA, with encryption and decryption times remaining 

approximately equal, thereby demonstrating improved 

efficiency and a well-balanced computational performance. 

Also, when calculating the number 𝑴𝒑𝟐 in eq. (3.8) for 𝒌 =

𝟐, the number 𝒆 is used as the exponent. So, the modified 

RPrime key generating algorithm further improves encryption 

process compared to original RPower-RSA. 
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