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Abstract

This study explores the behaviour of power-law fluids over decelerating rotating disks. The disk’s
angular velocity decreases inversely with time, and the unsteady governing equations modeling
this flow yield similarity transformations that depend on the nondimensional parameter α̂ = α

Ω0
.

These transformations, introduced here for the first time in the literature, allow for a comprehensive
analysis of the fluid dynamics for shear-thinning fluids within the range 0.5 < n≤ 1.

We examine the no-slip boundary condition alongside the dimensionless unsteadiness parameter,
which quantifies the initial deceleration or acceleration of the disk. We present velocity profiles and
the viscosity function for various values of α̂ . The boundary layer problem, formulated through
dimensionless momentum and continuity equations derived via similarity transformations, is solved
using the bvp4c function in MATLAB. This numerical method, employing the 4th-order Runge-
Kutta algorithm, provides approximate solutions for the U , V , and W velocity profiles and the µ

viscosity function, considering different deceleration parameters and the power-law index n.

Our findings contribute novel insights into the fluid dynamics of power-law fluids in decelerating
rotational systems, offering potential applications in industrial and engineering processes where
such conditions are prevalent.

1. Introduction

The study of boundary layer analysis on rotating disks has been a topic of significant interest in fluid dynamics research.
This area was first explored by Theodore von Karman [1], who established the foundational equations for steady boundary
layer flow. The von Kármán boundary layer flow is part of a broader family of flow types characterized by the differential
rotation rate between a solid disk and an incompressible fluid rotating above it as a rigid body. This family of flows is known
as BEK system flows [2]. The groundbreaking experimental analysis using the china-clay technique conducted by Gregory
and Stuart [3] revealed a notable similarity between the von Kármán rotating-disk flow and flows over swept wings. This
work demonstrated that despite the apparent differences between these two flow configurations, they exhibit comparable flow
patterns and boundary layer characteristics. This discovery prompted the investigation of rotating disk flow as a prototypical
case for both empirical and theoretical research.

The von Kármán rotating-disk flow has indeed become a fundamental model for analyzing the transition from laminar to
turbulent flow in three-dimensional boundary layers. This model has been widely applied across various scenarios involving
rotating disks due to its simplicity and the rich insights it provides into flow behaviour.

Malik’s pioneering numerical study [4], together with Lingwood’s investigations [5, 6, 7] and more recent contributions
like Appelquist’s theoretical work [8], have greatly advanced our understanding of steady flows over smooth rotating disks.
These theoretical studies have explored various aspects of the flow, including the stability of laminar boundary layers and the
mechanisms leading to turbulence, thereby advancing our knowledge of the transition processes in such flows.

Studies on rotating flows with rough disks have also significantly advanced the understanding of boundary layer dynamics.
Notably, research by Harris et al. [9] investigated the effects of surface roughness on the flow characteristics over rotating disks,
revealing how roughness influences the transition to turbulence and changes the base flow profiles. Cooper and Carpenter
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[10] further explored these effects, focusing on theoretical aspects of how rough surfaces modify boundary layer behaviour.
Additionally, Cooper et al. [11] examined the impact of various types of surface roughness on rotating disk flows, contributing
to a broader understanding of how surface imperfections affect flow transition and turbulence. Further insights are provided
by studies such as those by Alveroglu and Christian [12, 13], which offer valuable perspectives on the complex interactions
between surface roughness and rotating flow dynamics.

Although the studies mentioned above primarily focus on Newtonian fluids, significant progress has been made in extending
the von Kármán boundary layer flow analysis to non-Newtonian fluids. Mitschka [14] was pivotal in this extension, utilizing a
boundary layer approximation to explore how non-Newtonian behaviours influence the flow characteristics around rotating
disks. This work marked a significant shift from classical Newtonian models, offering new insights into the behaviour of fluids
with complex viscosity profiles. After that, both Mitschka and Ulbrecht [15] as well as Andersson et al. [16] and Hussain
et al. [17] contributed valuable numerical solutions for the basic flow in the context of shear-thickening and shear-thinning
fluids. Mitschka and Ulbrecht focused on the numerical analysis of shear-thinning and shear-thickening fluids, which exhibit
an increase in viscosity with increasing shear rate, while Andersson et al. examined highly shear-thickening fluids. Their
work has provided a deeper understanding of how these non-Newtonian properties affect the flow dynamics around rotating
disks, revealing differences in boundary layer behaviour and flow transition characteristics compared to Newtonian fluids.
These studies have expanded the applicability of von Kármán’s work, making it relevant for a broader range of industrial and
scientific applications where non-Newtonian fluids are present. However, Denier and Hewit [18] investigated the problem for
both shear-thinning and shear-thickening fluids and showed that there are some fundamental issues regarding the application of
power-law models in the boundary layer context. More recently, instability analysis examined in the boundary layer of rotating
disks for shear-thinning fluids [19, 20, 21]. Using a sixth-order linear stability equation system, they found that increasing
shear thinning stabilizes type I and type II modes in the flow. The results are consistent with established asymptotic estimates
and provide new insights into the critical Reynolds number and growth rate. In [22], power-law fluids was conducted by
Abdulameer et al., investigating the effect of shear-thinning fluids on convective type I and type II instability modes was
analyzed using the Chebyshev polynomial method. Further, Alqarni et al. [23] have demonstrated, the local linear convective
instability of boundary-layer flows over rough rotating disks using the Carreau model, a different type of non-Newtonian flow,
by determining steady-flow profiles. It has been also shown by Lingwood and Henrik Alfredsson [24] that the rotating disk
boundary layer itself exhibits a large number of complex instability behaviours that are not yet fully understood.

In addition to these studies, the decelerated rotating disk case investigated viscous flow and emphasised the relationship
between fluid stresses and velocities [25, 26]. Further, Turkyılmazoglu et al. [27] focused on the heat transfer characteristics
in nanofluid MHD flow across a decelerated rotating disk with uniform suction, and also the impact of uniform suction and
magnetohydrodynamics on several nanofluids, such as silver, alumina, and copper, were studied Rahman et al. [28] over a
decelerated rotating disk. Additionally, Fang and Tao [29] studied the laminar unsteady flow across a stretchy decelerated
rotating disk. These works contributed to the growing body of knowledge on how velocity changes affect fluid behaviour on
decelerating rotating disks.

In particular, the similarity transformations of non-Newtonian fluids and the related velocity profiles and viscosity functions
are discussed, focusing on the shear-thinning states and the dimensionless unsteadiness parameter of these fluids. This
way, the similarity transformations for power-law fluids are obtained on a decelerating rotating disk and solved numerically
using MATLAB’s bvp4c function. This function’s numerical approach relies on a finite difference code that implements the
three-stage Lobatto IIIa formula, equivalent to an implicit Runge-Kutta formula with a continuous interpolant [30].

This research examines a non-Newtonian fluid with non-constant viscosity contained in a container and rotates non-uniformly
with an angular velocity that varies with time (t) in an inertial frame. The equation of motion for a fluid element about a
reference frame may be found using the conservation of momentum concept. The mathematical description of rotating fluids
may be done using a variety of reference frames. Adopting a reference frame whose axes are fixed in a fluid-filled container is
physically and mathematically natural for many geophysical problems, such as atmospheric dynamics. This is often referred to
as a rotating frame, mantle frame, or body frame so that the bounding surface of the container is constant and there are only
minor deviations from rigid body rotation [31].

2. Formulation

We consider the steady incompressible power-law fluid reviews that geometry is an infinite rotating plane, stating at z∗ = 0
and also we use the symbol ∗ to indicate the dimensional parameter. However, since we use the assumption that the disk is
decelerating, we consider the inertial frame. The plane rotates with a angular velocity Ω∗D = Ω0(1−αt∗)−1, decelerating
around z∗ = 0. The continuity and Navier-Stokes equations can be considered as

∇∇∇ ·uuu∗ = 0 (2.1)
∂uuu∗

∂ t∗
+uuu∗ ·∇uuu∗+2ΩΩΩ

∗
DDD×uuu∗+ rrr×

(
∂ΩΩΩDDD

∂ t∗

)
=− 1

ρ∗
∇p∗+

1
ρ∗

∇∇∇ · τττ∗. (2.2)

Here U∗, V ∗, W ∗ are the steady velocity components in cylindrical polar coordinates, rrr = (r∗,θ ,z∗) is the position vector, t∗ is
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the time and ΩΩΩ
∗
D = (0,0,Ω∗D) is the vector form of the angular velocity of the disk that describes the disk just rotates about the

z∗ axis with angular velocity Ω∗D. Moreover, ρ∗ is the fluid density and p∗ is the pressure. The stress tensor τττ∗ for generalised
Newtonian models, is defined by

τττ
∗ = µ

∗
γ̇
∗ with µ

∗ = µ
∗ (γ̇∗)

where γ̇γγ
∗ = ∇∇∇uuu∗+(∇∇∇uuu∗)T is the rate-of-strain tensor and µ∗ (γ̇∗) is the non-Newtonian viscosity. The magnitude of the

symmetric rate-of-strain tensor is given by

γ̇
∗ =

√
γ̇γγ
∗ : γ̇γγ

∗

2
.

The Navier Stokes Equations written for incompressible fluids together with the inertial frame for the reference whose axes
rotate in a container filled with fluid are as follows,

1
r∗

∂ (r∗U∗0 )
∂ r∗

+
1
r∗

∂V ∗0
∂θ

+
∂W ∗0
∂ z∗

= 0 (2.3)

∂U∗0
∂ t∗

+U∗0
∂U∗0
∂ r∗

+
V ∗0
r∗

∂U∗0
∂θ

+W ∗0
∂U∗0
∂ z∗
−

(V ∗0 + r∗Ω∗)2

r∗
=

1
ρ∗

∂

∂ z∗

(
µ
∗ ∂U∗0

∂ z∗

)
, (2.4)

∂V ∗0
∂ t∗

+U∗0
∂V ∗0
∂ r∗

+
V ∗0
r∗

∂V ∗0
∂θ

+W ∗0
∂V ∗0
∂ z∗

+
U∗0 Ṽ ∗0

r∗
+2Ω

∗U∗0 + r∗
∂Ω∗

∂ t∗
=

1
ρ∗

∂

∂ z∗

(
µ
∗ ∂V ∗0

∂ z∗

)
, (2.5)

∂W ∗0
∂ t∗

+U∗0
∂W ∗0
∂ r∗

+
V ∗0
r∗

∂W ∗0
∂θ

+W ∗0
∂W ∗0
∂ z∗

=− 1
ρ∗

∂P∗1
∂ z∗

+
1

ρ∗r∗
∂

∂ r∗

(
µ
∗r∗

∂U∗0
∂ z∗

)
+

1
ρ∗r∗

∂

∂θ

(
µ
∗ ∂V ∗0

∂ z∗

)
+

2
ρ∗

∂

∂ z∗

(
µ
∗ ∂W ∗0

∂ z∗

)
. (2.6)

Here U∗0 , ,V ∗0 , W ∗0 are the leading order velocity components and P∗1 is the leading order pressure term. The rate-of-strain
tensor γ̇∗ can be written to be

γ̇
∗ =

√
II
2

=

{
2

[(
∂U∗

∂ r∗

)2

+

(
1
r∗

∂V ∗

∂θ
+

U∗

r∗

)2

+

(
∂W ∗

∂ z∗

)2
]

(2.7)

+

[
r∗

∂

∂ r∗

(
V ∗

r∗

)
+

1
r∗

∂U∗

∂θ

]2

+

(
∂U∗

∂ z∗
+

∂W ∗

∂ r∗

)2

+

(
∂V ∗

∂ z∗
+

1
r∗

∂W ∗

∂θ

)2
}1/2

where
II = ∑

i
∑

j
γ̇
∗2
i j = γ̇

∗2
r∗r∗ + γ̇

∗2
θθ + γ̇

∗2
z∗z∗ +2

(
γ̇
∗2
r∗θ + γ̇

∗2
r∗z∗ + γ̇

∗2
θz∗
)
.

To determine the unsteady mean flow relative to the disk, we offer the generalization of the standard Newtonian similarity
solution. So, we consider the following transformations,

U∗0 =U(η)r∗Ω∗D, V ∗0 =V (η)r∗Ω∗D, W ∗0 =W (η)χ∗, P∗1 = ρ
∗
χ
∗2 , (2.8)

where

χ
∗ =

[
ν∗

r∗1−n
(Ω0(1−αt∗)−1)1−2n

]1/(n+1)

.

Here U , V , W are the dimensionless radial, azimuthal and axial base flow velocities, respectively. Additionally, P is the
pressure and ν∗ = m∗

ρ∗ is the kinematic viscosity. The dimensionless similarity coordinate that can be also named as boundary
layer thickness is

η =
r∗

1−n
n+1 z∗

L∗2/(n+1) , where L∗ =

√
ν∗

(Ω0(1−αt∗)−1)2−n .

These similarity variables account for the time-dependent variation of boundary layer thickness and represent the first instance
of such an introduction for power-law fluids in the literature.
Consequently, the similarity equations for the governing boundary layer equations of a decelerated power-law fluid, represented
by equations (2.1) and (2.2), are derived for the first time as follows:

2U +
1−n
1+n

ηU ′+W ′ = 0
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α̂

(
U− n−2

n+1
ηU ′

)
+U2 +

(
η

1−n
n+1

U +W
)

U ′− (V +1)2− (µU ′)′ = 0,

α̂

(
V − n−2

n+1
ηV ′+1

)
+V ′

(
η

1−n
n+1

U +W
)
+2U (V +1)− (µV ′)′ = 0, (2.9)

α̂

(
2n−1
n+1

W +
2−n
n+1

ηW ′
)
+

1−n
n+1

[
U
(
ηW ′−V

)
+2µU ′

]
+2µ

′U +P′+WW ′− (µW ′)′ = 0.

where the primes denote differentiation with respect to η and the viscosity function is

µ =
[
U ′2 +V ′2

] n−1
2 .

Owing to (2.9) the non-dimensional boundary conditions are

U(0) =V (0) =W (0) = 0,U(η → ∞)→ 0 and V (η → ∞)→−1. (2.10)

To obtain the flow profiles U , V and W , the dimensionless mean flow equations (2.9) valid for the power-law are expressed as a
system of first order ordinary differential equations. This system of equations is written as five coupled first order equations in
terms of the new five dependent variables ψn(n = 1,2, ...,5), which are defined as follows:

ψ1 =U, ψ2 =U ′, ψ3 =V, ψ4 =V ′, ψ5 =W. (2.11)

Using the first order equations defined by (2.11), the transformed system of first order ordinary differential equations with
no-slip boundary conditions for power-law fluids is obtained as follows:

ψ
′
1 = ψ2

ψ
′
2 =

(ψ2
2 +nψ2

4 ) f −ψ2ψ4(n−1)g
nµ(ψ2

2 +ψ2
4 )

ψ
′
3 = ψ4 (2.12)

ψ
′
4 =

(nψ2
2 +ψ2

4 )g−ψ2ψ4(n−1) f
nµ(ψ2

2 +ψ2
4 )

ψ
′
5 =−2ψ1−

1−n
1+n

ηψ2.

The nondimensional boundary conditions are

ψ1(0) = ψ3(0) = ψ(0) = 0
ψ1(∞)→ 0, ψ3(∞)→−1. (2.13)

Also in (2.12), f and g are given below

f = α̂(u− (n−2)/(n+1)ηψ2)+ψ
2
1 − (ψ3 +1)2 +(ψ5 + ψ̂ψ1)ψ2,

g = α̂(ψ3− (n−2)/(n+1)ηψ4 +1)+2ψ1(ψ3 +1)+(ψ5 + ψ̂ψ1)ψ4,

with ψ̂ = (1−n)/(1+n)η . These equations simplify to the Newtonian case when n = 1, aligning with established literature.
Although these equations are applicable to both shear-thickening (n > 1) and shear-thinning (n < 1) fluids, Denier and
Hewitt [18] demonstrated that bounded solutions of (2.9) subject to (2.10) exist only for shear-thinning fluids with n > 0.5.
Consequently, Griffits et al. [19, 22] investigated power-law indexed flows within the range 0.5 < n≤ 1 for a steady rotating
flow. In line with their work, this study also focuses on shear-thinning fluids with 0.5 < n≤ 1 in the context of a decelerated
rotating disk.

3. Results and Discussion

The obtained similarity equations (2.9) were solved approximately in MATLAB using the bvp4c function in accordance with
the boundary conditions given in (2.10) and the following velocity profiles were obtained. Hussain et al. [17] expanded
the range of α̂ to −100, building upon earlier work by Watson and Wang [25], who established that a disk can only have a
momentum layer if it is decelerating, i.e., when α̂ < 0. Rahman et al. [28] later provided numerical solutions for eight different
values of α̂ in the interval 0≤−α̂ ≤ 20. Here, by choosing 0.5 < n≤ 1, we observe that the flow is non-Newtonian and we
observe the changes due to the unsteadiness parameter 0≤−α̂ ≤ 8. The unsteadiness parameter was truncated at α̂ =−8
because of the discrepancies in the results obtained due to the deceleration of the rotating disk.

Before performing the calculations, the numerical scheme needed to be validated using a comparison methodology. Table 2
presents a comparison with the results of [25, 29] the classical Newtonian fluid case. The compared data are in good agreement,
which not only validates the code but also demonstrates the accuracy and reliability of the numerical scheme.
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n = 0.6 n = 0.7

α̂ U ′(0) V ′(0) W (∞) U ′(0) V ′(0) W (∞)

0 0.5 −0.6770 −1.3046 0.5015 −0.6530 −1.1967

−0.5 0.5416 −0.4858 −0.8241 0.5638 −0.4676 −0.8391

−2 0.5011 −0.0785 −0.3312 0.6433 −0.0050 −0.4438

−5 0.3515 −0.2152 −0.0948 0.6637 0.6416 −0.1846

−8 0.2783 −0.3293 −0.0430 0.6191 1.0941 −0.0989

n = 0.8 n = 0.9

α̂ U ′(0) V ′(0) W (∞) U ′(0) V ′(0) W (∞)

0 0.5039 −0.6362 −1.0773 0.5069 −0.6243 −0.9688

−0.5 0.5826 −0.4523 −0.8436 0.5992 −0.4394 −0.8469

−2 0.7633 0.0610 −0.5660 0.8583 0.1141 −0.6923

−5 1.0053 1.0296 −0.3399 1.3165 1.2624 −0.5516

−8 1.1075 1.9083 −0.2331 1.6824 2.4214 −0.4715

n = 1

α̂ U ′(0) V ′(0) W (∞)

0 0.5102 −0.6159 −0.8845

−0.5 0.6143 −0.4284 −0.8510

−2 0.9315 0.1550 −0.8193

−5 1.5628 1.3609 −0.8012

−8 2.1873 2.5887 −0.7941

Table 1: Table of boundary values for U,V and W

n = 1

α̂ =−0.5 [25] [29] Present

U ′(0) 0.614283 0.6143 0.6143

V ′(0) -0.428406 -0.4284 -0.4284

W (∞) 0.4255 -0.8510

α̂ =−2 [25] [29] Present

U ′(0) 0.931507 0.9315 0.9315

V ′(0) 0.154981 0.1550 0.1550

W (∞) 0.4096 -0.8193

α̂ =−5 [25] [29] Present

U ′(0) 1.562797 1.5627 1.5628

V ′(0) 1.360850 1.3609 1.3609

W (∞) 0.4006 -0.8012

Table 2: Comparison of U ′(0), V ′(0) and W (∞) obtained for various α̂ variables with the results of [25] and [29] the classical Newtonian
fluid case.

The power-law shear-thinning flow profiles calculated for the decelerating disk are illustrated in Figures 1, 2, and 3. They
reveal that all those profiles decay to their corresponding far field values as decelarating parameter decreases. Figure 1 reveals
a notable decrease in the boundary layer thickness as the instability parameter −α̂ increases. This decrease becomes more
pronounced with increasing −α̂ , ultimately leading to a significant reduction in the boundary layer thickness. Additionally, the
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maximum value of the radial jet also decreases as −α̂ grows in magnitude. Also, as deceleration increases, the location of the
maximum value of the radial jet shifts closer to the disk surface. Despite these changes in boundary layer thickness and radial
jet strength, the inflectional shape of the flow profile remains preserved, indicating stability in the overall flow structure.
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Figure 1: Radial velocity profiles for power-law flow for 0.5 < n≤ 1 versus η . The boundary layer thickness η axis has been truncated at
20.

The effect of non-zero α̂ on the azimuthal profile is presented in Figure 2. For each value of the shear-thickening parameter n,
the figure demonstrates that the transition of the profile to the boundary value at the far field becomes more rapid as the disk’s
deceleration increases. This observation is consistent with the decrease in boundary layer thickness noted previously.

Figure 3 shows the axial velocity profile for various values of the shear-thickening parameter n. The figure illustrates that an
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increased deceleration rate leads to a significant reduction in the magnitude of the axial jet, hence reduce the amount of the
fluid entering the boundary layer. Furthermore, the decrease in the magnitude of the axial flow becomes more pronounced as
the shear-thickening parameter n decreases.
For small unsteadiness parameter values, the fluid ahead of the disk rotates slower than the disk. This phenomenon may be a
consequence of the rapid decelerated rotation of the disk, while the inertia of the neighbouring fluid layer allows the fluid to
sustain its more significant angular momentum for a long time. Also, as shown in Figures 1, 2, 3 the results are consistent
with the boundary layer analysis for a disk rotating at constant velocity (α̂ = 0). This involves approximate solutions that are
directly identical to the result for constant angular velocity rotation of the disk and whose velocity profiles are equivalent to
those obtained for flows with known power-law indexes [19].
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Figure 2: Azimuthal velocity profiles for power-law flow for 0.5 < n≤ 1 versus η . The boundary layer thickness η axis has been truncated
at 20.
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Figure 3: Axial velocity profiles for power-law flow for 0.5 < n≤ 1 versus η . The boundary layer thickness η axis has been truncated at 20.

Finally, viscosity profiles for the numerical results obtained are given in Figure 4. As the angular velocity of the disk slows
down with time, the viscous effects of the flow on the wall surface increase, the numerical data obtained when the power-law
index n = 0.6 show a decrease by almost half as n increases.
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Figure 4: µ versus η for n = 0.6,0.7,0.8.

4. Conclusion

This study investigates power-law fluids over decelerating rotating disks, with the disk’s angular velocity inversely proportional
to time. By deriving similarity transformations, we explored the flow characteristics dependent on the nondimensional
unsteadiness parameter α̂ . For 0.5 < n≤ 1, we analyzed the no-slip condition and the dimensionless unsteadiness parameter,
detailing the velocity profiles and viscosity function with respect to deceleration parameters α̂ = 0,−0.5,−2,−5,−8. The
findings revealed that an increased decelerating parameter results in a thinner boundary layer and a reduction in the maximum
value of the U profile. It also causes a decrease in the amount of axial flow towards the boundary layer, which is consistent
with the observed reduction in boundary layer thickness. Additionally, it was observed that the inflectional profile of mean
flow components does not change notably with varying deceleration rates. These findings provide valuable insights into the
behaviour of non-Newtonian fluids over decelerating rotating disks, with applications in engineering and industrial processes.
The study demonstrates the effectiveness of numerical methods in solving complex fluid dynamics problems, contributing to
advancements in the field.

For future work, this study can be extended to include other non-Newtonian fluid models, such as the Bingham and Carreau
models, which could offer a more comprehensive understanding of fluid behaviours in different scenarios. Additionally,
exploring cases with rough rotating disks could provide insights into how surface texture influences flow dynamics. Finally, it
would be valuable to investigate other flow scenarios within the BEK system for non-Newtonian cases. Exploring these different
flow configurations could further enhance our understanding of non-Newtonian fluid dynamics and contribute additional
insights to the field. Incorporating these elements could enhance the applicability and relevance of our findings. We anticipate
that our results will serve as a useful foundation for these extended studies, contributing valuable data and insights to the field.
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