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Abstract 

In this study, the displacements of cantilever beams for various slenderness ratios under point load are analyzed 
using Timoshenko and Bernoulli-Euler beam theories. The variation of the slenderness ratio is achieved only by 
changing the beam length. The results from these theories are compared with those from SolidWorks, which is 
considered a reliable simulation software. With this comparison, the % difference rates between the simulation 
and theoretical results are determined. This study explains under which conditions the Timoshenko and Bernoulli-
Euler beam theories should be applied and evaluates the accuracy of the simulation software. Detailed research 
is carried out to examine its compatibility with these two theories. Some numerical results are presented to 
demonstrate their validity and sensitivity.  
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1. Introduction 

Beams are one of the bar elements frequently used in civil engineering and building design. 
Beams, which are one-dimensional structural elements, are generally in vertical and horizontal 
positions and are exposed to loads in the direction of the bar axis and perpendicular to the bar 
axis. To give examples of places where they are used, we can give some examples such as 
buildings and bridges. However, it is possible to see objects modeled as beams in many parts 
of life. For example, the working principle of the atomic force microscope (AFM) can be given 
as an example of a cantilever beam (see Fig. 1).  

 
Fig. 1. The schematic view of an AFM’s cantilever scanning a sample. a) 3D view of the 

AFM. b) 2D view of the cantilever [1]. 
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The behavior of these elements under loads is of great importance for the safety, durability, and 
design of structures.  Being able to analyze these behaviors accurately is essential for beams to 
be designed both safely and efficiently. Significant studies have been carried out on this subject 
from the past to present. The oldest known study among these studies was carried out by 
Leonhard Euler in 1744 [2]. In this study, Euler examined the displacements and buckling of 
beams and used algebra of variation to obtain these equations. Over the following years, this 
study became the pioneer of many studies to follow. Detailed information about these and the 
historical development of elastic stability can be found in the book “Theory of Elastic Stability” 
by Timoshenko and Gere [3]. There is also a study on the mechanics of materials by Gere and 
Timoshenko, which includes the theory of bending and displacement of beams [4]. Apart from 
these studies, quite extensive studies have been carried out. For example, Wang et al. [5] 
provide definitive solutions for buckling analysis of structural elements and aims to solve 
common problems in engineering structures by analytical methods. Zienkiewicz et al. [6] made 
a comprehensive resource on the finite element method (FEM), and this resource discusses the 
basic principles and applications of FEM in detail and explains how this method can be used to 
solve engineering and scientific problems. Bazant [7] addressed a comprehensive book that 
covers the basic principles of stability analysis, explaining in detail the various theories used to 
study the stability of structural members. Ghali et al. [8] is a comprehensive resource that 
combines classical and matrix methods used in structural analysis. Cook et al. [9] 
comprehensively explained the basic principles, mathematical foundations, and use of FEM in 
engineering practices and show how to use the finite element method in solving engineering 
problems [9]. While Akgöz et al. [10, 11] explained how to use Bernoulli-Euler beam model in 
the bending analysis of single-walled carbon nanotubes, in another study they presented a 
discrete singular convolution method for calculating the deflection analysis of beams resting on 
elastic foundations. Van Vinh et al. [12] investigated the static bending and buckling behaviors 
of bi-directional functionally graded (BFG) plates with porosity. Yaylacı et al. [13] carried out 
a numerical investigation on the vibration and buckling of functionally graded material (FGM) 
beam containing edge crack using FEM and multilayer perceptron (MLP) [13]. Azizi et al. [14] 
conducted a study to find deflection of a beam using finite element method based on Bernoulli-
Euler and Timoshenko beam theories. Oladejo et al. [15] compared the results of deflection 
analysis of cantilever beam with COMSOL program to show its accuracy. Chaphalkar et al. 
[16] described the experimental apparatus and the associated theory which allows to obtain the 
natural frequencies and modes of vibration of a cantilever beam. Also, all the frequency values 
are analyzed with the numerical approach method by using ANSYS finite element package has 
been used. Hodzic [17] described the bending of cantilever beam and its analysis using finite 
element method. He compares the results obtained for boundary conditions with the results 
obtained from ANSYS simulation program. Raj et al. [18] conducted a study on modelling, 
simulation and analysis of cantilever beams by using ANSYS & MATLAB and theoretically 
by FEM for the evaluation of natural frequency and mode shape. Quang et al. [19] analyzed a 
three-span continuous beam using FEM and ANSYS via GUI method and APDL parameters. 
Ho et al. [20] compared the experimental results on deflection values of aluminum beam with 
the results calculated by FEM. SolidWorks 3D CAD software is used to build the beam model 
and perform finite element analysis. Samal et al. [21] investigated the deflection and stress 
distribution in a long, slender cantilever beam of uniform rectangular cross section made of 
linear elastic material properties that are homogeneous and isotropic. Finite element analysis of 
the beam was done considering various types of elements under different loading conditions in 
ANSYS 14.5. Balart Gimeno et al. [22-24] conducted some studies using the finite element 
method and the SolidWorks program. Onimowo [25] investigated the deflection and bending 
stress in a cantilever beam having a uniform rectangular cross section with a point load using a 
3D Finite Element (FE) model. The results are validated using Bernoulli-Euler’s elastic curve 
theory equations. Ya et al. [26] calculated the deflection of a cantilever beam was simulated 
under the action of uniformly distributed load. Then, compared the results obtained from the 
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simulation with the results of Artificial Neural Networks (ANN). Talebi Rostami et al. [27] 
analyzed a Timoshenko beam with snowflake cross-section for different boundary conditions 
and variable properties. The equation of motion was solved with FEM and compared with the 
SolidWorks simulation. Gao [28] carried out deflection analysis of beams with the help of 
COMSOL program according to the finite element method and compared it with the results 
obtained from Timoshenko and Bernoulli-Euler beam theory. Onwubolu [29] presented to be 
an important resource for today's studies with his book on the use of SolidWorks. 

As mentioned above, many studies have been carried out on this subject to date, since the 
concept of displacement has a decisive role in the design of structural elements exposed to 
loads. In this study, Bernoulli-Euler and Timoshenko beam theories will be compared for beams 
with different slenderness ratios that change as the cross-section changes along the beam length. 
Then, these results will be compared with SolidWorks, one of the simulation programs widely 
used in engineering design. 

Bernoulli-Euler beam theory is one of the best-known and most used theories in engineering. 
This theory was developed by Jakob Bernoulli and Leonhard Euler in the 18th century. This 
beam theory is also known as thin beam theory or engineering beam theory. In Bernoulli-Euler 
beam theory, collapse and load-carrying behaviors are calculated. There are some assumptions 
in Bernoulli-Euler beam theory. In the approach of the Bernoulli-Euler beam theory, each beam 
section is perpendicular to the beam axis in case of bending. Bernoulli-Euler beam theory is 
independent of y-axis [30]. Therefore, the stresses in y-axis are neglected and the beam is 
assumed to have a straight axis. Due to these assumptions, Bernoulli-Euler beam theory is a 
simple beam theory to solve and use. Due to these negligible values, applying Bernoulli-Euler 
to beams with a high slenderness ratio will give us more accurate options. Because shear 
deformation and moment of inertia effects are less effective in beams with a high slenderness 
ratio. 

Timoshenko beam theory was presented by Stephen Timoshenko in the early 20th century [31]. 
This beam theory has been one of the most widely used beam theories since it was presented. 
This is because, in addition to Bernoulli-Euler beam theory, it also uses values of shear 
deformation and moment of inertia due to shear force. Therefore, Timoshenko beam theory can 
be considered as an advanced version of the Bernoulli-Euler beam theory. Due to the shear 
deformation and moment of inertia values taken into calculation in the Timoshenko beam 
theory, it is expected that the Timoshenko beam theory will always give more accurate results 
than the Bernoulli-Euler beam theory. The deformed shapes of these two beam models are 
depicted in Fig. 2. 

 
Fig. 2. Comparison of Timoshenko and Bernoulli-Euler beam deformations 
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Fig. 3. Cantilever beam with rectangular cross-section 

A schematic configuration of a cantilever beam with length L, height h, and width b is shown 
in Fig. 3. Timoshenko beam theory is also known as first-order shear deformation beam theory 
because it gives better results in such thick beams compared to Bernoulli-Euler beam theory. 
So, Bernoulli-Euler and Timoshenko beam theories are the two main approaches used in the 
deformation analysis of beams and have their advantages and disadvantages. Bernoulli-Euler 
beam theory is widely preferred because of its simplicity of solution and its realistic results on 
long beams. However, Bernoulli-Euler beam theory cannot provide sufficient accuracy for short 
and thick beams because it neglects shear deformation and moment of inertia. Although the 
Timoshenko beam theory involves a more complex mathematical solution, it gives more 
accurate results with the values of shear deformation and moment of inertia included in the 
calculation. Comparing the performances of these two theories on beams with different 
slenderness ratios is important to determine which theory is more suitable for engineering and 
structural design. Comparison of these two beam theories with the analysis and simulation 
software widely used in today's engineering applications will help us to see the compatibility 
between the theories and the software packages. 

In this study, SolidWorks is chosen as the software to compare the theories. SolidWorks is a 
widely used software in engineering design. SolidWorks can perform detailed analysis of beams 
with complex geometries and load conditions using FEM. The simulation tools offered by 
SolidWorks provide the opportunity to analyze the behavior of beams under static and dynamic 
loads in detail. This study aims to examine how compatible SolidWorks simulations are with 
the theoretical results obtained with Bernoulli-Euler and Timoshenko beam theories. 
Particularly, which theory is more appropriate to use in displacement analyses of beams with 
different slenderness ratios, by comparing these theories with SolidWorks results, the validity 
and accuracy of the theories in practical applications will be tested. The results of the study will 
be a guide to providing more effective and reliable solutions in beam design.  
 
2. Theory and Formulation 
 
As shown in Fig.4, when a point load (P) of 1000 N is applied to a homogeneous cross-section 
cantilever beam with constant material properties from its non-fixed end, the displacement 
value according to Bernoulli-Euler beam theory can be expressed as follows: 
From the moment-curvature relationship, we know that: 
 

−𝐸𝐼
𝑑%𝑤
𝑑𝑥%

= 	𝑀(𝑥)	 (1)	 
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where E is the modulus of elasticity, I is the moment of inertia, and M(x) is the bending moment 
at a distance x, and .

/0
.1/

 is the curvature of the beam. The bending moment at a distance x from 
the free end is given by, 𝑀(𝑥) = 	−𝑃𝑥. 
 

 
Fig. 4. Homogeneous, cantilever beam modeled in SolidWorks. 

 

𝐸𝐼
𝑑%𝑤
𝑑𝑥%

= 	−𝑀(𝑥) = 𝑃𝑥	 (2)	 

 
𝑑%𝑤
𝑑𝑥%

= 	
𝑃
𝐸𝐼
𝑥	 (3)	 

 
Now, double integrating the above equation yields, 
 

𝑑𝑤
𝑑𝑥

= 	
𝑃
𝐸𝐼
5𝑥	𝑑𝑥 	 (4) 

 
𝑑𝑤
𝑑𝑥

= 	
𝑃
2𝐸𝐼

	𝑥% +	𝐶9	 (5) 
 

𝑤 =	5;
𝑃
2𝐸𝐼 𝑥

% +	𝐶9<𝑑𝑥 	 (6) 

 

𝑤 =	
𝑃𝑥>

6𝐸𝐼
+	𝐶9𝑥 +	𝐶%	 (7) 

 
Putting the boundary condition as 𝑤 = 0 and .0

.1
= 0 at 𝑥 = 𝐿, the integral constants are 

determined as 
 

 𝐶9 = 	−	
BC/

%DE
 , 𝐶% = 	

BCF

>DE
     (8) 

 
So, deflection at any point at distance x from the free end is given by, 
 

𝑤(𝑥) = 	
𝑃𝑥>

6𝐸𝐼
−	
𝑃𝐿%

2𝐸𝐼
𝑥 +	

𝑃𝐿>

3𝐸𝐼
	 (9) 
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The deflection at the free end of the rectangular cantilever beam is 
 

𝑤(0) = 	
𝑃𝐿>

3𝐸𝐼
	 (10) 

 
and the moment of inertia is 

𝐼 = 	
𝑏ℎ>

12
	 (11) 

 
It can be defined as: Again, for a homogeneous cross-section cantilever beam with constant 
material properties, the displacement value according to Timoshenko beam theory can be 
expressed as follows: 
 
Let us assume that the clamped end is at	𝑥 = 𝐿	and the free end is at 𝑥 = 0. If a point load P is 
applied to the free end in the positive y direction, a free-body diagram of the beam gives us 
 

−𝑃𝑥 −	𝑀(𝑥) = 0	 → 	𝑀(𝑥) = 	−𝑃𝑥	 (12) 
  

𝑃 + 	𝑄(𝑥) = 0	 → 	𝑄(𝑥) = 	−𝑃	 (13) 
 
Therefore, from the expressions for the bending moment and shear force, we have 
 

𝑃𝑥 = 𝐸𝐼
𝑑𝜑
𝑑𝑥 	𝑎𝑛𝑑,−𝑃 = 𝑘𝐴𝐺	 ;−𝜑 +	

𝑑𝑤
𝑑𝑥< .

(14) 

 
where 𝑘 is the shear correction factor, G is the shear modulus, A is the cross-sectional area, and 
𝜑 is the angle of rotation of the cross-section. Integration of the first equation, and application 
of the boundary condition 𝜑 = 0 at 𝑥 = 𝐿, leads to 
 

𝜑(𝑥) = 	−
𝑃
2𝐸𝐼 	

(𝐿% − 𝑥%). (15) 
 
The second equation can then be written as 
 

𝑑𝑤
𝑑𝑥

= 	−
𝑃
𝑘𝐴𝐺

−	
𝑃
2𝐸𝐼

	(𝐿% − 𝑥%). (16) 
 
Integration and application of the boundary condition 𝑤 = 0 at 𝑥 = 𝐿 gives 
 

𝑤(𝑥) = 	
𝑃	(𝐿 − 𝑥)
𝑘𝐴𝐺

−	
𝑃𝑥
2𝐸𝐼

	T𝐿% −	
𝑥%

3
U +	

𝑃𝐿>

3𝐸𝐼
	 (17) 

 
The deflection at the free end of the cantilever beam is 
 

𝑤(0) = 	
𝑃𝐿
𝑘𝐴𝐺

+	
𝑃𝐿>

3𝐸𝐼
	 (18) 

 
Since all these variables will change with the material we choose and the dimensions of the 
beam, we need to give the properties and dimensions of the material we choose: 
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Table 1. The values used in this study for an aluminum (5052-O) homogeneous cantilever beam 
Variable Symbol Value Unit 

Singular Load P 1000 N 
Length L 250,500,…,5000 cm 
Height h 50 cm 
Width b 50 cm 

Cross-Section Area A bh cm2 
Moment of Inertia I bh3/12 cm4 
Young's Modulus E 7000000 N/cm2 

Poisson’s Ratio v 0.33 - 
Shear Correction Factor k 5/6 - 

Shear Modulus G E/(2+2v) N/cm2 

As can be seen in Table 1, these values are repeated each time by increasing the length by 250 
cm to provide different slenderness ratios. 

3. Results and Discussion 

In this section, the displacement behavior of homogeneous cross-section beams with variable 
slenderness ratios under load is examined within the framework of slenderness ratios. Results 
are given for the cases where one end of the beam is fixed and the other end is free. Firstly, a 
comparison was made with the SolidWorks simulation program to prove the validity and 
sensitivity of the solution methods used. The Solidworks simulation program separated this 
cantilever beam into a certain number of finite elements as seen in Fig. 5.   

In Table 2, the maximum displacement values of homogeneous cantilever beams are compared 
with the SolidWorks simulation of Timoshenko and Bernoulli-Euler beam theories for various 
slenderness ratios. When the results are examined (examining the analysis result screen in Fig. 
6. may also give an idea.), it can be said that the results obtained in this study are in excellent 
agreement with the other results. 

 

Fig. 5. Separation of the beam into finite elements. 
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Fig. 6. Analysis result screen 
 

Table 2. Comparison of beam theories with SolidWorks on the maximum displacements (cm) 
with respect to various slenderness ratios 

Slenderness Ratio (L/h) Bernoulli-Euler Timoshenko SolidWorks 
5 0,001428571 0,001474171 0,001475231 
10 0,011428571 0,011519771 0,011521892 
15 0,038571429 0,038708229 0,038711405 
20 0,091428571 0,091610971 0,091615212 
30 0,308571429 0,308845029 0,308851331 
40 0,731428571 0,731793371 0,731801891 
50 1,428571429 1,429027429 1,429038048 
60 2,468571429 2,469118629 2,469130993 
70 3,920000000 3,920638400 3,920653152 
80 5,851428571 5,852158171 5,852175236 
90 8,331428571 8,332249371 8,332266808 
100 11,428571430 11,42948343 11,42950439 

 
Table 3. Comparison of % differences in maximum displacements with respect to various 

slenderness ratios 
Slenderness Ratio 

(L/h) 
Bernoulli-Euler –Timoshenko % 

Difference 
Timoshenko – SolidWorks % 

Difference 
5 3,093263044 1,234213101 
10 0,791682375 0,523117832 
15 0,353413228 0,465995258 
20 0,199102790 0,399235343 
30 0,088588119 0,297550460 
40 0,049850137 0,243612856 
50 0,031909814 0,266442410 
60 0,022161754 0,181457275 
70 0,016283062 0,145875785 
80 0,012467195 0,138543153 
90 0,009850881 0,127191497 
100 0,007979363 0,108483805 
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Table 4. Number of Nodes - Number of Elements Comparison of SolidWorks Analyses 
Slenderness Ratio 

(L/h) 
Number of 

Nodes 
Number of 
Elements 

5 25 23 
10 39 37 
15 50 48 
20 60 58 
30 79 77 
40 95 93 
50 110 108 
60 124 122 
70 137 135 
80 149 147 
90 161 159 
100 173 171 

The % differences between the displacement values of a homogeneous cantilever beam for 
different slenderness ratios are tabulated in Table 3 and plotted in Fig. 7. It can be observed that 
the % difference of Bernoulli-Euler beam theory gradually decreases as the slenderness ratio 
value increases. Timoshenko beam theory, on the other hand, despite its low % difference, has 
a % difference value that decreases even more as the slenderness ratio increases. 

 

 
Fig. 7. Comparison of % differences 

Fig. 8. and Table 4 show the Number of Nodes - Number of Elements. As can be seen here, the 
relationship between Number of Nodes - Number of Elements has a constant increase. 
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Fig. 8. Comparison of Number of Nodes - Number of Elements 

 

4. Conclusions 

In this study, the displacement behavior of cantilever beams with homogeneous cross-sections 
and various slenderness ratios subjected to point load was examined. The results obtained using 
Bernoulli-Euler and Timoshenko beam theories are compared with the results obtained from 
the simulation program SolidWorks. While it has been observed that the Timoshenko beam 
theory produces results very close to the simulation program values and the % difference 
decreases as the slenderness ratio increases, it has also been observed that the Bernoulli-Euler 
beam theory obtains results very close to reality as the slenderness ratio increases. With this 
inference, Timoshenko beam theory produces results very close to reality in beams with low 
slenderness ratio, while Bernoulli-Euler produces results very close to reality and very close to 
the results obtained from Timoshenko beam theory in beams with high slenderness ratio. In 
other words, it has been concluded that the effect of shear deformation and moment of inertia 
values, which are effective in Timoshenko beam theory, on the displacement value decreases 
as the slenderness ratio increases. Moreover, if we compare all the data we obtained, we see 
that SolidWorks gives us results very close to the theoretical solution. For this reason, when it 
is not possible to make a theoretical solution, when larger and more complex problems need to 
be solved in a shorter time, very good results can be obtained with SolidWorks. Since 
SolidWorks makes a solution based on FEM, no matter how large or complex the systems are, 
good results can be obtained as long as proper modeling is done. In addition, when the results 
obtained in this article are interpreted properly, correct inferences can be made at the 
nanomechanics and can be used to give ideas in studies to be carried out at the nanomechanics. 
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