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ABSTRACT:  

Inverse nodal problems has been studied for Sturm-Liouville equations with 

point δ coaction. First, the eigenvalues of the problem are obtained. Then, the 

solution of the inverse problem is given by obtaining potential function and the 

parameters in the boundary conditions with the help of a dense set of nodal 

points. Lastly, the uniqueness theorem is proven and a constructive procedure 

for solutions is provided. 
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INTRODUCTION 

Second order 

 
 

  
. ( )

  

  
/   ( )      

the differential equations are called Sturm-Liouville equation, the operators produced by this 

equation and some different boundary conditions are called Sturm-Liouville operators, and the spectral 

problems for these operators are called Sturm-Liouville problems. 

Boundary value problems for ordinary differential equations date back to the work of Sturm and 

Liouville in the mid-19th century. In many articles they published, they revealed many features of the 

boundary value problem. Although the Strum-Liouville theory was initially applied to heat problems, 

today it is one of the effective methods for investigating many physical problems. 

In addition, inverse spectral problems consist of determining the spectral characteristics of the 

problem. Some spectral problems have an significant place in mathematics and have many practices in 

basic science (Marchenko, 1977; Levitan, 1984; Poschel & Trubowitz 1987; Freiling & Yurko, 2001; 

Yurko, 2002; Sadovnichy et al., 2009). 

Inverse nodal problem consists in reconstructing the operator from a given dense set of zeros of 

its eigenfunctions. McLaughlin gave firstly a solution for the inverse nodal problem for the 

Sturm−Liouville operator (McLaughlin, 1988). Inverse nodal problems were discussed by Hald and 

McLaughling in their study published in 1989. In this study, inverse nodal problems for regular and 

singular Sturm-Liouville operators are discussed, uniqueness theorems for their solution and an 

algorithm for determining the potential are proposed (Hald& McLaughlin, 1989). After this study, 

many studies have been carried out on the inverse nodal problems for the Sturm-Liouville and Dirac 

operators (Browne& Sleeman, 1996; Yang, 1997; Hald& McLaughlin, 1998; Law & Yang, 1998; Law 

et al., 1999;  Shieh & Yurko, 2008; Buterin& Shieh, 2009; Yang, 2010; Yang 2010; Chen et al., 2011; 

Buterin& Shieh, 2012; Guo & Wei, 2013; Yang, 2013; Yang, 2014; Manafov & Kablan, 2015; 

Wang& Yurko, 2016;  Hu et al., 2017; Qin et al., 2019; Xu & Yang, 2019; Wang et al., 2020; Durak, 

2022; Çakmak & Keskin, 2023; Amirov et al., 2024; Amirov & Durak 2024). 

Let's examine the following Sturm-Liouville problem  : 

(  )( )      ( )   ( ) ( )           (   ) * +                                                                               ( ) 

 ( )    ( )    ( )     ( )   ( )                                                                                                ( )  

 ( )  {
 (   )   (   )   ( )

  (   )    (   )    ( )
                                                                                              (3) 

 

where   is real,  ( )      ,   -      is spectral parameter. 

We can also express problem (1)-(3) with the following equation      (  (   )  

 ( ))       (   ) * + where  ( ) is the Dirac function (Manafov, 2015). 

On the Hilbert space   (,   -) consider the linear differential expression    ( )      ( )  

  ( ) with a dense domain 

 ( )  {
 ( )     [(   ) * +]     ,(   )-   ( )    ( )    

 (   )   (   )   (   )    (   )    ( )  ( )   
}  

We will take into account the determination of  ( )   when the spectral and nodal characteristic 

are known. 
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In this study, we get following conclusions of inverse nodal problems. 

MATERIALS AND METHODS  

Properties of the Spectrum 

Let   ( ,λ) be solution of equality (1) below the initial conditions  (   )      (   )    and 

the condition (3). 

Theorem 1. Solutions   ( ,λ) of problems (1)-(3) have the following asymptotic expressions as 

     : 

 (   )         .  
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Proof. The solution of equation (1) that satisfies the  (   )      (   )    conditions is 

obtained as follows: 

 (   )         
 

 
      

 

 
∫     (   ) ( ) (   )   
 

 
   ,   ). 

        From here, if the (3) discontinuity conditions are applied to the solution above; we obtain the 

solution in the second interval as follows. 
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         If the solutions  (   ) are written back into the integrals in the expressions of the above 

solutions, (4) and (5) equations are obtained. 

         Then  ( )   . Denote  ( )    ( )    (   ).  

 ( ) is the characteristic function of the problem L. 

         Let's define the following function 

  ( )         
 

 
(        )                                                                                                       ( ) 

Since   ( ) is an entire function, its zeros are simple and real. Therefore, using the Zhdanovich 

article (Zhdanovich, 1960), we obtain the zeros of   ( ) as follows:  

  
  

  

   
     

*  + is bounded sequence. 

 Lemma 1. (Amirov et al., 2024) The zeros of  ( ) are as follows: 

     
   ( )  

 Using Lemma 1, we can get following result. 

 Lemma 2. The following equations are valid for the zeros of  ( ): 

      
                                                                                                                                                               ( ) 
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where           

Proof. If the expression      
     is substituted in (5), from equation  (  )     we obtain; 
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Where 
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RESULTS AND DISCUSSION  

Let's write the eigenfunctions of the boundary value problem (1)-( 3) in the form   ( )  

 (    ).   (    ) are real- valued functions. If (7) is written into (4) and (5); we get the asymptotic 

formulaes for       , uniformly in  : 
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From oscillation theorem it is clear the eigenfunction  (    )has exactly     (simple) zeros in 

the interval (   ): 

     

       

       

         

     . 

Theorem 2: We get the following asymptotic expressions for nodal points as        

uniformly in    : 
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 Proof: According to the definition of the nodal point, if equations (8) and (9) are equal to zero, 

the following equations are obtained. 
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are obtained. Then, equations (10) and (11) are obtained. 

It is clear from the expression of *  
 +    that *  +    is a real sequence. Since            

  , let's choose subsequence *  +      as          
       .Let's define the set   

*     
    

  
               +. It is clear that the set ℜ is dense in the range (   ) and consists of 

irrational numbers in the form      (   )   , in this range. 

Let's take any points     (   ) and choose the sequence *  +    with     (     )  , 

(                ). In this case, we get 

       
          

         
          

        
         

        
         

 . 

The set  ( )  *  
 
              ̅̅ ̅̅ ̅+ is called the set of nodal points of the boundary value 

problem  . 

Theorem 3. Suppose that {  
 
}   , be  chosen such that            

 
    Then there exists 

finit limits 
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Proof.  If we consider equations (10), (11), we obtain 
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Since, 

           
 
   from this (16)- (19) we determine that as        the limits of left side of (16)- 

(19) exist. Theorem 2 is completed. 

Let's give the uniqueness theorem, give constractive prosedure for solving the inverse nodal 

problem. 

Theorem 4. Let        be a subset of nodes which is dense (   ). Then, the specification of 

uniquely determines the potential   a.e. on (   ). The potential   can be established via the following 

algorithm: 

1. For each   ,   -, we select a sequence *  
 +       such that            

   . 

2. The function   is determined as 

  ( )      
 ( )   ,   )                                                                                                                   (20) 

  ( )  
   

 ( )

           
   (   -                                                                                                                           (  ) 

     ( )                                                                                                                                          (22)                                                                                                        

   
     ( )

       
                                                                                                                                                   (  )         

Proof. The functions   ( )   ( ) (      ) of given by equations (12)-(15) can be easily found 

with the help equations (10) and (11). Then, if     is taken in the expression of the   ( ) function,  

(22) is obtained. It is easily seen that if the   ( ) function is differentiated once with respect to  , the 

equation (20) is obtained. Similarly, if the   ( ) function is differentiated once with respect to  , (21) 

is obtained. If  =π is taken in the expression of the   ( ) function, (23) is obtained. 

CONCLUSION 
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Solvable models of quantum mechanics have an important place in the literature. As can be seen, 

these models are generally expressed with Hamilton operators or Schrödinger operators with singular 

coefficients. Many of the problems expressed by these models are related to the solution of spectral 

inverse problems for differential operators with singular coefficients. However, many problems in 

mathematical physics are reduced to the study of differential operators whose coefficients are 

generalized functions.  

For example, the stationary vibrations of a spring-tied homogeneous wire fixed at both ends, 

density    ( )      (    ) ( ( )  Dirac function) and stiffness  ( ) at point   , whose domain 

set is 

 (  )   *  ( )      
 ,   -      (     )      (     )      (  )      (   )  ( )      

   ( ) +  

and is expressed by the differential operator given as     
  

   
 in Hilbert space   ,   -. The correct 

(regular) definition of such operators and the study of their spectral properties have increased the 

interest in inverse problems and remain up-to-date.  

In the problem considered in this study, the inverse nodal problem for the Sturm- Liouville 

operator with Dirac ⸹- type potential is investigated. With the help of nodal points, the coefficients 

 ( )     are determined uniquely for this problem. 
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