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ABSTRACT
Developments on various relations among stellar variables such as the main sequence empirical mass-luminosity (MLR), mass-
radius (MRR) and mass-effective temperature (MTR) relations were reviewed. Conceptual changes in their understanding and
usages were discussed. After its discovery, MLR was treated as one of the fundamental secrets of the cosmos. Differences
between fundamental laws and statistical relations were used to understand long-term developments of MLR, MRR and MTR.
Developments show a break point, initiated by Andersen (1991), in the line of progress. Before the break when reliable data were
limited, MLR and MRR were calibrated using 𝑀 , 𝐿, and 𝑅 of binary components of all kinds visual, spectroscopic, and eclipsing
for two purposes: i) to obtain mean mass, mean luminosity, and mean radius, ii) to estimate 𝑀 and 𝑅 of single stars. By the time
of the break, the number of solutions from detached double-lined eclipsing binaries (DDEB) giving accurate 𝑀 and 𝑅 within a
few percent levels are increased. Parameters from very close, semi-detached, and contact binaries were excluded for refinement,
however, MLR and MRR diagrams were found insufficient to derive MLR and MRR functions because the dispersions are not
only due to random observational errors but also due to chemical composition and age differences. Then, a new trend was adopted
by replacing classical MLR and MRR with empirical 𝑀 and 𝑅 predicting relations. Thus, the purpose one was suppressed also
because the new trend found a fruitful application in determining 𝑀 and 𝑅 of exoplanet hosting single stars.

Keywords: Stars: fundamental parameters; Stars: luminosity and mass functions; Galaxies: luminosity function and mass
functions; Cosmology: miscellaneous

1. INTRODUCTION

Accuracy and precision of observational parameters of stars
are crucial not only for improving stellar structure and evolu-
tion theories but also for fundamental astrophysics, Galactic
and extragalactic studies, and ultimately even for cosmologi-
cal models because stars and galaxies are the primary building
blocks of the universe. Fundamental and statistical relations are
essential for understanding physical events occurring in various
parts of the universe. The fundamental relations are the rela-
tions like Stefan-Boltzmann law (𝐿 = 4𝜋𝑅2𝜎𝑇4

eff) which are
characterised by at least two properties; i) how various prop-
erties of stars are related, e.g. how the luminosity of a star is
related to its radius and effective temperature; ii) validity is not
limited by certain conditions, that is, it applies to all stars and
radiating surfaces as long as the source of radiation is thermal.
The statistical relations, on the other hand, may not work in all
possible cases; appropriate statistical conditions are required.

A good example is the kinetic temperature. A temperature
is a physical quantity that is measured in the macroworld but
does not exist in the microworld. This is because temperature
is a statistically defined quantity implying an average kinetic
energy per particle in a substance, which could be a solid,
liquid, or gas. The definition of kinetic temperature indicates
that a single particle or insignificant number of particles cannot
be associated with any temperature. For example, when we talk
about air temperature, it indicates the average kinetic energy
per air particle, which can be written as:

1
2
𝑚⟨𝑣2⟩ = 3

2
𝑘𝑇 (1)

where 𝑚 and ⟨𝑣2⟩ are the mean mass and root-mean-square
(rms) speed of particles. They are not physical quantities but
average values. Increasing the speed of the substance itself by
moving it faster, e.g., putting it on a quick aeroplane, does
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not change its temperature. Therefore, equation (1) cannot be
written for a randomly chosen particle (or a few particles), i.e.,
the right-hand side does not exist except for a group of particles
satisfying the implied statistic.

Similarly, the mass–luminosity relation (MLR) in the form
(𝐿 ∝ 𝑀𝛼), which is defined so far for main-sequence stars,
is a statistical relation similar to equation (1), which indicates
how main-sequence luminosities are related to main-sequence
masses. Because it is not valid for non-main sequence stars,
depending upon expected accuracy, it may also not be valid
for an individual star. Therefore, it is the relation devised for
estimating a typical mass from a typical luminosity, or vice
versa.

Consequently, inter-related mass-luminosity (MLR), mass-
radius (MRR), and mass-effective temperature relations (MTR)
of Eker et al. (2018) are all statistical relations, which should
not be treated like fundamental relations. While the bolometric
correction – effective temperature relation (BC-𝑇eff) of Flower
(1996); BC-𝑇eff and BC-mass relations of Eker et al. (2020,
2021b); Bakış & Eker (2022); Eker & Bakış (2023) are all
statistical relations that should not be confused by fundamental
relations; otherwise, unexpected results or upsetting errors in
the computed quantities become unavoidable.

One cannot say “statistical relations are less valuable than
fundamental relations”. On the contrary, a statistical relation
could be more valuable; even more practical, or easier to use,
e.g., calculating the total energy of a gas as the mean energy
per particle multiplied by the number of particles in the gas.
Otherwise, the probability of each particle having a certain ki-
netic energy and the number of particles having this energy are
required before integrating them over all possible kinetic ener-
gies. Similarly, using an MLR is more practical for determining
the masses and luminosity of galaxies, which are the key pa-
rameters for determining dark matter in galaxies. Otherwise,
to obtain the total mass and total luminosity of the galaxy in
question, one would have to add up the individual masses and
luminosities of the stars in the galaxy, which is impractical.

Moreover, there could be various astrophysical studies de-
manding MLR, MRR, and MTR in addition to stellar astro-
physics. Live examples such as cometary research (Wysocza-
ńska et al. 2020a,b), Oort clouds (Baxter et al. 2018), helio-
physics and planetary habitability (Schrĳver et al. 2019), ex-
oplanet investigations (Berger et al. 2020; Arora & Hasegawa
2021; Burt et al. 2021; Caballero et al. 2022; Dattilo et al. 2023),
planetary nebula (Munday et al. 2020; Aller et al. 2020), open
clusters (Ilin et al. 2021; Akbulut et al. 2021; Yontan et al.
2021, 2023; Yontan 2023), dark matter searches (Garani &
Palomares-Ruiz 2022; Peled & Volansky 2022) and quasars
(Albert et al. 2021), neutron stars (Yuan et al. 2022), black
holes (Gomel et al. 2021a,b), general relativity (Lalremruati &
Kalita 2021), gravitational lensing (Ramesh et al. 2022; Pietroni
& Bozza 2022) and even search for extra-terrestrial intelligence
(SETI, Kerins 2021; Kerins et al. 2023), which all used at least

one of the statistical relations MLR, MRR and MTR of Eker
et al. (2018).

Apparently, differentiation between fundamental and statis-
tical relations is important from an astrophysical perspective.
Recognizing statistical relations is even more important; other-
wise, using them as fundamental relations would be misleading.
Unfortunately, some authors such Malkov (2003, 2007), Henry
(2004) and Gafeira et al. (2012) including Eker et al. (2015)
did not hesitate to call MLR “fundamental law”, “sufficiently
fundamental to be applicable to many areas of astronomy”,
“one of the most famous empirical law” and “one of the fun-
damental secrets of the cosmos”. On the contrary, Andersen
(1991) and Torres et al. (2010) preferred not to define a MLR
and preferred displaying the log𝑀 − log 𝐿 diagram without a
function (MLR) fitting to the data because the scatter on the dia-
gram is not due to observational random errors but most likely
due to abundance and evolutionary effects. Andersen (1991)
claims “....departures from a unique relation is real”. If there is
no unique function to represent the data on the diagram, why
bother to defining one?

Therefore, this review article is dedicated to investigating the
evolution of the statistical functions MLR, MRR, and MTR,
starting from their discovery until today, and attempting to
explain why such quarrels occurred and whether it is possible
to resolve conflicts by identifying the nature of the relation.
Moreover, the presentation of their conceptual advances and
realising whether they were perceived as fundamental laws or
statistical relations will benefit to the astronomical community.
Developing such a conscious analysis would result in a better
understanding of their previous usages and future studies.

2. OVERVIEW
Calibrations of MLR, MRR, and MTR require predetermined
accurate stellar parameters such as mass (𝑀), luminosity (𝐿),
radius (𝑅), and effective temperature (𝑇eff). The most critical
parameter among them is 𝐿 because it is not an observable
quantity; that is, neither a telescope nor a detector to observe
the total radiation of a star at all frequencies (Bakış & Eker
2022; Eker & Bakış 2023). Fortunately, there are only one di-
rect and two indirect methods to calculate 𝐿 of a star (Eker
et al. 2021c). The first method is a direct one because it uses
independently determined observational 𝑅 and 𝑇eff of a star to
calculate its 𝐿 directly from its radiating surface area (4𝜋𝑅2)
and bolometric flux (𝜎𝑇4

eff), which is commonly known as the
Stefan-Boltzmann law (𝐿 = 4𝜋𝑅2𝜎𝑇4

eff). The other two meth-
ods are indirect because the first method, which provides 𝐿 of
a star from its 𝑀 , requires a predetermined classical MLR in
the form of 𝐿 ∝ 𝑀𝛼, while the second method, which supplies
𝐿 of the star from its apparent brightness and distance requires
a pre-determined BC-𝑇eff relation. Unfortunately, the indirect
methods are useless without their predetermined relations, and
thus, one has no other choice but to use the Stefan-Boltzmann
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law to produce the earliest sample of 𝐿 values for the first
calibration of MLR, MRR, and MTR.

Assuming that the sample 𝐿 values are ready, the next most
critical parameter is stellar 𝑀 to establish not only MLR but
also MRR and MTR because sequentially required 𝑅 and 𝑇eff
should have been already used in computing 𝐿 of the sample
stars. However, like 𝐿 of a star, 𝑀 of a star is also not ob-
servable. This fact makes the parameter 𝑀 even more critical
because only the masses of binaries (or multiple systems) could
be calculated using Kepler’s Third Law from the observed or-
bital semi-major axis and the orbital period, which could be
deduced from the observed orbits of visual binaries (or multi-
ple systems) or from the radial velocity curves of double-lined
eclipsing spectroscopic binaries. Stellar spectra do not pro-
vide orbital inclinations; thus, spectroscopic binaries without
eclipses cannot provide component masses unless orbital incli-
nations are available independently.

Eclipsing binaries are ideal objects for collecting observed
radii of stars, whereas the single stars are null, except the ones
close in distance and large enough where interferometry could
be useful. Although binarity adds complications to the estima-
tion of component effective temperatures, the eclipsing binaries
are still advantageous for revealing the most accurate effective
temperatures and temperature ratios from the depths of min-
ima if the effective temperature for one of the components is
estimated correctly.

Visual binaries (multiple systems too) and double-lined
eclipsing binary systems are the only objects provided 𝑀 from
Kepler’s third law, with 𝑅 from eclipses. On the other hand,
there is almost no other way to obtain accurate masses and
radii of single stars except seismic analysis where mass and
radii data for solar-like pulsating stars (e.g. Gaulme et al. 2016;
Bellinger et al. 2019) are obtained. Considering some basic
information and data knowledge about this research topic, we
must now start reviewing the statistical relations starting from
the most prominent one: MLR.

2.1. Revisiting MLR
The famous stellar mass-luminosity relation (MLR) was dis-
covered empirically in the middle of the first half of the 20th
century by Hertzsprung (1923) and Russell et al. (1923) in-
dependently using masses and absolute brightness of a very
limited number of visual binaries. Eclipsing binaries were in-
cluded later in the statistics. In his MLR, Eddington (1926)
was able to use 13 eclipsing binaries together with 29 visual
binaries and five Cepheids, which were available to him at
that time, while McLaughlin (1927) increased the number of
eclipsing systems to 41 in his plots.

By the time of the mass-luminosity relation was discovered,
there were only three kinds of brightness measurements: 1)
Visual magnitudes (𝑚𝑣) from the brightness observations of
stars by eye. 2) Photographic magnitudes (𝑚p) measured from
the sizes of star images on photographic plates. 3) Bolometric

magnitudes (𝑚b) as heat measurements, which could be coming
from galvanometric, bolometric, or radiometric observations of
stars. It was thought that bolometric magnitudes coming from
the heat measurements of stars represent the total radiation out-
put (luminosity) best. Therefore, assuming that stars are hot
spheres of gases, Eddington (1926) formulated a theoretical re-
lation between the mass and absolute bolometric magnitude of
a star. Furthermore, he continued to confirm his theoretical re-
lation using the existing data Eddington (1926, page 154) from
binaries. Gabovits (1938) agreed Eddington (1926) after twelve
years by re-examining the mass-𝑀Bol data again and declared
“We conclude that, as revealed by our selected first-class data,
the stars (chiefly of the main-sequence) probably follow a strict
mass-luminosity law”. On the other hand, having larger data
sets including visual binaries, spectroscopic binaries, Hyades
and Trumpler stars, and white dwarfs, Kuiper (1938) was rather
suspicious of accepting the mass-luminosity relation as a law
because he commented “It is doubtful whether this mean re-
lation has any physical significance” after discussing it on a
log𝑀 − 𝑀Bol diagram.

MLR has been updated and revised many times until a major
break occurred at the very beginning of the last decade of the
20th century on the issue of whether it is a statistical relation or a
fundamental law. Looking at the developments before this break
would be useful to understand it better. Petrie (1950a,b) used 93
spectroscopic binary systems, Strand & Hall (1954) studied 23
visual binaries, Eggen (1956) investigated 34 visual binaries,
McCluskey & Kondo (1972) considered 40 visual binaries and
35 eclipsing systems, Cester et al. (1983) gathered 45 visual
and 40 spectroscopic binaries, Griffiths et al. (1988) analysed
72 detached main-sequence binaries, 25 detached OB, 6 re-
solved binaries and 23 visual binaries when revising the MLR
relations. Demircan & Kahraman (1991) preferred to study
masses and luminosities of 70 eclipsing binaries (140 stars)
only, including the main sequence components of detached and
semi-detached binaries as well as the components of OB-type
contact and near contact binaries. Karetnikov (1991) used 303
eclipsing systems of different types. At this point, we must keep
in mind that the observational data was very limited, therefore,
the authors combined different kinds of binaries, whether they
are eclipsing or not, without differentiating between detached,
semi-detached, and contact systems. This was done to increase
the statistical reliability of MLRs calibrated.

Those early generation relations, including the very earliest
ones, were demonstrated mass-absolute magnitude diagrams
mostly, some with the best fitting function, and some without
a fitting curve. Considering the classical form 𝐿 ∝ 𝑀𝛼 of
MLR, first Eggen (1956) intended to define the power of mass
(𝛼) so he expressed 𝐿 = 𝜇3.1, where 𝜇 is the total mass of a
double-star system defined as 𝜇 = 𝑎3/𝑃2𝜋3 from the Kepler’s
Harmonic Law. Then, McCluskey & Kondo (1972) preferred
to use a relation in the form 𝑀 ∝ 𝐿𝛽 , where 𝑀 and 𝐿 are the
masses and luminosities of the components while 𝛼 and 𝛽 are
the constants to be determined by the data on various mass-
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absolute bolometric magnitude diagrams. Accordingly, Cester
et al. (1983); Griffiths et al. (1988) and Demircan & Kahraman
(1991) preferred to study MLR on a mass-luminosity diagram
for defining unknown constants on the classical form (𝐿 ∝ 𝑀𝛼)
of MLR either by fitting a curve to all data or dividing the
mass range into two regions as low- and high-mass stars, or
three regions as the high, intermediate or Solar, and low-mass
stars, in order to determine the inclinations (power of 𝑀) and
zero point constants of the linear MLRs on the log𝑀 − log 𝐿
diagram.

2.1.1. Is MLR a Fundamental Relation?
The major break on the concept and splitting practises on the
purpose of calibrating an MLR was triggered by Andersen
(1991) who collected 45 detached double-lined eclipsing bi-
nary (DDEB) systems (90 stars) having both masses and radii
accurate within 2%, which were the most accurate stellar data
of the time. Selecting only DDEB stars was not intended to re-
ject the reliability of the other sources for determining masses
and radii; only because 𝑀 and 𝑅 from DDEB were considered
the most reliable.

Andersen (1991) rejected calibrating any form of MLR func-
tion to fit data on the log𝑀 − log 𝐿 diagram. The diagram
displayed by him is without a fitting curve (MLR) because the
scatter from the curve is certainly not only due to random ob-
servational errors but also due to abundance and evolutionary
effects. He exclaimed: “At first glance, the mass-luminosity
diagram shows a tight, well-defined mean relation. Closer in-
spection, taking individual uncertainties into account, reveals
that departures from a unique relation are real”. Then, if there
is no unique curve expressible by a function to represent data,
why bother drawing one?

In very early times, especially after its discovery, MLR was
claimed to be one of the most prominent empirical laws of na-
ture by Eddington (1926) and Gabovits (1938) and commonly
used by researchers either reckoning 𝐿 of a star from its 𝑀 or
estimating 𝑀 of a star from its 𝐿, at least until the middle of the
20th century, and perhaps until Andersen (1991). This practice
was extremely useful for single stars because there was no other
observational way to directly access their masses, but the abso-
lute bolometric magnitudes of the ones with known parallaxes
were rather easy to obtain using a proper bolometric correction
(BC), and then their masses were estimated from a predeter-
mined bolometric magnitude-mass relation. The method was
even helpful in double-checking trigonometric parallaxes of
single stars and even eclipsing binaries with light curve so-
lutions giving 𝑅 and 𝑇eff of the components, thus 𝐿 values
are compatible by the Stefan-Boltzmann law. Those very early
times were a period in astrophysics when nuclear reactions were
not fully established and understood correctly. The discovery of
nuclear reactions in the cores of stars is attributed to Sir Arthur
Eddington (Bahcall 2000) a few years before the discovery of
MLR by Hertzsprung (1923) and Russell et al. (1923).

Astronomers waited until 1932 for the discovery of neutrons

(Chadwick 1933) to study and fully understand hydrogen fusion
as a main source of stellar energy. Only after the CNO cycle was
established by Hans Bethe and Von Weizsacher (Clayton 1968),
and only a year later, the p-p chain reactions were suggested
by Bethe (1939), there were the solutions of stellar structure
equations with the nuclear energy, which placed our theoretical
understanding of the evolution of stars with evolutionary tracks
on a solid ground (Clayton 1968). The empirically discovered
MLR was confirmed later theoretically in the sense that mass
(𝑀) is the prime parameter that determines the internal struc-
ture, size (𝑅), and luminosity (𝐿) of a star not only for the time
span of the main sequence but also throughout the star’s life-
time until its death, where its initial chemical composition can
cause little variation. Therefore, the scatter on a log𝑀 − log 𝐿
diagram for field main-sequence stars is not only due to ob-
servational errors but also due to various ages and chemical
compositions.

Additionally, at least until the middle of the 20th century,
maybe until about the middle of its second half, but certainly
not until Andersen (1991), the observational accuracy was not
high enough to differentiate theoretical (true) 𝐿 and 𝑀 of stars,
which are marked on a Hertzsprung Russell (H-R) diagram
to form evolutionary tracks. As long as the observational ac-
curacies of 𝐿 and 𝑀 are much lower than the uncertainty of
error bars covering the full thickness of the main sequence, as-
tronomers did not suspect inconsistency between the predicted
and observed quantities using an MLR. It was normal for them
to be satisfied, as in the case of fundamental law.

By the time of Andersen (1991), who collected the most accu-
rate 𝑀 and 𝐿 data from DDEB, there were sufficiently accurate
masses and luminosities; thus, one can deduce that the scatter
on the log𝑀 − log 𝐿 diagram is not only due to observational
errors of 𝑀 and 𝐿 but also due to abundance and evolutionary
effects. Andersen (1991) felt something was not right, that is,
there must be a problem in treating classical MLR in the form
𝐿 ∝ 𝑀𝛼 as a fundamental relation. Andersen thought that such
a fundamental relation must not only fit the data uniquely but
also must contain the other parameters involving the chemical
composition and evolution.

Being influenced by the common usage, a kind of paradigm
not easy to be free off, Andersen (1991) was expecting, like
the others before him, to obtain the mass of a single star from
its luminosity within acceptable accuracy [ideally ±5% see
Andersen (1991) page 93]. However, with a mean MLR in the
form 𝐿 ∝ 𝑀𝛼 for the main-sequence stars, this was not possible
anymore due to improved observational techniques with higher
accuracy in both 𝐿 and𝑀 values available to him. Nevertheless,
he succeeded in this aim about two decades later by replacing
log 𝐿 with a function including observational parameters 𝑇eff ,
surface gravity (log 𝑔), and relative iron abundance [Fe/H] to
incorporate evolution (age) and chemical composition as

log𝑀 = 𝑎1 + 𝑎2𝑋 + 𝑎3𝑋
2 + 𝑎4𝑋

3 + 𝑎5 (log 𝑔)2 (2)
+𝑎6 (log 𝑔)3 + 𝑎7 [Fe/H],
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in a new review paper, in which Torres et al. (2010) was the
leading author; where 𝑋 ≡ log𝑇eff − 4.1 as a parameter that
contains the most effective variable, 𝑇eff , related to the lumi-
nosity with its fourth power in the Stefan-Boltzmann law, and
𝑎’s which are the calibrated coefficients 𝑎1 = 1.5689 ± 0.058,
𝑎2 = 1.3787±0.029, 𝑎3 = 0.4243±0.029, 𝑎4 = 1.139±0.240,
𝑎5 = −0.1425 ± 0.011, 𝑎6 = 0.01969 ± 0.0019, and 𝑎7 =

0.1010± 0.058. This is a function providing 6.4% accuracy for
main-sequence and evolved stars above 0.6𝑀⊙ . It is obvious
that such a function cannot be drawn on a log𝑀 − log 𝐿 dia-
grams but provides stellar 𝑀 as the classical MLR but is much
more accurate not only for main-sequence stars but also for
giants and sub-giants. Thus, both Andersen (1991) and Torres
et al. (2010) presented their log𝑀 − log 𝐿 diagrams without a
fitting function.

Incorrect diagnoses are natural to be continued by incorrect
treatments. First, classical MLR in the form of 𝐿 ∝ 𝑀𝛼 is a
statistical relation devised for estimating a typical mass from
a typical luminosity, or vice versa, and not for estimating 𝑀
or 𝑅 of a single star, even if it was once used to estimate 𝑀
of a star from its 𝐿. Therefore, It is not right to diagnose the
classical MLR as one of the fundamental relations to calculate
the mass of a star from its luminosity. It is not right to look
for a relation that gives the mass of a star from other stellar
observational parameters for replacing MLR. It is not right to
call this relation MLR if it provides 𝑀 of a star from the other
parameters even if 𝐿 is included in the right-hand side of the
equal sign, except if the right-hand side contains only 𝐿 as a
variable. It is not right to claim that there is no uniquely fitting
function to the data on log𝑀 − log 𝐿 the diagram despite a
tight, mean relation between 𝑀 and 𝐿 as if the least squares
method would fail to produce one.

Nevertheless, Andersen (1991)’s exclamation had a notice-
able consequence in stellar astrophysics. It appears as if a main
cause of deviation in understanding, definition, and usage of
newly defined MLR functions from the main path, which was
continued by Ibanoǧlu et al. (2006) and Eker et al. (2015, 2018)
where statistical relation between masses and luminosities of
main-sequence stars was kept in the form 𝐿 ∝ 𝑀𝛼.

2.1.2. Mass Predicting Relations of the Deviated Path
Andersen (1991)’s objection was very effective in the litera-
ture that some authors (Malkov 2003, 2007; Torres et al. 2010)
also presented their empirical mass-luminosity diagrams with-
out a curve fitting to the data. Gafeira et al. (2012) just gave
mass-luminosity relations for main sequence FGK stars without
displaying them on a mass-luminosity diagram. Fernandes et al.
(2021), which compared results to Torres et al. (2010), could be
considered as a new improved version of Gafeira et al. (2012).
Fernandes et al. (2021), thus, did not display mass-luminosity
relations on the mass-luminosity diagram.

Various kinds of mass-predicting empirical relations were
calibrated, and most of them were erroneously called MLR.

Gorda & Svechnikov (1998) choose the form 𝑀Bol = 𝑎 +
𝑏 log𝑀 , where 𝑀Bol is the absolute bolometric magnitude
and 𝑀 is the mass. Henry & McCarthy (1993) preferred
log𝑀 = 𝑎𝑀𝜉 + 𝑏 for infrared colours, where 𝑀𝜉 indi-
cates absolute magnitudes at the 𝐽, 𝐻, and 𝐾 bands, and
log𝑀 = 𝑎𝑀2

V + 𝑏𝑀V + 𝑐 for the 𝑉 band to express various
MLR with unknown coefficients 𝑎, 𝑏, and 𝑐 to be determined
by the data on various diagrams. The former relation in the
form 𝑀Bol = 𝑎 + 𝑏 log𝑀 could be justified to be named mass-
luminosity relation since 𝑀Bol of a star is directly related to its
luminosity, but a relation in the form log𝑀 = 𝑎𝑀𝜉 + 𝑏, is defi-
nitely not a mass-luminosity relation. Such relations should be
called mass-absolute brightness relations to avoid confusion.

The style of expressing 𝑉-band mass-absolute brightness re-
lation as second-degree polynomials covering masses 0.6 𝑀⊙
to 22.89 𝑀⊙ is continued by Xia & Fu (2010) who calibrated it
within two regions: one for 𝑀V < 1.05 mag (2.31 < 𝑀/𝑀⊙ <
22.89) and other for 𝑀V > 1.05 mag (0.60 < 𝑀/𝑀⊙ < 2.31)
using the dynamical masses and 𝑉-band absolute magnitudes
of 203 main-sequence stars, but the relation is still called MLR.
The accuracy of the predicted masses is estimated to be within
5%. The style of displaying mass (𝑀/𝑀⊙) versus absolute
magnitude data in which the absolute magnitudes are in the
visual and the 𝐾-bands is continued by Benedict et al. (2016)
for the low end of the main sequence (𝑀 < 0.6𝑀⊙) but in
different functional forms predicting masses as accurate as
±0.035𝑀⊙ in the region 𝑀 = 0.2𝑀⊙ . Similarly, both direct
(absolute magnitude for a given mass) and inverse (mass for a
given absolute magnitude) relations of Benedict et al. (2016)
are better known as empirical mass-brightness relations rather
than mass-luminosity relations. The empirical data of Benedict
et al. (2016) are also compared to the theoretical mass-absolute
brightness curves of age 1 Gyr of Baraffe et al. (2015) and
Dotter (2016). 𝐾-band data fit better than the 𝑉-band data.

Mass-Absolute visual magnitude [𝑀V − (log𝑚)], mass-
luminosity [log 𝐿 − (log𝑚)], mass-temperature [log𝑇eff −
(log𝑚)], and mass-radius [log 𝑅 − (log𝑚)] relations and cor-
responding inverse relations are calibrated for the intermediate-
mass stars in the mass range 1.4 < 𝑀/𝑀⊙ < 12 by Malkov
(2007) in forms of polynomials with empirically determined
coefficients from the fundamental parameters of stars collected
from DDEB and visual binaries. Similar empirical relations
were studied later from a wider perspective by Moya et al.
(2018) using a set of observational parameters 𝑀 , 𝑅, 𝑇eff , 𝑔
(surface gravity), 𝜌 (mass density), and [Fe/H] of 934 stars of
eclipsing binaries and single stars observed by asteroseismol-
ogy and interferometry where two thirds of the stars are on
the main sequence. A total of 576 linear combinations of 𝑇eff ,
𝐿, 𝑔, 𝜌, and [Fe/H] (and logarithms) were used as independent
variables to estimate 𝑀 and 𝑅, but Moya et al. (2018) presented
only 38 of them with regression statistics adj-𝑅2 higher than
0.85. Accuracy better than 10% was achieved in almost all cases
of 38 equations. The term “empirical relations” used by Moya
et al. (2018), and the names of relations given by Malkov (2007)
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are proper and consistent in comparison to the names used for
the mass predicting relations in the previous paragraph.

Using log 𝐿/𝐿⊙ , [Fe/H], and star age/age⊙ as free variables,
Gafeira et al. (2012) suggested three different equations so
that one can choose one according to the availability of data.
The simplest is first, which is a third-degree polynomial
without a constant term, having 𝑋 , where 𝑋 ≡ log 𝐿/𝐿⊙ . The
second equation adds [Fe/H] as a new variable in another
third-degree polynomial into the equation in addition to
the first. The third equation combines three third-degree
polynomials, where the third uses the relative age (age/age⊙)
of the star as a variable. With all the parameters, the third
relation looks like equation (2) given above by Torres et al.
(2010). That is, the part 𝑎1 + 𝑎2𝑋 + 𝑎3𝑋

2 + 𝑎4𝑋
3 is replaced

by 0.0219(±0.023) log 𝐿/𝐿⊙ + 0.063(±0.060) (log 𝐿/𝐿⊙)2 −
0.119(±0.112) (log 𝐿/𝐿⊙)3 while the part 𝑎7[Fe/H] is re-
placed by +0.079(±0.031) [Fe/H] − 0.122(±0.119) [Fe/H]2 −
0.145(±0.234) [Fe/H]3 at last the part +𝑎5 (log 𝑔)2 +
𝑎6 (log 𝑔)3 is replaced by +0.144(±0.062) (age/age⊙) −
0.224(±0.104) (age/age⊙)2 − 0.076(±0.045) (age/age⊙)3.
Adding age and metallicity improved the mass estimation
(15% to 5%) for FGK stars (Gafeira et al. 2012). However,
only the first equation could be called MLR, but not the other
two, which are better to be called mass-luminosity-metallicity
relation and mass-luminosity-metallicity-age equation, re-
spectively. Nevertheless, Fernandes et al. (2021) corrected
this by changing the name “the mass and radius-luminosity-
metallicity-age relations” in the new version, which was
calibrated by 56 stars with metallicity and mass in the ranges
−0.34 < [Fe/H] (dex) < 0.27 and 0.66 < 𝑀/𝑀⊙ < 1.8 from
the DEBCat catalogue1. The estimated accuracy in the new
version is 3.5% and 5.9% in predicting 𝑀 and 𝑅 of single
stars, respectively. Serenelli et al. (2021) commented: “Gafeira
et al. (2012) provided three relations for the stellar mass, but
only two of them can be easily applied”.

Serenelli et al. (2021) studied mass determination methods
from a wider perspective, including all existing techniques older
and newer; involving spectroscopy and/or photometry; theoret-
ical or observational and at last summarised them in a figure
(Figure 16 of Serenelli et al. 2021) where one can see their
applicable ranges of stellar mass as well as the accuracy and
precision of the predicted masses. Despite deceiving exam-
ples as summarised in the three paragraphs above, Moya et al.
(2018) were careful not to use the word “MLR” for naming
their “empirical relations”, which are established to estimate
𝑀 and 𝑅 only. While Fernandes et al. (2021) constantly called
their similar functions MLR and claimed: “for single nearby
Solar-type stars, the luminosity can be obtained observation-
ally, but not the mass”, opposing the fact that the luminosity
of a star is actually not an observable parameter because there
is no telescope/detector to observe at all wavelengths. Call-

1 https://www.astro.keele.ac.uk/jkt/debcat/

Figure 1. Mass ladder summarising the capacity of various methods
to obtain stellar masses (credit to Serenelli et al. 2021).

ing these 𝑀 or 𝑅 predicting relations ML/MR would be a
main source of confusion among readers. For example, “empir-
ical ML/MR relations” marked in Figure 16 of Serenelli et al.
(2021) at an accuracy/precision in between 10% and 15% for
stars 𝑀 < 2.5𝑀⊙ , wherein the caption “ML/MR for mass-
luminosity and mass-radius relations” is written clearly, could
be confusing to a careful reader.

This is because: Is it possible for Serenelli et al. (2021) using
ML/MR to indicate both the empirical relations of Moya et al.
(2018) and the classical mass-luminosity/mass-radius relations
(MLR/MRR) of Eker et al. (2018)? According to Figure 1 (Fig-
ure 16 of Serenelli et al. 2021) the answer would be “yes”
because the relations of Moya et al. (2018) are not marked as
“empirical relations” on the figure, and it is not possible to for-
get them because they cover one of the very important sections
of the review (Section 4.4), where the 𝑀 predicting relations
of other authors are summarised and compared to their coun-
terparts in Moya et al. (2018) (see Table 1). However, Serenelli
et al. (2021) declared “All the relations except two (those with
the largest number of dimensions) have precision better than
5%”. If the answer is "yes", then, another problem arises: “If
ML/MR in Figure 1 implies both classical MLR/MRR and the
new M/R predicting relations, why the precision for the ML/MR
is marked to be from 10% to 15% while M/R predicting rela-
tions are said to have precisions better than 5%?”.

It is possible that ML/MR in Figure 1 were actually marked
from 3% to 15%, but this region on the figure is shadowed by
various other methods of predicting stellar mass. Then another
conceptual problem comes out: Only similar quantities can be
compared. it is not right to compare the accuracy/precision
of the empirical relations of Moya et al. (2018), which are
solely devised for predicting masses of single stars, to the ac-
curacy/precision of the classical MLR, which is primarily de-
vised to establish as a statistical relation between typical masses
and luminosities of main-sequence stars. It is inconsistent and
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Table 1. Mass predicting empirical relations of other authors are compared with their counterparts in Moya et al. (2018) (credit to Serenelli
et al. 2021).

Ref. Relation Acc/Prec Ref. Corresponding relation Acc/Prec

T10 𝑀 = 𝑓 (𝑋, 𝑋2, 𝑋3, log2𝑔, log3𝑔, [Fe/H]) 7.4/52.9 M18 𝑀 = 𝑓 (𝑇eff , log𝑔, [Fe/H]) 7.5/3.4
G12 𝑀 = 𝑓 (log𝐿, log2𝐿, log3𝐿) 14.0/0.6 M18 log𝑀 = 𝑓 (log𝐿) 10.1/0.1
G12 𝑀 = 𝑓 (log𝐿, log2𝐿, log3𝐿, [Fe/H], [Fe/H]2, [Fe/H]3) 8.9/0.8 M18 log𝑀 = 𝑓 (log𝐿, [Fe/H]) 9.9/0.9
M07 𝑀 = 𝑓 (log𝐿, log2𝐿) 11.2/— M18 log𝑀 = 𝑓 (log𝐿) 10.08/0.13
E18 log𝐿 = 𝑓 (log𝑀) 33.3/6.9 M18 log𝐿 = 𝑓 (log𝑀) 31.9/0.6

References: T10 (Torres et al. 2010), G12 (Gafeira et al. 2012), M07 (Malkov 2007), E18 (Eker et al. 2018), M18 (Moya
et al. 2018).

meaningless to compare E18 with M18 in Table 9 of Serenelli
et al. (2021) (see Table 1). Similarly, it is scientifically in-
consistent if empirical ML/MR in Figure 1 indicates classical
MLR/MRR as well, rather than the empirical relations of Moya
et al. (2018). This is because Eker et al. (2018) declared: “(clas-
sical) MRR and MTR functions, as well as the MLR functions,
are needed by the astronomical community for practical pur-
poses. These include the need to be able to estimate a typical
luminosity, radius, and 𝑇eff for main-sequence stars of a given
mass”. Which is definitely different from the purpose of pre-
dicting 𝑀 or 𝑅 of single stars all over the H-R diagram?

After having 𝑀 and 𝑅 predicting relations, further calcula-
tions are required for a meaningful comparison. First, calculate
𝑀 , 𝑅, and then 𝐿 (if not used as input variable) for main-
sequence stars only. Then, plot log𝑀 − log 𝐿 and log𝑀 − log 𝑅
diagrams and fit the preferred functions (ML or MR) using the
least squares method. Finally, ML/MR becomes comparable to
MLR/MRR of Eker et al. (2018). Why bother doing that, if
there are many reliable direct methods of obtaining 𝑀 , 𝑅, and
𝐿 of main-sequence stars within accuracy 1% and a few % re-
spectfully from radial velocity and light curves of DDEB stars,
which are marked in the bottom of Figure 1 covering the full
ranges of stellar masses. Thus, ML/MR is incompatible with
classical MLR/MRR (Figure 1).

2.1.3. Recognition of statistical MLRs
The classical form of MLR (𝐿 ∝ 𝑀𝛼) appreciated by Cester
et al. (1983), Griffiths et al. (1988), Karetnikov (1991) and
Demircan & Kahraman (1991) before the break initiated by
Andersen (1991). This classical form continued by Ibanoǧlu
et al. (2006) when comparing mass-luminosity relations for
detached and semidetached Algols despite Andersen (1991)’s
exclamation. The most recent examples are by Eker et al. (2015,
2018). The classical or any other form reducible to the classical
(𝐿 ∝ 𝑀𝛼) has the advantage of being easy to interpret with a
value given to the power of 𝑀 , which is known to change by the
energy generation rate per star mass at the cores of stars. Thus,
the derivative of MLR function (𝑑𝐿/𝑑𝑀), the inclination of a
line, on the log𝑀 − log 𝐿 diagram is the value of alpha. On the
other hand, the real advantage is not only that it works in both
directions (𝑀 from 𝐿, or 𝐿 from𝑀), but also because it permits

one to relate typical masses and luminosities of main-sequence
stars in general.

Obviously, the statistically determined relationship between
𝑀 and 𝐿 for the main-sequence stars is not true for a single star.
This is because 𝐿, 𝑅, and 𝑇eff of a star change with time, while
𝑀 of the star stays constant (an evolutionary effect) because
mass loss of main-sequence stars (especially for the ones cooler
than B spectral types) is too small; thus, mass loss is usually
ignored (Daszyńska-Daszkiewicz & Miszuda 2019; Bressan
et al. 2012). Moreover, there is a metallicity effect that also
changes 𝐿, 𝑅, and 𝑇eff slightly, therefore, stellar structure and
evolution models use chemical composition and 𝑀 as the two
basic free parameters for computing 𝐿, 𝑅, and𝑇eff , which stands
for the output of an internal structure model to be confirmed
externally. Finally, it can be concluded that any kind of relation
between 𝑀 and 𝐿 of a single star cannot easily be deduced from
evolutionary tracks or isochrones. However, the distribution of
available stellar luminosities on H-R diagrams or on log𝑀 −
log 𝐿 diagrams clearly shows that there must exist, at least
a statistical, one-to-one relation between a typical mass and
typical luminosity of main-sequence stars. However, if 𝐿 and
𝑀 were totally independent, identification of main-sequence
stars on the H-R diagram would not be possible. In fact, the
main-sequence stars were first recognised just according to their
extraordinary positional appearance, even on very primitive
H-R diagrams. Because of their distinct positions, they were
named main-sequence stars, which are still actively used. After
all, it is obvious to everyone now that as soon as main-sequence
luminosities are placed on a log𝑀−log 𝐿 diagram, a one-to-one
relation between 𝑀 and 𝐿 shows itself clearly with high-level
statistical significance.

What has actually happened so far is that; the statistical re-
lation between stellar 𝑀 and 𝐿 for main-sequence stars is so
strong and obvious that it was discovered even before the stel-
lar structure and evolution theory was fully established. That
was the first reason why it had been evaluated as one of the
fundamental secrets of the cosmos, similar to the H-R diagram
itself (why are stars not distributed evenly on the surface of
the H-R diagram but mostly gathered on the main sequence?).
The second reason was that the observational accuracy of those
early years of astrophysics was not sufficient to distinguish it as
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a statistical relation; therefore, it was treated as a fundamental
relation even though some serious objections mentioned above
have occurred. Nevertheless, no one has yet clearly declared
that MLR is just a statistical relation.

Andersen (1991) totally rejected the existence of a real re-
lation between 𝑀 and 𝐿 of the main-sequence stars because,
according to him, a unique relation (like a Planck law, keeping
𝑇eff constant, the deviations from the Planck curve are only due
to random errors of observed intensities) does not exist since
deviations from a fitting curve (MLR) is not just only due to
random observational errors of 𝐿 and 𝑀 , but also due to chem-
ical composition and age differences. Eker et al. (2015, 2018)
defended the existence of an MLR relation by claiming that any
sample of data could be expressed by a unique relation because
a unique fit of a curve on sample data is guaranteed by the least
squares method.

However, this defence occurred intuitively because the dis-
tinction between MLR as a fundamental or statistical relation
was not yet fully established. Even Eker et al. (2015) said “One
of the fundamental secrets of the cosmos, the famous stellar
mass–luminosity relation (MLR), was discovered empirically
...”. Only later, Eker et al. (2018) declared “The main-sequence
MLR is one of the fundamentally confirmed and universally
recognised astronomical relations”.

How to solve non-uniqueness problems attributed to the light
curves of spotted stars, which is a type of problem Andersen
(1991) pointed out against MLR, was discussed first by Eker
(1999). The same principles adopted by Eker et al. (2018)
for defending the uniqueness of MLR, MRR, and MTR func-
tions from the most accurate masses and luminosities of 509
main-sequence stars as the components of DDEB in the Solar
neighbourhood of the Milky Way. There could be three types
of non-uniqueness problems. According to Eker et al. (2018),
there is no non-uniqueness problem of type I because the pre-
ferred function expressing MLR is a power law (𝐿 ∝ 𝑀𝛼).
There should not be a non-uniqueness problem of type II also
because there exist many methods like the least squares for one
to achieve a unique fit and determine its coefficients uniquely.
Finally, the problem of type III does not exist either because
the parameter space of MLR is so simple that there is always
one correlation between 𝐿 and 𝑀 , that is, there is only one 𝐿
value for a given 𝑀 and vice versa in the case of inverse MLR.
The most general approach to non-uniqueness problems was
recently applied to main sequence BC-𝑇eff relations by Eker
et al. (2021b) when discussing the chronic zero-point problems
of the BC scale, which is important for obtaining accurate 𝐿 of
single stars from apparent magnitudes if distances are known.

Apparently, there is no non-uniqueness problem associated
with classical MLR, but one may still run into problems of ob-
taining accurate 𝐿 from a given 𝑀 or vice versa. Such problems
are inevitable because classical MLR is not devised solely for
obtaining accurate 𝐿 from an accurate 𝑀 or vice versa. The
main obstacle for obtaining accurate 𝑀 of a single star from
its 𝐿 using classical MLR is not because of the absence of a

unique function (Andersen 1991), but because of the degen-
eracy induced by stellar structure and evolution theory (Eker
et al. 2018). This is because, theoretically, there are an infinite
number of 𝐿 values for a main-sequence star of given 𝑀 de-
pending on its chemical composition and age. Thus, varying
chemical composition and ages are not necessary to cause non-
uniqueness to an existing MLR. On the contrary, the chemical
composition and age of a star break inferred degeneracy to ob-
tain accurate 𝐿, 𝑀 , and 𝑅, which appear on classical MLR and
MRR functions as only variables. Therefore, one must conduct
further investigation on evolutionary tracks. Knowing the mass
and chemical composition of a star, the correct track will be
chosen. By knowing the age, both 𝐿 and 𝑅 will be read on the
track. If the age is not known, then either 𝐿 or 𝑅must be known
to read the age of the star on the track. Stellar structure and
evolution theory is useful for determining the accurate mass
of a single star from its accurately determined [Fe/H] and 𝐿,
where the value of 𝑅 could also be obtained if 𝑇eff of the star is
known accurately.

Without distinguishing them from a fundamental relation,
Eker et al. (2015) calibrated four linear MLR functions covering
the mass range 0.38 < 𝑀/𝑀⊙ < 32, using masses and lumi-
nosities of 268 main-sequence stars selected from 514 stars as
the components of 257 DDEB from the catalogue of Eker et al.
(2014). Three distinct break points separating the four distinct
mass domains on a log𝑀− log(𝐿/𝑀) diagram were identified.
The mass domains were named as low mass (0.38 < 𝑀/𝑀⊙ ≤
1.05), intermediate mass (1.05 < 𝑀/𝑀⊙ ≤ 2.4), high mass
(2.4 < 𝑀/𝑀⊙ ≤ 7), and very high mass (7 < 𝑀/𝑀⊙ ≤ 32).
The linear MLRs of the four mass domains were compared to
linear and quadratic MLR of the full range 0.38 < 𝑀/𝑀⊙ < 32
and the four-piece linear MLRs were found to best represent the
data on a log𝑀 − log 𝐿 diagram. The break points separating
the mass domains were interpreted as abrupt changes in the
power of 𝑀 , most probably due to changes in the type of effi-
cient nuclear reaction operating in the cores of main-sequence
stars.

The statistical nature of MLR was sensed but not fully
grasped yet by Eker et al. (2018). The referees were against
calibrating new MLRs, which are useless in predicting 𝑀 and
𝑅 of single stars. The new trend in determining MLRs was to
use them to obtain 𝑀 and 𝑅 of single stars, as done by Ander-
sen (1991), Henry (2004), Malkov (2007), Torres et al. (2010),
and Gafeira et al. (2012). Therefore, the justifications for re-
calibrating them again after only three years were explained
by Eker et al. (2018) as: There are two tables in the handbook
of astronomers, commonly known as “Allen’s Astrophysical
Quantities” (Cox 2000). The first of the two tables lists cali-
bration of MK spectral types with seven columns spectral type,
𝑀 (𝑉), 𝐵 − 𝑉 , 𝑈 − 𝐵, 𝑉 − 𝑅, 𝑅 − 𝐼, 𝑇eff and BC (Table 15.7
on page 388). The second table with six columns spectral type,
mass, radii, surface gravity, mean mass density, and rotational
speed (Table 15.8 on page 389) is actually at continuation of the
first table. The columns of the two tables were thus connected
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by spectral types. The second table has a notification mark to
say “columns containing uncertain values”, which actually in-
dicates statistically determined typical masses, radii, surface
gravity, and mean mass for a given spectral type. The rationale
of the new paper was obvious that interrelated MLR, MRR,
and MTR would be very useful in supplying reliable statistical
information to the astronomical community.

After three years, Eker et al. (2018), this time, calibrated a
six-piece MLR covering the mass range 0.179 < 𝑀/𝑀⊙ < 31,
using 509 main-sequence stars selected from 639 stars as the
components of 318 pairs (DDEB) and one detached spectro-
scopic triple. One should not be surprised by the higher increas-
ing rate of the calibrating stars, which appears to be 90% while
the number of newly added DDEB binaries is only 24%. This is
because stars with less accurate 𝑀 and 𝑅 up to 15% were used
in the calibrations rather than up to 3% as in the previous study.
Thus, Eker et al. (2018) concluded that it is not always good to
eliminate less accurate data for a better study because it may
mean loss of information rather than gain. Lowering the limit-
ing relative accuracy to 15% was a significant contribution to
extending the low mass limit down to 0.179𝑀⊙ from 0.38𝑀⊙
and discovery of two more break points on the log𝑀 − log 𝐿
diagram. That is, adding new DDEB stars (24%) to the list was
not as effective as lowering the limiting accuracy.

The distribution of the luminosities of 509 main-sequence
stars on a log𝑀 − log 𝐿 diagram is shown in Figure 2, where
the vertical lines mark the positions of the break points. Be-
tween the break points, there is a linear MLR luminosity of that
domain; thus, there exists a six-piece MLR to cover the full
range 0.179 < 𝑀/𝑀⊙ ≤ 31. A six-degree polynomial, shown
by a blue dotted line to fit the full range, was found producing
a best fit better than the higher and the lower degree polyno-
mials to explain the full range data by a single function. It is
obvious in Figure 2 that the six-piece MLRs are even better
at representing stellar luminosity than any polynomial of any
degree.

The six-mass domains, which are named ultra-low mass
(0.179 < 𝑀/𝑀⊙ ≤ 0.45), very-low mass (0.45 < 𝑀/𝑀⊙ ≤
0.72), low mass (0.72 < 𝑀/𝑀⊙ < 1.05), intermediate mass
(1.05 < 𝑀/𝑀⊙ ≤ 2.4), high mass (2.4 < 𝑀/𝑀⊙ ≤ 7), and
very-high mass (7 < 𝑀/𝑀⊙ ≤ 31), and their best fitting MLR
functions are shown in Figure 3, where they were also com-
pared to a single MLR function of sixth degree covering the
entire mass range 0.179 < 𝑀/𝑀⊙ ≤ 31. Analytical expres-
sions and statistical parameters 𝑁 (number of stars in the do-
main), 𝑅2 (correlation coefficient), 𝜎 (standard deviation), and
𝛼 (the power of 𝑀) as the inclination of a linear MLR on a
log𝑀 − log 𝐿 diagram are listed in Table 2.

2.2. Revisiting MRR
Although it appears to be natural to sense a relation between 𝑀
and 𝑅 of main-sequence stars immediately after the discovery
of MLR by Hertzsprung (1923) and Russell et al. (1923), the

empirical MRR of main-sequence stars did not appear in the lit-
erature for another one and a half decades. Kuiper (1938), who
was suspicious about MLR being one of the fundamental rela-
tions, also plotted a log𝑀 − log 𝑅 diagram but did not discuss
it. Only after mid of the 20th century, the studies discussing
empirical stellar mass-radius relation (MRR) begin to appear
in the literature (McCrea 1950; Plaut 1953; Huang & Struve
1956; Lacy 1977, 1979; Kopal 1978; Patterson 1984; Gimenez
& Zamorano 1985; Harmanec 1988; Demircan & Kahraman
1991).

If 𝑀 and 𝐿 are related, why not 𝑀 and 𝑅, since 𝐿 is already
known to be related to the square of 𝑅 according to the Stefan-
Boltzmann law? The main obstacle seems to be the difficulty of
accessing reliable stellar radii. McCrea (1950) appears to be one
of the first founders of the idea for two reasons: i) Using the light
curve solutions of eclipsing binaries, not necessarily all being
detached, that is, including W UMa binaries too, Plaut (1953)
has drawn a diagram in the manner proposed by McCrea (1950).
ii) Readers were referred to McCrea (1950) for theoretical in-
terpretation of the relation in the form log(𝑀/𝑅) = 𝑎+𝑏 log𝑀
suggested by Plaut (1953). Using the parameters of 30 systems
with both components on the main sequence chosen from 130
eclipsing binaries of all kinds compiled by Plaut (1953), the co-
efficients of the relation were rectified as 𝑎 = −0.058 ± 0.026,
𝑏 = 0.335 ± 0.29 with a dispersion of ±0.11 according to the
least squares.

The masses and radii of the eclipsing stars compiled by Plaut
(1953) had been studied by Huang & Struve (1956), who plotted
them on two separate spectral type-log 𝑅 diagrams, on which
both components are smaller, thus not touching, both compo-
nents are touching, primary is touching but secondary is not,
and the secondary is touching but the primary is not touching.
The inner contact surfaces were marked by special symbols for
each. The two separate diagrams made Huang & Struve (1956)
believe that the sub-giant components in such systems could
have evolved from early main-sequence stars.

Empirical MRR in the form log 𝑅(𝑀) = 8.495 −
0.2𝑀Bol (𝑀) − 2 log𝑇eff (𝑀) suggested by Hoxie (1973) for the
low mass stars (𝑀 < 1𝑀⊙) in the Solar neighbourhood. Com-
paring this MRR with low-mass model calculations of stellar
𝑅, Hoxie (1973) announced a discordance implying that theo-
retical radii are 30% or smaller than the observationally derived
radii in the mass-radius plane for stars of mass less than 0.5𝑀⊙ .
Subsequently, a method for estimating 𝑅 of nearby stars was
declared by Lacy (1977). Based on the Barnes-Evans relation
and free of assumptions of spectral types, luminosity class, ef-
fective temperature, or bolometric correction, this method is
applied to nearby single and double stars with accurate paral-
laxes and 𝑉 − 𝑅 photometry. The double stars (visual binaries)
were useful to supply components 𝑀 and 𝑅, where 𝑅 needed
to be compared with predicted 𝑅 by the new method with
Barnes-Evans relation. Additional comparison was also possi-
ble to Lacy (1977) using 𝑅 from non-contact eclipsing binaries
with well-determined dimensions selected from Batten (1967)
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Figure 2. The dotted (blue) line is a sixth-degree polynomial, the solid (red) lines are classical MLRs, and the vertical lines are the break points
separating the mass domains where the linear lines were fitted (credit to Eker et al. 2018).

Figure 3. Mass domains and classical MLRs representing stellar masses and luminosities in each domain. 6th-degree polynomial representing
all data (same as the dotted blue line in Figure 2) is not as successful as linear MLRs in low-mass domains (𝑀 < 1.05) and very high-mass
domain (𝑀 > 7). Data accuracy is: (o) very accurate < 3%, (+) accurate (3-6%), and (×) less accurate (6-15%) (credit to Eker et al. 2018).
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Table 2. Classical MLRs for main-sequence stars in various mass domains (credit to Eker et al. 2018).

Domain 𝑁 Mass Range Classical MLR 𝑅2 𝜎 𝛼

Ultra low mass 22 0.179 < 𝑀/𝑀⊙ ≤ 0.45 log 𝐿 = 2.028(135) × log𝑀 − 0.976(070) 0.919 0.076 2.028
Very low mass 35 0.45 < 𝑀/𝑀⊙ ≤ 0.72 log 𝐿 = 4.572(319) × log𝑀 − 0.102(076) 0.857 0.109 4.572
Low mass 53 0.72 < 𝑀/𝑀⊙ ≤ 1.05 log 𝐿 = 5.743(413) × log𝑀 − 0.007(026) 0.787 0.129 5.743
Intermediate mass 275 1.05 < 𝑀/𝑀⊙ ≤ 2.40 log 𝐿 = 4.329(087) × log𝑀 + 0.010(019) 0.901 0.140 4.329
High mass 80 2.4 < 𝑀/𝑀⊙ ≤ 7 log 𝐿 = 3.967(143) × log𝑀 + 0.093(083) 0.907 0.165 3.967
Very high mass 44 7 < 𝑀/𝑀⊙ ≤ 31 log 𝐿 = 2.865(155) × log𝑀 + 1.105(176) 0.888 0.152 2.865

and Koch et al. (1970). Having a sufficient number of accurate
masses and radii (both 5% or better) from the visual systems
and non-contact eclipsing binaries, Lacy (1977) was also able
to produce the most reliable log𝑀−log 𝑅 diagram so far, where
the empirical relation of Hoxie (1973) was plotted with a special
symbol different from the symbols of visual binaries, eclipsing
systems that have undergone mass exchange and without any
mass exchange.

Therefore, Lacy (1977) suggested log 𝑅 = 0.640 log𝑀 +
0.011 for the region 0.12 ≤ log𝑀 ≤ 1.30 and log 𝑅 =

0.917 log𝑀 − 0.020 for the region −1.00 ≤ log𝑀 ≤ 1.30
as two MRR functions to indicate the zero-age main sequence
(ZAMS), where 𝑅 and 𝑀 are in Solar units. Lacy (1977) inter-
preted the break point as a signal crossing over from the region
of the p-p chain to the C-N-O cycle. The terminal age main
sequence (TAMS) line was deduced from the models of Iben
(1967) and Paczyński (1970) marked on the log𝑀 − log 𝑅 as a
dashed line, while ZAMS is shown by a continuous line with a
break at 1.3 ± 1𝑀⊙ . Theory and observation were found to be
in good agreement for stars 𝑀 ≳ 1𝑀⊙ , but the models of 𝑀
dwarfs having 25% smaller radii than real stars. Another line of
development used the Catalogue of the Elements of Eclipsing
Binaries (Kopal & Shapley 1956), where Kopal (1959) obtained
a good statistical definition of the MRR. He found a linear re-
lation, in logarithmic scales, for the values of individual stars
irrespective of being primary or secondary, but the slope is
different for massive and less massive stars with a transition
at ∼ 2𝑀⊙ (Kopal & Shapley 1956; Kopal 1978). Popovici &
Dumitrescu (1974), who compiled data from Kopal & Shap-
ley (1956) and Svetchnikoff (1969)2, were mainly interested
in the radius-luminosity diagram. Five mean empirical mass-
radius relations had been constructed by Habets & Heintze
(1981). The number of MRR is five because it is calibrated
not only for main-sequence stars but also for luminosity class
IV (subgiants), III (giants), 𝑉⊙ (ZAMS) and 𝐸𝑉⊙ (EZAMS)
using visual and eclipsing binaries which are at the same time
double-lined spectroscopic systems collected by themselves.
Patterson (1984) was unsatisfied by the MRRs suggested be-
fore him, thus he proposed the empirical ZAMS mass-radius
relation in the form 𝑅 = 𝛼𝑀𝛽 , where 𝑀 and 𝑅 in Solar units

2 Catalog Orbitalnii Elementov, Mass i Svetimostii Tesnii Dvornik Svezd,
Sverdlovsk

and 𝛼 = 1, 𝛽 = 0.88 ± 0.02 for the region 0.1 ≤ 𝑀/𝑀⊙ ≤ 0.8
and 𝛼 = 0.98, 𝛽 = 1.00 for the region 0.8 ≤ 𝑀/𝑀⊙ ≤ 1.4
by a quotation “poorly defined for 𝑀 ≤ 0.4𝑀⊙” for himself to
apply it to cataclysmic variables. Gimenez & Zamorano (1985)
preferred using the Catalogue of Stellar Masses and Radii pub-
lished by Popper (1980) for studying the classical MRR on
log𝑀 − log 𝑅 diagram. Using reliable 𝑀 and 𝑅 from OB and
B6-M detached eclipsing and visual binaries and resolved spec-
troscopic binaries, Gimenez & Zamorano (1985) determined
𝑎 = 0.041 ± 0.011 and 𝑏 = 0.749 ± 0.011 for an MRR in the
form log 𝑅 = 𝑎 + 𝑏 log𝑀 with a correlation coefficient 0.96.

It must be noted that Lacy (1977, 1979), Gimenez &
Zamorano (1985) and Demircan & Kahraman (1991) presented
their log𝑀 − log 𝑅 diagrams without fitting an MRR function
to the data, but with a ZAMS line as the lower limit and a
TAMS line as the upper limit of main-sequence stars, which
are estimated with the help of theoretical stellar structure and
evolution models. The most recent example is by Eker et al.
(2018) is shown in Figure 4, where it is clear that the statistical
MRR does not appear as strong as the classical MLR expressed
on log𝑀 − log 𝐿 diagram (Figure 3). Considering the differ-
ence in data distribution on both diagrams log𝑀 − log 𝐿 and
log𝑀− log 𝑅, it is not difficult to understand why log𝑀− log 𝑅
diagram is presented without a fitting curve like Figure 3.

Because of the very large scatter caused by the evolution of
stars 𝑀 ≳ 1.3𝑀⊙ (log𝑀 > 0.15), data of main-sequence stars
on a log𝑀 − log 𝑅 diagram are not suitable for expression by
a function or a curve. Obviously, plotting a ZAMS MLR on
a log𝑀 − log 𝑅 diagram permits one to see the evolution of
stellar radii for main-sequence stars 𝑀 ≳ 1.3𝑀⊙ .

Despite its hassle-free appearance and tight and narrow dis-
tribution of stellar 𝐿 on a log𝑀 − log 𝐿 diagram for the full
mass range of main-sequence stars, different forms of MLR
functions causing confusion were suggested, calibrated, and
shown together with the data. Looking at the already suggested
main sequence MLR and MRR functions so far, one should see
another noticeable difference. Contrary to the different forms of
MLR suggested by different study groups, the main sequence
MRR in the form log 𝑅 = 𝑎 + 𝑏 log𝑀 were common. The form
𝑅 ∝ 𝑀𝛽 suggest by Patterson (1984), Demircan & Kahraman
(1991) and Karetnikov (1991), appears different, but it is not.
The same form of function is expressed once in logarithmic
form, while the other is a power law.
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Figure 4. Main sequence mass-radius diagram of DDEB stars. ZAMS
and TAMS lines are from the PARSEC models of Bressan et al. (2012)
(credit to Eker et al. 2018). The vertical line is a division at𝑀 = 1.5𝑀⊙
(log𝑀 = 0.176).

Despite such obvious differences (appearance on a diagram,
formal expression), similarities between MLR and MRR stud-
ies also exist. Andersen (1991)’s exclamation against classical
MLR also affected MRR studies; thus, modern MRR also ap-
pears to have deviated from the main path. Older MRR studies
aimed to calibrate an MRR relation for two practical purposes:
i) to get an answer to the question: how mean (or typical) 𝑀 and
𝑅 of main-sequence stars are related? ii) to estimate 𝑅 of a star
for a given 𝑀 , or vice versa. The former is useful for making
models that require mean 𝑀 and 𝑅, and the latter is useful for
guessing the 𝑅 of a star from its 𝑀 , or vice versa. Models using
mean 𝑀 and 𝑅 as well as mean 𝐿, have a larger application
area not only in stellar astrophysics but also in Galactic and
extra-galactic studies.

The exclamation of Andersen (1991), unfortunately, caused
the first aim to be neglected. As explained above, in the new
trend of calibrating MLR, there is only one aim: to obtain the
most accurate 𝑀 and 𝑅 together from the other observed pa-
rameters of the star. Thus, Malkov (2007), Torres et al. (2010),
Moya et al. (2018), and Fernandes et al. (2021) have not only
calibrated a single relation for predicting 𝑅 of a single star but
also at least one more relation useful to deliver 𝑀 of the same
star. Thus, the new trend of MRR cannot be considered inde-
pendent of the new trend of MLR appearing after Andersen
(1991).

2.3. Revisiting MTR
If 𝑀 and 𝐿 are related, why not 𝑀 and 𝑇eff since 𝐿 is known
to be equal to the surface area times the surface flux, where the
flux is proportional to the fourth power of the effective tem-
perature. A relation even stronger than mass-radius is expected
because the power of 𝑇eff is two times greater than the power
of 𝑅 in the Stefan-Boltzmann law. Its calibration and usage

also appear easier than the calibration and usage of the MRR
relation. Regardless, except for the spectral type-effective tem-
perature (horizontal axis of the H-R diagram) relationship, it
took almost sixty years for a MTR to appear in the literature.

First empirical mass-𝑇eff relation is studied by Habets &
Heintze (1981) and shown on a log𝑀−log𝑇eff diagram for main
sequence-stars after studying newly calibrated mass-spectral
type and spectral type-𝑇eff relations from the main-sequence
components of eclipsing binaries.The empirical relation was
shown together with two theoretical mass-𝑇eff relations of
Stothers (1974, for a metallicity 𝑍 = 0.02 with 𝑌 = 0.49 and
0.25) and the one by Demarque & Gisler (1975, for 𝑍 = 0.02
and 𝑌 = 0.25). The form of the relation was not given. Karet-
nikov (1991) later determined coefficients of mass-𝑇eff relation
in the form log𝑇eff = 𝑎 + 𝑏 log𝑀 for six different types of
eclipsing systems using absolute parameters of 303 eclipsing
binaries of different types with varying and constant orbital
periods without showing them on diagrams. The relations were
determined for primaries and secondaries separately; thus, co-
efficients of 24 relations were determined and listed without
showing them on log𝑀 − log𝑇eff diagrams.

Apparently, MTR relation had also been affected by Andersen
(1991)’s objection to MLR because Malkov (2007) announced
a direct [log𝑇eff − (log𝑀)] and an inverse [log𝑀 − (log𝑇eff ) ]
mass-effective temperature relations together with his 𝑀 and 𝑅
predicting relations and their inverse functions. Like log𝑀 −
log 𝐿 diagram without a fitting curve, his 𝑀 versus log𝑇eff
diagram is too presented without a fitting curve. Being not
interested in calibrating an MTR, Moya et al. (2018), on the
other hand, used𝑇eff as one of the free parameters for predicting
𝑀 and 𝑅 of single stars. Moya et al. (2018), calibrated 38
relations: 18 for 𝑀 and 20 for 𝑅. This is very much similar to
Torres et al. (2010) who suggested only two relations using𝑇eff ,
log 𝑔 and [Fe/H] as free parameters, one for obtaining 𝑀 one
for obtaining 𝑅, to replace classical MLR claimed inadequate to
provide stellar𝑀 by two reasons: i) It is a mean relation, thus𝑀
from 𝐿 is very inaccurate. ii) Scatter on log𝑀 − log 𝐿 diagram
is not only due to random observational errors of 𝑀 and 𝐿 but
also due to stellar age and chemical composition differences.
As if, a reliable (or true) MLR function must contain all the
parameters that introduce scattering. Such an MLR function,
however, cannot be drawn on a log𝑀 − log 𝐿 diagram.

On the other hand, following the old tradition of looking for
mean relations for MRR and MTR, Eker et al. (2015) have com-
pared 𝐿, 𝑅, and𝑇eff distributions on log𝑀−log 𝐿, log𝑀−log 𝑅
and log𝑀 − log𝑇eff diagrams. The first comparison between
log𝑀 − log 𝐿, log𝑀 − log 𝑅 has been commented as: “the ap-
pearance of data on the log𝑀 − log 𝑅 diagram is very different
from the appearance on the log𝑀 − log 𝐿 diagram (compare
Figures 2 and 4), which rather looks like a band of data ex-
pressible by a function; however, with a very narrow distribu-
tion of radii for masses 𝑀 < 1𝑀⊙ and a broad band of radii
for stars with 𝑀 > 1𝑀⊙ , a single function to express a MRR
would be odd and meaningless”. Then, a comparison between
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log𝑀 − log 𝑅, log𝑀 − log𝑇eff were commented as: “the tem-
perature evolution within the main-sequence band is not that
obvious on the 𝑀 − 𝑇eff diagram. At first glance, it resembles
the MLR”. It is indeed not like MRR, where the main-sequence
evolution of 𝑅 is obvious for 𝑀 > 1𝑀⊙ (compare Figures 2,
4, and 5).

Despite the distribution of data on log𝑀 − log𝑇eff diagram
(Figure 5) resembles the distribution of data on log𝑀 − log 𝐿
diagram, Eker et al. (2015) preferred not to calibrate a mean
MTR because it would have been odd or inappropriate to oppose
literature where MLR and MRR are many, but MTR is almost
absent. Later, Eker et al. (2018) noted: “Stefan–Boltzmann law
clearly indicates that stellar luminosity are related to stellar radii
and effective temperatures. Having empirically determined the
MLR and MRR available, one is not free to determine another
independent mass–effective temperature relation (MTR)”. The
three independently calibrated MLR, MRR, and MTR functions
are not guaranteed to give consistent 𝐿, 𝑅, and 𝑇eff for a given
𝑀 . The solution to the problem is given in the next subsection.

2.4. Revisiting interrelated MLR, MRR, and MTR
It has been noticed that the distribution of 𝑅 on the log𝑀−log 𝑅
diagram (Figure 4) on the left of the vertical line (𝑀 ≤ 1.5𝑀⊙)
is smooth and tight, that is, it is expressible by a simple function,
which is to be called MRR. However, in the high mass region
𝑀 > 1.5𝑀⊙ due to faster evolution, 𝑅 values are scattered
very much, and thus, its band-like appearance does not seem
expressible by a curve of a function.

Despite its overall appearance resembling an MLR, the 𝑇eff
distribution on the log𝑀 − log𝑇eff diagram shows almost op-
posite characteristics when choosing the same mass domain
to calibrate an MTR. One can easily notice that the low-mass
region 𝑀 ≤ 1.5𝑀⊙ (left of the vertical line) in Figure 5 has
a tight but wavy distribution, which is rather not possible to
fit a simple function. On the contrary, one can easily spot the
domain of high-mass stars 𝑀 > 1.5𝑀⊙ (right of the vertical
line) in Figure 5 with a sufficiently tight but smoothly vary-
ing distribution, which is easily expressed by a function called
MTR.

Having six linear MLRs already calibrated (Table 2, Fig-
ures 2 and 3) for the main-sequence stars in the full range of
observed stellar masses, probable inconsistencies among the
mean 𝐿, 𝑅, and 𝑇eff values for a given 𝑀 will be eliminated if
the MRR was calibrated for the low-mass region 𝑀 ≤ 1.5𝑀⊙
only and the MTR was calibrated for the high-mass region
𝑀 > 1.5𝑀⊙ only. This is because the vertical line is a di-
mensionless border between the low- and high-mass regions in
both 𝑅 and 𝑇eff distributions as shown in Figures 4 and 5. Oth-
erwise, with independently calibrated MLR, MRR, and MTR
functions, we obtain a mean luminosity (⟨𝐿⟩), a mean radius
(⟨𝑅⟩), and a mean effective temperature (⟨𝑇eff⟩) for a given
𝑀 . No one would know which of the three mean values are
wrong because the mean ⟨𝐿⟩ will not be equal to the mean

Figure 5. Main sequence mass-effective temperature diagram of
DDEB stars (credit to Eker et al. 2018). The vertical line is a di-
vision at 𝑀 = 1.5𝑀⊙ (log𝑀 = 0.176).

surface area ⟨4𝜋𝑅2⟩ = 4𝜋(⟨𝑅2⟩) multiplied by the mean sur-
face flux ⟨𝜎𝑇4⟩ = 𝜎(⟨𝑇4

eff⟩) for a typical main-sequence star of
given 𝑀 . Choosing the most eligible regions on log𝑀 − log 𝑅
and log𝑀 − log𝑇eff diagrams as compensating mass domains
for covering the full mass range, not only removes a proba-
ble inconsistency but also guarantees the most trustable MLR
and MRR for the low-mass stars (𝑀 ≤ 1.5𝑀⊙) and the most
trustable MLR and MTR for the high-mass stars (𝑀 > 1.5𝑀⊙).
Then, one could calculate consistent ⟨𝐿⟩, ⟨𝑅⟩ and ⟨𝑇eff⟩ for the
full range of main-sequence stars, which occurs in two steps
for both mass domains. For low-mass stars: i) Use MLR and
MRR to calculate ⟨𝐿⟩ and ⟨𝑅⟩ for a given mass, ii) use Stefan-
Boltzmann law to calculate ⟨𝑇eff⟩ for the same mass from its
already computed ⟨𝐿⟩ and ⟨𝑅⟩. For high-mass stars: i) Use
MLR and MTR to calculate ⟨𝐿⟩ and ⟨𝑇eff⟩ for a given mass, ii)
use Stefan-Boltzmann law to calculate ⟨𝑅⟩ for the same mass
from its already computed ⟨𝐿⟩ and ⟨𝑇eff⟩.

Utilising the least squares, Eker et al. (2018) determined an
empirical MRR directly from 𝑀 and 𝑅 of 233 main-sequence
stars for low-mass stars within range 0.179 ≤ 𝑀/𝑀⊙ ≤ 1.5,
and an empirical MTR from log𝑀 and log𝑇eff of 276 main-
sequence stars for high-mass stars within range 1.5 < 𝑀/𝑀⊙ ≤
31. Because the table giving the empirical MRR and MTR by
Eker et al. (2018) has misprints, the open forms of the functions,
correlation coefficients (𝑅2), and standard deviations (𝜎) from
Eker et al. (2021a) are given here. The empirical MRR in the
form of a quadratic equation, where 𝑅 and 𝑀 are Solar units,
is:
𝑅 = 0.438(0.098) × 𝑀2 + 0.479(0.180) × 𝑀 + 0.137(0.075), (3)

has 𝑅2 = 0.867 and 𝜎 = 0.176. The empirical MRR in the
form of a quadratic equation, where 𝑇eff and 𝑀 are the Kelvin
and Solar units, is:

log𝑇eff = −0.170(0.026) × (log𝑀)2 + 0.888(0.037) × log𝑀 (4)
+3.671(0.010),

has 𝑅2 = 0.961 and 𝜎 = 0.042.
The empirical MRR and MTR by Eker et al. (2018) are
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Figure 6. Empirical MRR and MTR calibrated from 509 main-
sequence stars for the mass ranges 0.179 ≤ 𝑀/𝑀⊙ ≤ 1.5 and
1.5 ≤ 𝑀/𝑀⊙ ≤ 31 of DDEB stars. Note that MTR is on a loga-
rithmic scale, but MRR is not (credit to Eker et al. 2018).

shown together with data in Figure 6. The division between the
low- and high-mass stars at 1.5𝑀⊙ is a nice coincidence that
plots of MRR and MTR appear with the same numbers in the
horizontal axis; thus, one must be careful that MTR is shown
on a logarithmic scale while MRR is not.

The mean values (⟨𝐿⟩, ⟨𝑅⟩, ⟨𝑇eff⟩) computed from the empir-
ical MLR, MRR, and MTR of Eker et al. (2018) are compared
to 𝐿, 𝑅 and 𝑇eff of 509 main-sequence stars chosen from 318
DDEB and one detached eclipsing triple, as shown in Figure 7.
The solid lines mark the mean values calculated directly from
MLR, MRR, or MLR, MTR, while the dotted lines mark the
mean values ⟨𝑇eff⟩ calculated from ⟨𝐿⟩, ⟨𝑅⟩ for the low-mass
stars and ⟨𝑅⟩ calculated from ⟨𝐿⟩ and ⟨𝑇eff⟩ for the high-mass
stars.

Calculating the mean values (⟨𝐿⟩, ⟨𝑅⟩, ⟨𝑇eff⟩) in two steps
as described above has the advantage of further checking them
and confirming whether the mean values of the first step is
consistent or not. Note that, only if ⟨𝐿⟩ and ⟨𝑅⟩ values of the
low-mass stars are consistent, then in the second step consistent
⟨𝑇eff⟩ values could be produced from ⟨𝐿⟩ and ⟨𝑅⟩; similarly,
only if ⟨𝐿⟩ and ⟨𝑇eff⟩ values of high-mass stars are consistent,
then in the second step, consistent ⟨𝑅⟩ values could be produced
according to the Stefan-Boltzmann law. The three break points
and varying inclinations of MLR before, between, and after the
break points in the mass range 𝑀 ≤ 1.5𝑀⊙ , apparently, are
causing the wavy look of the MTR of low-mass stars. What
simple function would have produced the current successful

appearance of the fit displayed in Figure 7c by the dotted line?
Similar influence of the break points and effect of varying
inclinations of MLR before, between, and after the break points
for the high-mass stars𝑀 > 1.5𝑀⊙ are there in the middle panel
(Figure 7b) but appear to be lost within the scatter caused by the
faster evolution of more massive stars. Therefore, it is a bull’s
eye to choose the mass region 𝑀 ≤ 1.5𝑀⊙ for devising MRR
and to choose the mass region 𝑀 > 1.5𝑀⊙ for devising MTR.

The two-step procedure in determining the mean values of
⟨𝐿⟩, ⟨𝑅⟩, ⟨𝑇eff⟩ for a given 𝑀 may appear problematic because
it introduces extra errors in the error propagation. Users should
not be deceived by this illusion. First, this is because consistent
mean values of higher uncertainty are better than inconsistent
more accurate ones. To avoid inconsistency, one may use a two-
step procedure as described above or use MLR and MRR only
or MLR and MTR only for the full mass range of main-sequence
stars. Thus, in either case, the two-step procedure is inevitable
for consistent results. For the high-mass stars 𝑀 > 1.5𝑀⊙ the
scatter on 𝑅 is too large; thus, authors usually prefer not to
determine MRR. In the former case, MRR and MTR would

Figure 7. The mean values (⟨𝐿⟩, ⟨𝑅⟩, ⟨𝑇eff⟩) computed from empirical
MLT, MRR, and MTR are compared to 𝐿, 𝑅 and 𝑇eff of 509 main-
sequence stars. The mean values taken directly from MLR, MRR or
MLR, MTR are solid, The mean values from the Stefan-Boltzmann
law are dotted. The dashed vertical lines represent the break points of
MLR (credit to Eker et al. 2018).
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be missing for high-mass stars, while interrelated MLR, MRR,
and MTR would be possible only for low-mass stars. On the
other hand, for low-mass stars 𝑀 < 1.5𝑀⊙ it is not possible
to find a simple function to fit in determining MTR. Then,
interrelated MLR, MRR, and MTR become possible only for
high-mass stars since MRR and MTR would be missing for
low-mass stars 𝑀 < 1.5𝑀⊙ . If one prefers to fit an MRR
together with MLR in the full mass region, then he/she will end
up having very unreliable ⟨𝑅⟩ for the stars 𝑀 > 1.5𝑀⊙ . Error
propagation, then, would produce similarly unreliable, even
worse ⟨𝑇eff⟩ since the independent MTR function is not there.
If one prefers to calibrate MLR and MTR in the full range
of masses, similar unreliable or erroneous ⟨𝑇eff⟩, ⟨𝑅⟩ values
emerge for the low mass stars 𝑀 < 1.5𝑀⊙ . Therefore, the
two-step procedure described in the paragraph before this one
in determining the mean values of ⟨𝐿⟩, ⟨𝑅⟩, ⟨𝑇eff⟩ for a given
𝑀 is always better and more reliable than the independently
determined MLR, MRR and MTR for sure.

3. CONCLUSIONS
Fundamental relations are handy tools to explain simple natural
phenomena or starting points for understanding more complex
phenomena. The main difference between statistical and funda-
mental relations is that a statistical relation is valid under certain
conditions implied by the data from which it was formulated,
whereas a fundamental relation is rather independent of data,
that is, data are not there to constrain it but only to confirm
or to falsify it. All empirical relations derived from observa-
tional or experimental data are statistical in spirit. This does
not, however, mean a fundamental relation cannot be derived
from observational and/or experimental data. A statistical study
could reproduce and may even find a fundamental relationship.

Physical laws are indifferent to fundamental relations. Their
scope is wider; for example, the Stefan-Boltzmann law (𝐿 =

4𝜋𝑅2𝜎𝑇4
eff) is valid for all stars radiating thermally and for a

hypothetical star representing ⟨𝐿⟩, ⟨𝑅⟩, and ⟨𝑇eff⟩ implied the
main sequence MLR, MRR, and MTR. In contrast, MLR, MRR,
and MTR are valid to give mean values for a main-sequence star
of a given 𝑀 within a valid mass range, which was suggested
after their calibrations. Because they are not valid for non-main
sequence stars, they are also not valid for estimating 𝐿, 𝑅, or𝑇eff
of a main-sequence star with a known 𝑀 only. This is because,
nowadays, many stellar structure and evolution models exist
for one to look for 𝐿, 𝑅, and 𝑇eff of a star according to its 𝑀 ,
chemical composition (𝑋,𝑌, 𝑍), and age.

Because of their simplicity, some statistical relations can be
mistaken or misused as fundamental relations. A good example
of this is the classical MLR. This is because, immediately after
its discovery by Hertzsprung (1923) and Russell et al. (1923),
for a while, there were no other methods to obtain masses of
single stars but estimate them from 𝐿 or absolute bolometric
magnitude (𝑀Bol) by using an MLR in the form of 𝐿 ∝ 𝑀𝛼 or
𝑀Bol - mass diagrams.

Having no alternative is another property of fundamental
relations. Indeed, neither the Stefan-Boltzmann law nor the
Planck law (spectral energy distribution of a black body with
specific temperature) have alternatives. Since there is no alter-
native to estimate 𝑀 of a single star, using a classical MLR
convinced early astronomers that it could be used as a funda-
mental relation. Today, there are alternatives to estimating 𝑀
and 𝑅 of single stars; thus, there is no excuse to assume any
form of MLR as fundamental laws. One might still want to use
MLR, MRR, and MTR, as a fundamental law, that is, if he/she
is more interested in knowing 𝑀 of star from its 𝐿. This is per-
missible with a larger uncertainty covering the main sequence
at the value of 𝑀 on a log𝑀 − log 𝐿 diagram, simply ±1𝜎,
which is given in Table 2.

On the other hand, statistical relations could be devised to
serve a very specific purpose; for example, to obtain 𝑀 and
𝑅 of a single star from its other observables. In this respect,
a statistical relation may appear to operate like a fundamental
relation, but this is an illusion. 𝑀 and 𝑅 predicting relations
are still statistical relations if their validity depends on the data
from which they were calibrated. In addition, because there are
many alternatives to provide 𝑅 or 𝑀 of a star from its 𝑇eff , 𝐿,
𝑔, 𝜌, and [Fe/H], as expressed by Moya et al. (2018) and as
summarised by Serenelli et al. (2021). Malkov (2007), Torres
et al. (2010), and Fernandes et al. (2021).

Naming a newly devised or renaming a re-calibrated empir-
ical relation is very important; as important as classifying it
as another statistical relation or one of the fundamental laws.
Names must be unique to avoid confusion and guide users to-
wards the original purpose of the relation. Repeating the same
improper and non-unique names should not be advocated by
saying: Let us keep the same name in the past. This will be
nothing but insisting on the same error. There are many mis-
calling or non-unique naming examples in the past, which are
identified with possible correct names in the previous section.
Especially after Andersen (1991)’s exclamation that some 𝑅
and 𝑀 predicting relations were non-uniquely and incorrectly
called MLR. Let us hope, Chevalier et al. (2023), and Malkov
et al. (2022) would be the last examples who erroneously named
their mass-𝑀G diagrams, where 𝑀G is absolute brightness in
Gaia𝐺 band, “mass-luminosity” diagram, and their mass –𝑀G
relations “mass-luminosity” relation. Possible unique names for
them are the “mass-absolute brightness” diagram or the “mass-
absolute brightness” relation at Gaia 𝐺 band.

The empirical relations for predicting 𝑀 and 𝑅 of single stars
developed as alternatives to classical MLR and MRR after the
split, initiated after Andersen (1991)’s exclamation, occurred
on the classical path aiming to obtain mean values ⟨𝐿⟩, ⟨𝑀⟩,
and ⟨𝑅⟩, and individual 𝐿, 𝑅, and 𝑀 of single stars. In this
respect, it is not possible for one to say, “the empirical relations
giving 𝑀 and 𝑅 of single stars are more valuable than the
classical MLR and MRR”. Claiming the opposite is also not
correct. Both schools of thought have useful applications that
are valuable concerning their own aims. Empirical 𝑀 and 𝑅
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prediction relations have found a fruitful application to explore
exoplanets hosting single stars. Estimating 𝑀 and 𝑅 of planet-
hosting stars is the starting point for exploring hosted exoplanets
(Stassun et al. 2017, 2018). Classical MLR, MRR, and MTR,
on the other hand, are practical for constructing astrophysical
models that need mean values, which are beneficial not only
to stellar astrophysics but also to Galactic and extragalactic
search, and even to cosmological models.

Further improvements in the prediction accuracy of single
star parameters depend mainly on the quantity and quality of
the radial velocity and light curve solutions of DDEB. Advances
in already established relations or new forms are possible be-
cause of the increasing demand for exoplanet investigations.
Developments on the classical MLR, MRR, and MRR, on the
other hand, are encouraged to include the metallicity effect, as
well as to extend them further towards high and low mass lim-
its, not only for the main sequence but also for other luminosity
classes.
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