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ABSTRACT
It is known that a hyperbolic Ricci soliton is one of the generalization of the Ricci solitons and it is a Riemannian manifold (𝑀, 𝑔)
furnished with a differentiable vector field 𝑈 on 𝑀 and two real numbers 𝜆 and 𝜇 ensuring 𝑅𝑖𝑐 + 𝜆𝐿𝑈𝑔 + 1

2𝐿𝑈 (𝐿𝑈𝑔) = 𝜇𝑔,

where 𝐿𝑈 denotes the Lie derivative with respect to the vector field 𝑋 on 𝑀 . Furthermore, hyperbolic Ricci solitons yield similar
solutions to hyperbolic Ricci flow. In this paper, we study hyperbolic Ricci solitons on nearly cosymplectic manifolds endowed
with the Tanaka-Webster connection. We give some results for these manifolds when the potential vector field is a pointwise
collinear with the Reeb vector field and a concircular vector field.
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1. INTRODUCTION

The notion of hyperbolic Ricci flow was introduced in Kong and Liu (2007). Let 𝑔𝑖 𝑗 (𝑡) be a family of Riemannian metrics on a
Riemannian manifold (𝑀𝑛, 𝑔0). The hyperbolic Ricci flow is defined by

𝜕2𝑔𝑖 𝑗

𝜕𝑡2
= −2𝑅𝑖 𝑗

with 𝑔(0) = 𝑔0,
𝜕𝑔𝑖 𝑗

𝜕𝑡
= 𝑘𝑖 𝑗 , where 𝑘𝑖 𝑗 is a symmetric(0, 2)−type tensor field. A self-similar solution 𝑔(𝑡) of the hyperbolic Ricci

flow on 𝑀𝑛 is a hyperbolic Ricci soliton if there exists a 1-parameter family of diffeomorphisms 𝜌(𝑡) : 𝑀 → 𝑀 and a positive
function 𝜎(𝑡) such that

𝑔(𝑡) = 𝜎(𝑡)𝜌(𝑡)∗ (𝑔0).

If we differentiate above equation twice, we get

−2𝑅𝑖𝑐(𝑔(𝑡)) = 𝜎′′ (𝑡)𝜌(𝑡)∗ (𝑔0) + 2𝜎′ (𝑡)𝜌(𝑡)∗ (𝐿𝑋𝑔0) + 𝜎(𝑡)𝜌(𝑡)∗ (𝐿𝑋𝐿𝑋𝑔0)),

where 𝑅𝑖𝑐 is the Ricci curvature on 𝑀, 𝑋 is the time-dependent vector field and 𝐿 is the Lie derivative. The family of metrics are
said to be expanding, steady or shrinking if 𝜎′ is positive, zero or negative, respectively. Substituting 𝜎′′ (0) = −2𝜇, 𝜎(0) = 1
and 𝜎′ (0) = 𝜆 in the above equation, we get

𝑅𝑖𝑐(𝑔0) + 𝜆𝐿𝑋𝑔0 +
1
2
𝐿𝑋𝐿𝑋𝑔0 = 𝜇𝑔0

for some real constants 𝜆 and 𝜇. According to this equation, a hyperbolic Ricci soliton on a Riemannian manifold (𝑀, 𝑔) is defined
by

𝑅𝑖𝑐 + 𝜆𝐿𝑋𝑔 + 1
2
𝐿𝑋 (𝐿𝑋𝑔) = 𝜇𝑔. (1)

A hyperbolic Ricci soliton is called expanding, steady or shrinking if 𝜇 is negative, zero or positive, respectively. For recent papers
about hyperbolic Ricci solitons see Azami and Fasihi (2023), Azami and Fasihi (2024), Blaga and Özgür (2023), Faraji et al.
(2023).
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In this paper, we investigate hyperbolic Ricci solitons on nearly cosymplectic manifolds. The manifolds will be considered with
the Tanaka-Webster connection. The paper is organized as follows: In Section 2, we give some fundamental information about
nearly cosymplectic manifolds. In Section 3, we express some properties of cosymplectic manifolds satisfying Tanaka-Webster
connection. In the final section, we give our main results.

2. NEARLY COSYMPLECTIC MANIFOLDS

An 𝑛 = (2𝑘 + 1)−dimensional smooth manifold 𝑀 is called an almost contact metric manifold if it admits a (1, 1)−tensor field
𝜙, a contravariant vector field 𝜉, a 1-form 𝜂 and a Riemannian metric 𝑔 which fulfill, Blair (1976)

𝜙2 (𝑈) = −𝑈 + 𝜂(𝑈)𝜉, 𝜂(𝜉) = 1, 𝜙𝜉 = 0, 𝜂(𝜙𝑈) = 0, (2)

𝑔(𝜙𝑈, 𝜙𝑉) = 𝑔(𝑈,𝑉) − 𝜂(𝑈)𝜂(𝑉), 𝑔(𝜙𝑈,𝑉) = −𝑔(𝑈, 𝜙𝑉),
𝑔(𝑈, 𝜉) = 𝜂(𝑈), ∀𝑈,𝑉 ∈ 𝜒(𝑀). (3)

An almost contact metric manifold (𝑀, 𝑔, 𝜂, 𝜉, 𝜙) is called a contact metric manifold if

𝑔(𝑈, 𝜙𝑉) = 𝑑𝜂(𝑈,𝑉).

An almost contact metric manifold (𝑀, 𝑔, 𝜂, 𝜉, 𝜙) is said to be a nearly cosymplectic manifold if

(∇𝑈𝜙)𝑉 + (∇𝑉𝜙)𝑈 = 0, ∀𝑈,𝑉 ∈ 𝜒(𝑀).

For a nearly cosymplectic manifold, we have

∇𝜉 𝜉 = 0 and ∇𝜉𝜂 = 0.

On the other hand, for a (1, 1)−type tensor field 𝐻 which is defined as

∇𝑈𝜉 = 𝐻𝑈. (4)

It is known that 𝐻 is skew symmetric and anti-commutative with 𝜙. Moreover, 𝐻 satisfies 𝐻𝜉 = 0 and 𝜂 ◦ 𝐻 = 0 and fulfills the
following situations, Nicola et al. (2018):

(∇𝜉𝜙)𝑈 = 𝜙𝐻𝑈 =
1
3
(∇𝜉𝜙)𝑈 ,

𝑔((∇𝑈𝜙)𝑉, 𝐻𝑊) = 𝜂(𝑉)𝑔(𝐻2𝑈, 𝜙𝑊) − 𝜂(𝑈)𝑔(𝐻2𝑉, 𝜙𝑊),

(∇𝑈𝐻)𝑉 = 𝑔(𝐻2𝑈 ,𝑉)𝜉 − 𝜂(𝑉)𝐻2𝑈,

𝑡𝑟 (𝐻2) = constant,

𝑅(𝑉,𝑊)𝜉 = 𝜂(𝑉)𝐻2𝑊 − 𝜂(𝑊)𝐻2𝑉,

𝑆(𝜉,𝑊) = −𝜂(𝑊)𝑡𝑟 (𝐻2),

𝑆(𝜙𝑉,𝑊) = 𝑆(𝑉, 𝜙𝑊), 𝜙𝑄 = 𝑄𝜙,

𝑆(𝜙𝑉, 𝜙𝑊) = 𝑆(𝑉,𝑊) + 𝜂(𝑉)𝜂(𝑊)𝑡𝑟 (𝐻2).

3. NEARLY COSYMPLECTIC MANIFOLDS ADMITTING TANAKA-WEBSTER CONNECTION

Let (𝑀, 𝑔, 𝜂, 𝜉, 𝜙) be an almost contact metric manifold. The Tanaka-Webster connection ∇̄ with respect to the Levi-Civita
connection ∇ is defined by

∇̄𝑈𝑉 = ∇𝑈𝑉 + (∇𝑈𝜂) (𝑉)𝜉 − 𝜂(𝑉)∇𝑈𝜉 − 𝜂(𝑈)𝜙𝑉, (5)

for all 𝑈,𝑉 ∈ 𝜒(𝑀), Tanno (1969). Using (3) and (4), we rewrite equation (5) as

∇̄𝑈𝑉 = ∇𝑈𝑉 + 𝑔(∇𝑈𝜉,𝑉)𝜉 − 𝜂(𝑉)𝐻𝑈 − 𝜂(𝑈)𝜙𝑉. (6)

29



Istanbul Journal of Mathematics

Putting 𝑉 = 𝜉 in (6) and using (2) and (4), we obtain

∇̄𝑈𝜉 = 0. (7)

Using (6), the Riemannian curvature tensor �̄� of the connection ∇̄ is given by

�̄�(𝑈,𝑉)𝑊 = 𝑅(𝑈,𝑉)𝑊 − 𝑔(𝑊, 𝐻𝑈)𝐻𝑉 − 𝑔(𝐻2𝑉,𝑊)𝜂(𝑈)𝜉 − 2𝑔(𝑉, 𝐻𝑈)𝜙𝑊𝜂(𝑈)𝜂(𝑊)𝜙𝐻𝑉
+𝑔(𝐻2𝑈,𝑊)𝜂(𝑉)𝜉 − 𝜂(𝑉) (∇𝑈𝜙)𝑊 − 𝜂(𝑉)𝑔(𝐻𝑈, 𝜙𝑊)𝜉 + 𝑔(𝑊, 𝐻𝑉)𝐻𝑈
+𝜂(𝑊)𝜂(𝑈)𝐻2𝑉 − 𝜂(𝑊)𝜂(𝑉)𝐻2𝑈 − 𝜂(𝑉)𝜂(𝑊)𝜙𝐻𝑈
+𝜂(𝑈) (∇𝑉𝜙)𝑊 + 𝜂(𝑈)𝑔(𝐻𝑉, 𝜙𝑊)𝜉. (8)

Taking contraction in (8), the Ricci tensor 𝑅𝑖𝑐 of the connection ∇̄ is given by

𝑅𝑖𝑐(𝑉,𝑊) = 𝑅𝑖𝑐(𝑉,𝑊) + 2𝑔(𝐻𝑉, 𝜙𝑊) − 𝜂(𝑉)𝑑𝑖𝑣(𝜙)𝑊 + 𝑔(𝑊, 𝐻𝑉)𝑡𝑟 (𝐻)
−𝜂(𝑊)𝜂(𝑉)𝑡𝑟 (𝐻2) − 𝜂(𝑉)𝜂(𝑊)𝑡𝑟 (𝜙𝐻) + 2𝑔(𝐻𝑊, 𝐻𝑉), (9)

where 𝑅𝑖𝑐 denotes the Ricci tensor of the Levi-Civita connection ∇. Contracting in (9), the scalar curvature 𝑟 is obtained as

𝑟 = 𝑟 − 𝑡𝑟 (𝐻2) (2𝑘 + 1),
where 𝑟 is the scalar curvature of the Levi-Civita connection ∇, Ayar (2022).

4. MAIN RESULTS

Before expressing our main results, we should remind definitions of the nearly quasi-Einstein manifolds and Einstein manifolds.

Definition 4.1. Let (𝑀, 𝑔) be a Riemannian manifold. If 𝑅𝑖𝑐 = 𝛼𝑔 + 𝛽𝐸 for some functions 𝛼 and 𝛽 on 𝑀 , where 𝐸 is a non-zero
tensor of type (0, 2), then the manifold (𝑀, 𝑔) is called a nearly quasi-Einstein manifold. If 𝛽 = 0, then the manifold (𝑀, 𝑔) is
said to be an Einstein manifold. Here, 𝑅𝑖𝑐 denotes the Ricci tensor of the Levi-Civita connection ∇.

Now, we can give our findings.

Theorem 4.2. Let 𝑀 be a nearly cosymplectic manifold with the Tanaka-Webster connection admitting a hyperbolic Ricci soliton.
If the potential vector field 𝑋 is a pointwise collinear with 𝜉, then 𝑀 is a nearly-quasi Einstein manifold.

Proof. If the potential vector field 𝑋 is a pointwise collinear with 𝜉, then there exists a smooth function 𝑏 such that 𝑋 = 𝑏𝜉. Using
(7), we have

( �̄�𝑋𝑔) (𝑈,𝑉) = 𝑔(∇̄𝑈𝑋,𝑉) + 𝑔(∇̄𝑉𝑋,𝑈) (10)
= 𝑔(𝑈 (𝑏)𝜉 + 𝑏∇̄𝑈𝜉,𝑉) + 𝑔(𝑉 (𝑏)𝜉 + 𝑏∇̄𝑉𝜉,𝑈)
= 𝑈 (𝑏)𝜂(𝑉) +𝑉 (𝑏)𝜂(𝑈)
= 𝑔(∇𝑏,𝑈)𝜂(𝑉) + 𝑔(∇𝑏,𝑉)𝜂(𝑈)

for all 𝑈,𝑉 ∈ 𝜒(𝑀), where ∇ denotes the gradient operator. The Lie derivative of (7) is given by

( �̄�𝑋 ◦ �̄�𝑋)𝑔(𝑈,𝑉) = 𝑋𝐿𝑋𝑔(𝑈,𝑉) − 𝐿𝑋𝑔(𝐿𝑋𝑈,𝑉) − 𝐿𝑋𝑔(𝑈, 𝐿𝑋𝑉) (11)
= 𝑋 [𝑔(∇𝑏,𝑈)𝜂(𝑉) + 𝑔(∇𝑏,𝑉)𝜂(𝑈)]

−[𝑔(∇𝑏, �̄�𝑋𝑈)𝜂(𝑉) + 𝑔(∇𝑏,𝑉)𝜂( �̄�𝑋𝑈)]
−[𝑔(∇𝑏, �̄�𝑋𝑉)𝜂(𝑈) + 𝑔(∇𝑏,𝑈)𝜂( �̄�𝑋𝑉)]

= 𝑋𝑔(∇𝑏,𝑈)𝜂(𝑉) + 𝑔(∇𝑏,𝑈)𝑋𝜂(𝑉) + 𝑋𝑔(∇𝑏,𝑉)𝜂(𝑈)
+𝑔(∇𝑏,𝑉)𝑋𝜂(𝑈) − 𝑔(∇𝑏, �̄�𝑋𝑈)𝜂(𝑉) − 𝑔(∇𝑏,𝑉)𝜂( �̄�𝑋𝑈)
−𝑔(∇𝑏, �̄�𝑋𝑉)𝜂(𝑈) − 𝑔(∇𝑏,𝑈)𝜂( �̄�𝑋𝑉).

Putting (10) and (11) in (1), we occur

𝑅𝑖𝑐(𝑈,𝑉) = 𝜇𝑔(𝑈,𝑉) − 𝜆( �̄�𝑋𝑔) (𝑈,𝑉) − 1
2
( �̄�𝑋 ◦ �̄�𝑋)𝑔(𝑈,𝑉) (12)

= 𝜇𝑔(𝑈,𝑉) − 𝜆𝑔(∇𝑏,𝑈)𝜂(𝑉) − 𝜆𝑔(∇𝑏,𝑉)𝜂(𝑈)

−1
2
𝑋𝑔(∇𝑏,𝑈)𝜂(𝑉) − 1

2
𝑔(∇𝑏,𝑈)𝑋𝜂(𝑉) − 1

2
𝑋𝑔(∇𝑏,𝑉)𝜂(𝑈)

−1
2
𝑔(∇𝑏,𝑉)𝑋𝜂(𝑈) + 1

2
𝑔(∇𝑏, �̄�𝑋𝑈)𝜂(𝑉) + 1

2
𝑔(∇𝑏,𝑉)𝜂( �̄�𝑋𝑈)

+1
2
𝑔(∇𝑏, �̄�𝑋𝑉)𝜂(𝑈) + 1

2
𝑔(∇𝑏,𝑈)𝜂( �̄�𝑋𝑉).
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Taking a non-vanishing (0, 2)−type tensor 𝐸 as

𝐸 (𝑈,𝑉) = −𝜆𝑔(∇𝑏,𝑈)𝜂(𝑉) − 𝜆𝑔(∇𝑏,𝑉)𝜂(𝑈) (13)

−1
2
[𝐻𝑒𝑠𝑠(𝑏) (𝑋,𝑈)𝜂(𝑉) − 𝐻𝑒𝑠𝑠(𝑏) (𝑋,𝑉)𝜂(𝑈) + (∇𝑈𝑋) (𝑏)𝜂(𝑉)

+(∇𝑉𝑋) (𝑏)𝜂(𝑈) +𝑉 (𝑏)𝑔(∇𝑈𝑋, 𝜉) +𝑈 (𝑏)𝑔(∇𝑈𝑋, 𝜉)] .

Equation (12) becomes

𝑅𝑖𝑐(𝑈,𝑉) = 𝜇𝑔(𝑈,𝑉) + 𝐸 (𝑈,𝑉).

This shows that 𝑀 is a nearly quasi-Einstein manifold with respect to the Tanaka-Webster connection ∇̄.

Proposition 4.3. Let 𝑀 be a nearly cosymplectic manifold with the Tanaka-Webster connection admitting a hyperbolic Ricci
soliton. If the potential vector field is the Reeb vector field 𝜉, then 𝑀 is an Einstein manifold.

Proof. Taking 𝑏 = 1 in (13) shows that 𝑅𝑖𝑐(𝑈,𝑉) = 𝜇𝑔(𝑈,𝑉). This gives us 𝑀 is an Einstein manifold.

Theorem 4.4. Let 𝑀 be a nearly cosymplectic manifold with the Tanaka-Webster connection admitting a hyperbolic Ricci soliton.
If the potential vector field is a concircular vector field 𝑋 , then

𝜇 = −2𝑡𝑟 (𝐻2) − 𝑡𝑟 (𝐻) + 2 𝑓 2 + 2𝜆 𝑓 .

Proof. It is known that if 𝑋 is concircular vector field on 𝑀, then there exists a smooth function 𝑓 such that

∇𝑈𝑋 = 𝑓𝑈 (14)

for all 𝑈 ∈ 𝜒(𝑀). Using (14), we obtain

( �̄�𝑋𝑔) (𝑈,𝑉) = 𝑔(∇̄𝑈𝑋,𝑉) + 𝑔(∇̄𝑉𝑋,𝑈) (15)
= 𝑔( 𝑓𝑈,𝑉) + 𝑔(𝑈, 𝑓𝑉)
= 2 𝑓 𝑔(𝑈,𝑉).

Using equation (15), we get

( �̄�𝑋 ◦ �̄�𝑋)𝑔(𝑈,𝑉) = 𝑋�̄�𝑋𝑔(𝑈,𝑉) − �̄�𝑋𝑔( �̄�𝑋𝑈,𝑉) − �̄�𝑋𝑔(𝑈, �̄�𝑋𝑉) (16)
= 𝑋 (2 𝑓 𝑔(𝑈,𝑉)) − 2 𝑓 𝑔( �̄�𝑋𝑈,𝑉) − 2 𝑓 𝑔(𝑈, �̄�𝑋𝑉)
= 2(𝑋 𝑓 )𝑔(𝑈,𝑉) + 2 𝑓 𝑔(∇̄𝑋𝑈,𝑉) + 2 𝑓 𝑔(𝑈, ∇̄𝑋𝑉)

−2 𝑓 𝑔(∇̄𝑈𝑋,𝑉) + 2 𝑓 𝑔(∇̄𝑈𝑋,𝑉) − 2 𝑓 𝑔(𝑈, ∇̄𝑋𝑉) + 2 𝑓 𝑔(𝑈, ∇̄𝑉𝑋)
= 2(𝑋 𝑓 )𝑔(𝑈,𝑉) + 2 𝑓 𝑔(∇̄𝑈𝑋,𝑉) + 2 𝑓 𝑔(𝑈, ∇̄𝑉𝑋)
= 2(𝑋 𝑓 )𝑔(𝑈,𝑉) + 4 𝑓 2𝑔(𝑈,𝑉).

Putting (15) and (16) in (1), we deduce

𝑅𝑖𝑐(𝑈,𝑉) + (𝑋 𝑓 )𝑔(𝑈,𝑉) + 2 𝑓 2𝑔(𝑈,𝑉) + 2𝜆 𝑓 𝑔(𝑈,𝑉) = 𝜇𝑔(𝑈,𝑉).

Substituting 𝑈 = 𝑉 = 𝜉 in (9), we obtain 𝜇 = −2𝑡𝑟 (𝐻2) − 𝑡𝑟 (𝐻) + 2 𝑓 2 + 2𝜆 𝑓 .

5. CONCLUSION

In this paper, we study hyperbolic Ricci solitons on nearly cosymplectic manifolds with respect to the Tanaka-Webster connection
by considering the potential vector field as a pointwise collinear with the Reeb vector field and a concircular vector field. Our
results in the present work may provide an insight for further studies on hyperbolic Ricci solitons with respect to some other
connections.
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