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ABSTRACT
Character theory of finite groups have an important role in understanding the structure of finite groups. A number of previously
unresolved problems related to the structure of finite groups have been solved with the development of representation and character
theory. There are many articles in the literature on the relationships between the structure of finite groups and their irreducible
characters. Today, many researchers continue to study these relationships. Our purpose in this paper is to prove that for determining
some properties of the structure of a finite group 𝐺, it is enough to consider only strongly monolithic characters of 𝐺 instead of all
irreducible characters of 𝐺. We give relationships between the structure of 𝐺 and the vanishing elements, co-degrees of strongly
monolithic characters of 𝐺.
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1. INTRODUCTION

Let𝐺 be a finite group and 𝜒 ∈ Irr(𝐺), where Irr(𝐺) denotes the set of irreducible complex characters of𝐺. An irreducible charac-
ter 𝜒 of𝐺 is called a monolithic character of𝐺 if𝐺/ker𝜒 has only one minimal normal subgroup. Also, an irreducible character 𝜒
of 𝐺 is said to be monomial if it is induced from a linear character of some subgroup of 𝐺. An element 𝑔 ∈ 𝐺 is called a vanishing
element if there exists an irreducible character 𝜒 of 𝐺 such that 𝜒(𝑔) = 0. We know from Burnside’s theorem (Theorem 3.15) in
Isaacs (1976) that a nonlinear irreducible character of a finite group 𝐺 always vanishes on some conjugacy class of 𝐺. An element
𝑔 ∈ 𝐺 is non-vanishing if 𝜒(𝑔) ≠ 0 for every irreducible character 𝜒 of𝐺. It is known from Isaacs et all. (1999) that if𝐺 is solvable
and a non-vanishing element 𝑥 has odd order, then 𝑥 must lie in the Fitting subgroup F(𝐺). Later, Dolfi et all. proved in Dolfi et
all. (2010) that if 𝑥 is a non-vanishing element and the order of 𝑥 is coprime to 6, then 𝑥 ∈ F(𝐺). Erkoç et all. consider in Erkoç et
all. (2023) a smaller subset named the set of SM-vanishing conjugacy classes instead of the set of vanishing conjugacy classes of𝐺.

Firstly the co-degree of an irreducible character 𝜒 of 𝐺 was defined as |𝐺 |/𝜒(1) in Chillag and Herzog (1990). Then it has
been given in Qian et all. (2007) as the number cod(𝜒) =

|𝐺:ker𝜒 |
𝜒 (1) because it is very useful for inductive proofs of theorems

giving information about the structure of 𝐺. In Chen and Yang (2020), authors consider the co-degrees of monolithic, monomial
irreducible characters.

Motivated by above papers, we give some results about the relationships between the structure of a finite group and its strongly
monolitic characters.

2. PRELIMINARIES

In this paper, all groups under consideration are finite and all characters are complex characters. We use the standard notations
such as in Isaacs (1976). The definition of strongly monolithic character of a group have been first given in Erkoç et all. (2023).
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It is known from Proposition 2.3 in Erkoç et all. (2023) that linear characters of a group are not strongly monolithic. Thus,
abelian groups do not have strongly monolithic characters. However, a nonabelian group have at least one strongly monolithic
character. Also, every nonabelian solvable group has at least one monomial strongly monolithic character. The definition of a
strongly monolithic character of a group 𝐺 is the following:

Definition 2.1. ( Erkoç et all. 2023, Definition 2.2) Let 𝐺 be a group. An irreducible character 𝜒 of 𝐺 is called a monolithic
character if𝐺/ker𝜒 has only one minimal normal subgroup. A monolithic character 𝜒 of𝐺 is called a strongly monolithic character
if one of the following conditions is satisfied:

(i) 𝑍 (𝜒) = ker𝜒, where 𝑍 (𝜒) = {𝑔 ∈ 𝐺 | |𝜒(𝑔) | = 𝜒(1)},
(ii) 𝐺/ker𝜒 is a p-group whose commutator subgroup is its unique minimal normal subgroup.

Definition 2.2. ( Erkoç et all. 2023, Definition 2.2) Let 𝐺 be a group. An element 𝑔 in 𝐺 is called an SM-vanishing element of
𝐺 if there exists a strongly monolithic character 𝜒 of 𝐺 such that 𝜒(𝑔) = 0. The conjugacy class of such an element is called an
SM-vanishing conjugacy class of 𝐺. If 𝜒 is a monomial strongly monolithic character of 𝐺, then the conjugacy class of such an
element is called an MSM-vanishing conjugacy class of 𝐺.

Let Vansm (𝐺) be the set of SM-vanishing elements of 𝐺, that is,

Vansm (𝐺) = {𝑔 ∈ 𝐺 | 𝜒(𝑔) = 0 for some 𝜒 ∈ Irrsm (𝐺)} ,

where Irrsm (𝐺) is the set of all strongly monolithic characters of 𝐺.

Let 𝑔 be an element of a finite group 𝐺. If 𝜒(𝑔) ≠ 0 for every strongly monolithic character 𝜒 of 𝐺, then the element 𝑔 is called
an SM-nonvanishing element. If 𝜒(𝑔) ≠ 0 for every monomial strongly monolithic character 𝜒 of 𝐺, then the element 𝑔 is called
an MSM-nonvanishing element.

The following lemma and Theorem 2.4 will be useful when we prove Theorem 3.2. Actually, we know from Lemma 2.3 of
Isaacs et all. (1999) that if 𝑥 is a nonvanishing element in a finite group 𝐺, then 𝑥 fixes some member of each orbit of the action
of 𝐺 on Irr(𝑁) where 𝑁 ◁ 𝐺.

Lemma 2.3. Let 𝐺 be a solvable group with a unique minimal normal subgroup M and Φ(𝐺) = 1. Assume that 𝑥 ∈ 𝐺 is an
MSM-nonvanishing element of 𝐺. Then 𝑥 fixes an element in every 𝐺-orbit on Irr(𝑀).

Proof. 1𝑀 ≠ 𝜆 ∈ Irr(𝑀) and 𝑇 = 𝐼𝐺 (𝜆), where 𝐼𝐺 (𝜆) is the inertia group of 𝜆 in 𝐺. Since Φ(𝐺) = 1, there is a subgroup
𝐻 of 𝐺 such that 𝐺 = 𝑀𝐻 and 𝑀 ∩ 𝐻 = 1. We know from Problem 6.18 in Isaacs (1976) that there exists a linear character
𝜃 ∈ Irr(𝑇) such that 𝜃𝑀 = 𝜆. Let 𝜒 = 𝜃𝐺 . Then 𝜒 is a faithful irreducible character of 𝐺. Otherwise, we would have that
𝑀 ≤ ker𝜒 = ∩𝑔∈𝐺 (ker𝜃)𝑔 ≤ ker𝜃, which is a contradiction that 𝜃𝑀 = 𝜆 = 1. On the other hand, it is clear that Z(𝐺) = 1 since
Φ(𝐺) = 1. This implies that 𝜒 ∈ Irr(𝐺) is a monomial strongly monolithic character of 𝐺. Since 𝑥 ∈ 𝐺 is an MSM-nonvanishing
element of 𝐺, we get that 𝜒(𝑥) ≠ 0. By the definition of the induced character 𝜃𝐺 , there exists an element 𝑔 of 𝐺 such that 𝑥𝑔 ∈ 𝑇 .
Then 𝑥 stabilizes 𝜆𝑔−1 , and the proof is complete.

Theorem 2.4. ( Isaacs et all. 1999, Theorem 4.2) Let 𝐺 act faithfully and irreducibly on a finite vector space 𝑉 . Let 𝑥 ∈ F(𝐺) fix
an element in each orbit of 𝐺 on 𝑉 . Then 𝑥2 = 1.

3. MAIN RESULTS

It is known that an irreducible character of a group 𝐺 is called to be of 𝑞-defect zero if 𝑞 does not divide |𝐺 |/𝜒(1), where 𝑞 is
a prime number. We know from Theorem 8.17 in Isaacs (1976) that if 𝜒 is an irreducible character of 𝑞-defect zero of 𝐺, then
𝜒(𝑔) = 0 whenever 𝑞 divides the order of 𝑔 ∈ 𝐺.

Let 𝑁 ◁ 𝐺 and 𝜒 ∈ Irr(𝐺) such that 𝑁 ≤ ker𝜒. It is well-known that there exists a one-to-one correspondence between
irreducible characters of 𝐺/𝑁 and irreducible characters of 𝐺 with kernel containing 𝑁 . Thus, it is easy to see that 𝜒 is a strongly
monolithic character of𝐺 if and only if 𝜒 is a strongly monolithic character of𝐺/𝑁 . In the following theorem, we use the notation
𝑥𝐺 to denote the conjugacy class of 𝐺 containing 𝑥 ∈ 𝐺.

Theorem 3.1. Let 𝐺 be a finite group. If the set of SM-vanishing elements of 𝐺 are the union of at most three conjugacy classes
of 𝐺, then 𝐺 is solvable.

Proof. Let 𝐺 be a counterexample to the theorem with minimum possible order. Suppose that 𝐺 has two distinct minimal normal
subgroups 𝑀1 and 𝑀2. It is easy to see that the hypotheses of theorem are inherited by factor groups. Thus, both of 𝐺/𝑀1 and
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𝐺/𝑀2 are solvable groups by induction. Since 𝐺 is isomorphic to a subgroup of 𝐺/𝑀1 × 𝐺/𝑀2, we have a contradiction that 𝐺
is solvable. This implies that 𝐺 cannot have two distinct minimal normal subgroups. Now, let 𝑀 be the unique minimal normal
subgroup of 𝐺. Since 𝐺 is a counterexample, 𝑀 must be nonabelian and 𝑍 (𝐺) = 1. Therefore, there exists a nonabelian simple
group 𝑆 such that 𝑀 = 𝑆1 × · · · × 𝑆𝑘 where 𝑘 ≥ 1 and 𝑆𝑖 � 𝑆 for every 𝑖. First assume that 𝑆 has irreducible characters of 𝑞-defect
zero for every prime 𝑞 dividing the order of 𝑆. Thus, if 𝜃 is an irreducible character of 𝑞-defect zero of 𝑆, then 𝜓 := 𝜃 × · · · × 𝜃
is an irreducible character of 𝑞-defect zero of 𝑀 . It follows from Lemma 2.4 in Erkoç et all. (2023) that every element of 𝑀 of
order divisible by 𝑞 is an SM-vanishing element of 𝐺. We know that 2| |𝑀 |, because 𝑀 is a nonsolvable group. Also, there exist
distinct primes 𝑝 and 𝑞 such that 𝑝, 𝑞 ≥ 3 and 𝑝, 𝑞 ∈ 𝜋(𝑀). Hence, there exist 𝑥, 𝑦 and 𝑧 elements of 𝑆 such that |𝑥 | = 2, |𝑦 | = 𝑝
and |𝑧 | = 𝑞. Since 𝑥, 𝑦, 𝑧 ∈ Vansm (𝐺) and the set of SM-vanishing elements of 𝐺 are the union of at most three conjugacy classes
of 𝐺, we get that 𝜋(𝑀) = {2, 𝑝, 𝑞} and Vansm (𝐺) = 𝑥𝐺 ∪ 𝑦𝐺 ∪ 𝑧𝐺 . Then, 𝑀 must be a simple group. Otherwise, we would have
𝑘 ≥ 2. Without loss of generality, we may assume that 𝑦 ∈ 𝑆1 and 𝑧 ∈ 𝑆2. Thus, we would have that |𝑦𝑧 | = 𝑝𝑞. But this contradicts
with the hypothesis of theorem because (𝑦𝑧)𝐺 ∉ {𝑥𝐺 , 𝑦𝐺 , 𝑧𝐺} and 𝑦𝑧 ∈ Vansm (𝐺). Since 𝑀 is non-cyclic simple group of order
divisible by exactly three primes, we obtain from Theorem 1 in Herzog (1968) that
𝑀 ∈ {𝑃𝑆𝐿 (2, 5), 𝑃𝑆𝐿(2, 8), 𝑃𝑆𝐿(2, 17), 𝑃𝑆𝐿(2, 7), 𝑃𝑆𝐿(2, 9), 𝑃𝑆𝐿(3, 3), 𝑈3 (3), 𝑈4 (2)}. Using the Atlas Conway et all.
(1985), we obtain the following table containing 𝑥𝑖 ∈ 𝑀 of distinct orders for 1 ≤ 𝑖 ≤ 4.

𝑀 |𝑥1 | |𝑥2 | |𝑥3 | |𝑥4 |

𝑃𝑆𝐿 (2, 7) 2𝐴 3𝐴 4𝐴 7𝐴
𝑃𝑆𝐿 (2, 9) 2𝐴 3𝐴 4𝐴 5𝐴
𝑃𝑆𝐿 (2, 8) 2𝐴 3𝐴 7𝐴 9𝐴
𝑃𝑆𝐿 (2, 17) 2𝐴 3𝐴 4𝐴 17𝐴
𝑃𝑆𝐿 (3, 3) 2𝐴 3𝐴 4𝐴 13𝐴
𝑈3 (3) 2𝐴 3𝐴 4𝐴 7𝐴
𝑈4 (2) 2𝐴 3𝐶 4𝐴 5𝐴

Therefore, 𝑀 cannot be groups in the list. Since 𝐶𝐺 (𝑀) = 1, we know that 𝐺 is almost simple group. Therefore, we get that
𝐺 � 𝐴5 or 𝐺 � 𝑆5. But this is a contradiction because the set of SM-vanishing elements of 𝐴5 or 𝑆5 are union of more than three
conjugacy classes of the group. Therefore, there exists a prime number 𝑞 dividing the order of 𝑆 such that 𝑆 does not have any
irreducible character of 𝑞-defect zero. It follows from Lemma 2.3 in Robati (2019) that there exist irreducible characters 𝜃1, 𝜃2,
𝜃3, 𝜃4 of 𝑆 which extend to Aut(𝑆) and elements 𝑥1, 𝑥2, 𝑥3, 𝑥4 of distinct order such that 𝜃𝑖 (𝑥𝑖) = 0 for 1 ≤ 𝑖 ≤ 4. Also, we have
from Lemma 5 in Bianchi et all. (2007) that 𝜃𝑖 × · · · × 𝜃𝑖 ∈ Irr(𝑀) extends to 𝐺 for 1 ≤ 𝑖 ≤ 4. Now, let 𝜓𝑖 ∈ Irr(𝐺) such that
(𝜓𝑖)𝑀 = 𝜃𝑖 × · · · × 𝜃𝑖 for 1 ≤ 𝑖 ≤ 4. It is clear that 𝜓𝑖 is a faithful irreducible character of 𝐺 for 1 ≤ 𝑖 ≤ 4. Otherwise, we would
have that 𝑀 ≤ ker𝜓𝑖 ∩ 𝑀 = ker(𝜓𝑖)𝑀 = ker(𝜃𝑖 × · · · × 𝜃𝑖) = 1 for 1 ≤ 𝑖 ≤ 4, which is a contradiction. Therefore, 𝜓𝑖 is a strongly
monolithic character of 𝐺 and 𝜓𝑖 (𝑥𝑖) = 0 for 1 ≤ 𝑖 ≤ 4. Since the elements 𝑥𝑖 are of distinct orders, 𝑥𝑖 elements lie in distinct
conjugacy classes of𝐺 for 1 ≤ 𝑖 ≤ 4 and so, the set of SM-vanishing elements of𝐺 are the union of at least four conjugacy classes
of 𝐺, which is a contradiction. This contradiction completes the proof. □

Now, we consider the semidirect product 𝐺 := 𝐻𝑒3 ⋊ 𝐶2 (SmallGroup (54, 8) in GAP) where 𝐶2 acts faithfully on 𝐻𝑒3. The
notations 𝐶2 and 𝐻𝑒3 denote a cyclic group of order 2 and a nonabelian group of order 27 of exponent 3, respectively. Since
1 < 𝑍 (𝐺), all faithful irreducible characters of 𝐺 are not strongly monolithic. 𝐺 has only four strongly monolithic characters of
degree 2. While the set of SM-vanishing elements of𝐺 are the union of three conjugacy classes of𝐺, the set of vanishing elements
of 𝐺 are the union of seven conjugacy classes of 𝐺. Thus, Theorem 3.1 generalizes [Robati (2019), Theorem 2.8].

Theorem 3.2. Let 𝐺 be a solvable group and 𝑥 be an element of odd order of 𝐺. If 𝜒(𝑥) ≠ 0 for all monomial strongly monolithic
character 𝜒 of 𝐺, then 𝑥 ∈ F(𝐺).

Proof. Let 𝐺 be a counterexample to the theorem with minimum possible order. By induction, 𝑥𝑁 ∈ F(𝐺/𝑁) for every nontrivial
normal subgroup 𝑁 of 𝐺 because 2 ∤ |𝑥𝑁 | and 𝜃 (𝑥𝑁) ≠ 0 for every monomial strongly monolithic character 𝜃 of 𝐺/𝑁 .
Suppose that 𝐺 has two distinct minimal normal subgroups 𝑀1 and 𝑀2. Then we know that 𝜑 : 𝐺 −→ 𝐺/𝑀1 ×𝐺/𝑀2, defined by
𝜑(𝑔) = (𝑔𝑀1, 𝑔𝑀2) for 𝑔 ∈ 𝐺, is an injective homomorphism. Hence, we get that 𝜑(𝑥) ∈ F(𝐺/𝑀1)×F(𝐺/𝑀2) = F(𝐺/𝑀1×𝐺/𝑀2)
and so, 𝜑(𝑥) ∈ 𝜑(𝐺) ∩ F(𝐺/𝑀1 ×𝐺/𝑀2) ≤ F(𝜑(𝐺)). Thus, we obtain that 𝑥 ∈ F(𝐺), which is a contradiction. This implies that
𝐺 cannot have two distinct minimal normal subgroups. Let 𝑀 be be the unique minimal normal subgroup of 𝐺. It is clear that
Φ(𝐺) = 1 because F(𝐺/Φ(𝐺)) = F(𝐺)/Φ(𝐺). It follows from Gaschütz Theorem (III, 4.5 in Huppert (1967)) that F(𝐺) = 𝑀

and so 𝐶𝐺 (𝑀) = 𝑀 . Now, let 𝑉 be the group of irreducible characters of 𝑀 . Then, 𝑉 is faithful and irreducible 𝐺/𝑀-module.
Also, we know from Lemma 2.3 that the element 𝑥𝑀 fixes some element of each orbit of 𝐺/𝑀 on 𝑉 . On the other hand, we see
that 𝑥𝑀 ∈ F(𝐺/𝑀) by the induction. Hence, we have from Teorem 2.4 that (𝑥𝑀)2 = 𝑥2𝑀 = 𝑀 and so, we obtain that 𝑥2 ∈ 𝑀 .
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Therefore, we conlude that 𝑥 ∈ 𝑀 = F(𝐺) because 𝑥 is an element of odd order of 𝐺, which is a contradiction. This contradiction
completes the proof. □

Let 𝐺 be a finite group and 𝑔 ∈ 𝐺. In Pang et all. (2016), authors prove that if the order of 𝑔𝐺′ ∈ 𝐺/𝐺′ does not divide
|Irr𝑚 (𝐺) |, then there exists 𝜒 in Irr𝑚 (𝐺) such that 𝜒(𝑔) = 0 where Irr𝑚 (𝐺) is the set of all irreducible monomial characters of 𝐺.
Similarly, we give the following theorem.

Theorem 3.3. Let 𝐺 be a finite group, 𝜒 be a nonlinear irreducible character of 𝐺 whose kernel is maximal among the kernels
of all nonlinear irreducible characters of 𝐺 and 𝑔 ∈ 𝐺. If the order of 𝑔𝑁 in 𝐺/𝑁 does not divide |Irr𝑠𝑚 (𝐺/ker𝜒) | where
𝑁 = 𝐺′ker𝜒, then 𝑔 is an SM-vanishing element of 𝐺.

Proof. Let 𝜒 be a nonlinear irreducible character of 𝐺 whose kernel is maximal among the kernels of all nonlinear irreducible
characters of 𝐺. We know from Corollary 2.6 in Erkoç et all. (2023) 𝜒 is a strongly monolithic character of 𝐺/ker𝜒. Furthermore
for any linear character 𝜆 of 𝐺/ker𝜒, 𝜒𝜆 is a strongly monolithic character of 𝐺/ker𝜒. Hence, 𝜆 permutes Irrsm (𝐺/ker𝜒). We get
that

Irrsm (𝐺/ker𝜒) = { 𝜃𝜆 | 𝜃 ∈ Irrsm (𝐺/ker𝜒) }.

This implies that ∏
𝜃∈Irrsm (𝐺/ker𝜒)

𝜃 (𝑔) =
∏

𝜃∈Irrsm (𝐺/ker𝜒)
(𝜃𝜆) (𝑔) = ©«

∏
𝜃∈Irrsm (𝐺/ker𝜒)

𝜃 (𝑔)ª®¬𝜆(𝑔)𝑛,
where 𝑛 = |Irrsm (𝐺/ker𝜒) |. If 𝑔 is an SM-nonvanishing element of 𝐺, then by the above equality, 𝜆(𝑔)𝑛 = 1 for any linear

character 𝜆 of𝐺/ker𝜒. It follows that 𝑔𝑛ker𝜒 ∈ 𝐺′ker𝜒/ker𝜒. Then, we have that |𝑔𝑁 | divides |Irrsm (𝐺/ker𝜒) |, which contradicts
with our hypothesis. This contradiction completes the proof. □

Theorem 3.4. Let𝐺 be a solvable group and let 𝑝 be a prime divisor of |𝐺 |. If cod(𝜒) is a 𝑝′-number for every monomial strongly
monolithic character 𝜒 of 𝐺, then 𝐺 has a normal 𝑝-complement.

Proof. Let 𝐺 be a counterexample to the assertion with the minimal possible order. Since the hypotheses of the theorem are
inherited by factor groups, 𝐺 has a unique minimal normal subgroup 𝑀 . It follows that 𝐺/𝑀 has a normal 𝑝-complement
by induction. Since 𝐺 does not have a normal 𝑝-complement, 𝑝 must divide |𝑀 |. Thus, 𝑀 is elementary abelian 𝑝-subgroup.
Furthermore, we have Z(𝐺) = 1. Otherwise, a Hall 𝑝′-subgroup 𝐻 of 𝐺 would be normal since 𝑀𝐻 ⊴𝐺 and 𝐻 is a characteristic
subgroup of 𝑀𝐻. Moreover, we have from Lemma 1 (a) in Berkovich and Zhmud’ (1997) that Φ(𝐺) = 1. Then, there exists
a subgroup 𝐾 of 𝐺 such that 𝐺 = 𝑀𝐾 and 𝑀 ∩ 𝐾 = 1. Let 𝜆 be a nonprincipal character in Irr(𝑀). Write 𝑇 = I𝐺 (𝜆) as
the inertia group of 𝜆 in 𝐺. Notice that 𝑀 is complemented in 𝐺 and so is in 𝑇 . We get that 𝑇 = 𝑀I𝐾 (𝜆). It follows from
Problem 6.18 in Isaacs (1976) that 𝜆 extends to 𝑇 and so there exists a linear character 𝜃 ∈ Irr(𝑇) such that 𝜃𝑀 = 𝜆. This implies
that 𝜒 = 𝜃𝐺 is a monomial irreducible character of 𝐺. Thus, 𝜒 is a faithful irreducible character of 𝐺. Otherwise, we get that
𝑀 ≤ ker𝜒 =

⋂
𝑔∈𝐺

(ker𝜃)𝑔 ≤ ker𝜃. But this contradicts with 𝜃𝑀 = 𝜆 ≠ 1. Hence 𝜒 is a monomial strongly monolithic character of

𝐺, since Z(𝐺) = 1. By the assumption, we have that

cod(𝜒) = |𝐺 : ker𝜒 |
𝜒(1) =

|𝐺 |
𝜃𝐺 (1)

=
|𝐺 |

|𝐺 : 𝑇 | = |𝑇 | = |𝑀 |.|I𝐾 (𝜆) |

is a 𝑝′-number. This contradicts with the fact that 𝑀 is a 𝑝-group. The proof is complete. □
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