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Öz: Hızlı yayılan ve ölümcül olan cilt kanserine melanom denir. Cilt kanserinin erken 
evrelerinde tedavi edilmezse ölüm oranı çok yüksektir ancak erken evrelerinde 
doğru bir şekilde tanımlandığında hastaların hayatları kurtarılabilir. Doğru ve hızlı 
bir teşhis ile hastanın hayatta kalma şansı artabilir. Bilgisayar destekli bir tanı 

 destek sisteminin oluşturulmasını gerekir.. Bu çalışmada Dense201, DarkNet19, 
 EfficientNet melanom sınıflandırması için 3 farklı derin transfer öğrenme modeli 
 sunmaktadır. Buna ek olarak, transfer öğrenmesinde kullanılan filtre boyutu 
 açısından ablasyon çalışması yapılmıştır. Filtre boyutunun etkisine bakmak için her 
 bir modelde farklı sayıda filtre boyutu oluşturulup sonuç alınmıştır. Çalışmada 1792 
 iyi huylu ve 1464 kötü huylu görüntü içeren ISIC veri seti kullanılmıştır. Bu 
 çalışmaya göre, DenseNet201, boyutlarına bakılmaksızın farklı filtre boyutlarında 
 doğru  ve  güvenilir  sonuçlar  sağlamıştır.  Bu  nedenle,  cilt  lezyonlarının 
 sınıflandırılmasını  içeren  çalışmalarda  DenseNet201  kullanımının  seçilmesi 
 önerilir. 

 
Dermatolojik Görüntü Analizi için Derin Öğrenme Modellerinin Karşılaştırılması: 

EfficientNet Zirvede 
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Abstract: Skin cancer that spreads quickly and is deadly is called melanoma. If skin 
cancer is not treated in its early stages, the mortality rate is very high, but when it is 
correctly identified in its early stages, patients' lives can be saved. With an accurate 
and fast diagnosis, the patient's chance of survival can be increased. A computer- 

 aided diagnostic support system needs to be created. In this study, Dense201, 
 DarkNet19, and EfficientNet offer 3 different deep transfer learning models for 
 melanoma classification. In addition, an ablation study was conducted in terms of 
 the filter size used in transfer learning. To look at the effect of the filter size, different 
 filter sizes were created in each model and the results were obtained. The ISIC 
 dataset containing 1792 benign and 1464 malignant images was used in the study. 
 According to this study, DenseNet201 provided accurate and reliable results at 
 different filter sizes regardless of their size. Therefore, it is recommended to use 

 DenseNet201 in studies involving the classification of skin lesions. 
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1. Introduction 
 

Melanoma is the least common but most deadly type of skin cancer, accounting for only 1% of all skin cancer cases. 

It is estimated that 200,340 cases of melanoma will be diagnosed in the United States in 2024 [1]. Of these cases, 

99,700 will be noninvasive (in situ) and 100,640 will be invasive. Of these invasive cases, 59,170 will be in men 

and 41,470 in women. It is estimated that 8,290 deaths from melanoma will occur, 5,430 in men and 2,860 in 

women. Melanoma is associated with UV exposure, especially during adolescence, such as sunburn and indoor 

tanning [2]. People with fair skin and those with lighter eyes and skin tones are at higher risk. The incidence of 

melanoma has been steadily increasing in recent years. The number of new invasive melanoma diagnoses per year 

has increased by 46% in the last 15 years, 32% in the last 10 years, and 16% in the last 5 years [3]. The incidence 

of melanoma varies by age. It is higher in women before the age of 50, twice as high in men as in women after the 

age of 65, and three times as high in women at the age of 80 [4], [5]. In young adults, especially those between the 

ages of 15 and 29, melanoma is the second most common cancer. Pediatric melanoma is rare and is usually due to 

different causes, such as large, hairy moles present at birth [6]. The relationship between UV exposure and 

melanoma is well established. Even one severe sunburn during childhood or adolescence doubles the risk of 

developing melanoma later in life [7]. The use of indoor tanning devices is also a significant risk factor, and the 

risk increases significantly in those who use these devices before the age of 35 [6], [8]. Indoor tanning is more 

common among women, and this habit significantly increases the risk of melanoma [9]. 

Melanoma is usually diagnosed by biopsy. Dermoscopy and other imaging techniques are used to evaluate lesions. 

Pathologic examination provides information about tumor thickness and other prognostic factors[10]. Accurate 

staging of melanoma is vital to determining appropriate treatment strategies [11]. An exhaustive analysis 

emphasizes the potential of artificial intelligence (AI) in the field of dermatology for the early diagnosis of skin 

cancer [12], [13]. The study highlights the importance of validating AI systems in clinical environments to 

guarantee their efficacy and safety. Furthermore, it explores the significance of taking into account genetic and 

ethnic variation in patients when using AI applications. The utilization of the MobileNetV2 network for melanoma 

classification has demonstrated encouraging outcomes. The primary objective of this study is to utilize transfer 

learning to accurately categorize melanoma photos as either benign or malignant. The study proposes that deep 

learning models can be efficiently employed in mobile applications to offer accessible diagnostic tools [14]. The 

findings suggest that Vision Transformers (ViTs) hold significant promise in the detection of skin cancer, 

particularly in improving the identification of melanoma. The report provides suggestions for future research, 

including investigating the potential of hybrid models that integrate CNN and ViT technologies, as well as applying 

ViTs to various medical image categorization tasks [15], [16]. 

The study [17] examines many publicly accessible skin imaging datasets and their corresponding algorithms for 

the diagnosis of skin cancer. Another study employs convolutional neural networks (CNNs) to predict skin cancer 

at an early stage, integrating approaches for data augmentation [18]. This article examines the most advanced 

deep-learning models used for detecting skin cancer, with a particular focus on the utilization of the ISIC dataset 

[19]. A new study has integrated many advanced deep-learning models to improve the accuracy of melanoma 

detection using ISIC datasets [20]. In the literature on ablation research, commonly employed models include 

Googlenet, Inception3, Densenet201, Inception-ResNetV2, and a deep convolutional neural network (CNN) model 

called Darknet19. The work utilizes fine-tuning techniques on the ISIC 2019 skin cancer dataset, which comprises 

eight distinct classifications. The study presents a comparison of the performance of different models on the 

dataset, with Darknet19 demonstrating competitive outcomes [21][22]. This study conducts a comparative 

analysis of DenseNet201, DarkNet-19, and other neural networks in the context of skin cancer detection and 

classification. The analysis is conducted on a sample of 4000 images from the ISIC archive collection. DenseNet201 

exhibited robust performance, while DarkNet-19 and other models also displayed noteworthy outcomes [23]. This 

article examines the utilization of networks such as AlexNet, DarkNet19, GoogleNet, and DenseNet201 that have 

been trained on the ISIC 2017 and HAM1000 datasets to detect skin cancer. The DenseNet201 model achieved the 

highest accuracy rate of 82.9% and had a balanced precision and recall, as indicated by its F1 score [24]. The paper 

compares DenseNet201 and an enhanced version of DarkNet-19 for the classification of skin lesions using the ISIC 

2019 and PH2 datasets. DenseNet201 had superior performance in terms of both accuracy and resilience 

compared to other models [25]. Different research examines different convolutional neural networks, such as 

DenseNet201 and Darknet-19, to diagnose melanoma using the ISIC 2017 dataset [26]. The paper provides precise 
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metrics that demonstrate the great performance of DenseNet201 and other deep-learning models. This article 

examines the current developments in melanoma detection by comparing the performance of DarkNet-19, 

EfficientNet, and other models using ISIC datasets. The utilization of EfficientNets and ensemble approaches 

resulted in significant enhancements in classification accuracy [27]. The importance of artificial intelligence (AI) in 

skin cancer diagnosis is becoming increasingly evident, particularly in addressing the limitations of traditional methods. 

AI offers significant advantages, including the ability to analyze large datasets quickly and efficiently, which accelerates 

the diagnostic process and increases the capacity to serve more patients. Deep learning models, trained on extensive 

and diverse datasets, can achieve high accuracy and precision, crucial for the early detection of conditions like 

melanoma. AI systems capture subtle and complex details within skin lesions that might be overlooked by the human 

eye, providing a more comprehensive diagnostic tool. Furthermore, AI can standardize the diagnostic process, reducing 

the likelihood of human error and ensuring a more consistent approach across various cases. In contrast, traditional 

diagnostic methods such as dermoscopy and biopsy, while effective, have several limitations. These methods can be 

time-consuming and require specialized expertise, leading to delays and potential accessibility issues, especially in areas 

with a shortage of dermatologists. Human error is another concern, as factors like fatigue and distraction can impact 

diagnostic accuracy. Traditional approaches also struggle with the analysis of large volumes of data, as each image must 

be evaluated manually, which can be inefficient and prone to oversight. Additionally, variability in imaging techniques 

and equipment can affect the consistency of results. Overall, while traditional methods have been foundational in skin 

cancer diagnosis, AI presents a promising advancement by addressing these limitations and offering enhanced accuracy, 

efficiency, and standardization in the diagnostic process. A review of the literature reveals that no studies have compared 

only these three models and additionally performed ablation analysis—where parameters are altered in various layers of 

the models to observe changes in results. This study’s originality lies in its unique approach of both comparing these 

specific models and conducting ablation experiments to gain deeper insights into their performance. There is no study in 

the literature examining the impact of filter size on skin cancer detection in the applied models. 

 

2. Material and Method 

2.1. Data 
 

In this study, 3256 images were obtained from the ISIC archive skin cancer detection using pytorch | Kaggle. The 

distribution of data from the training, validation, and test sets used to diagnose skin cancer is shown in this table. 

There are 924 malignant and 1144 benign samples in the training set. We analyze the model's performance during 

training using the validation set, which consists of 288 benign and 240 malignant samples. The test set evaluates 

the final performance of the model and consists of 360 benign and 300 malignant samples. Understanding and 

evaluating this distribution is critical to assess the model's performance across various data sets. The model can 

be thoroughly tested thanks to the total of 2068 samples in the training set, 528 samples in the validation set, and 

660 samples in the test set. 

 

TABLE 1 SAMPLE OF SKİN CANCER DATASET 

 

 BENIGN MALIGN 

TRAIN 1144 924 

VALIDATION 288 240 

TEST 360 300 

TOTAL 1792 1464 

https://www.kaggle.com/code/naim99/skin-cancer-detection-using-pytorch/input
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Figure 1. Examples from the dataset. 
 

 

2.2. Model and Parameters 

The categorization of diseases based on medical images was thoroughly examined by employing various 

recognized transfer learning architectures. The designs were pre-trained on the ImageNet dataset, and any 

modifications to the models and networks were made using the MATLAB environment [28]. Darknet19, 

EfficientNet, and DenseNet-201 are models used in the field of deep learning, each with different architectural 

designs. Each of these models has certain advantages and is optimized for various applications. Darknet19 was 

developed by Joseph Redmon and Ali Farhadi as part of the YOLO (You Only Look Once) object recognition system 

[29]. Darknet19 is a 19-layer convolutional neural network (CNN) and is optimized for fast and efficient object 

detection. Darknet19 has 19 convolutional layers followed by max pooling layers. Convolutional layers are used 

to extract features from the image while pooling layers provide more efficient computation by reducing the size of 

these features. The last layers contain fully connected layers and a softmax activation function for classification. 

This structure enables Darknet19 to perform fast and accurate object detection [29]. EfficientNet is an approach 

that optimizes model scaling and was developed by Google. This architecture aims to achieve high performance 

using combinations of width, depth and resolution. EfficientNet has a basic network architecture and this basic 

network is extended using systematic scaling methods to create larger and more complex models. EfficientNet-B0 

is a small and efficient model as a starting point and the larger EfficientNet models (B1, B2, ... B7) are versions of 

this basic model at different scales. This systematic scaling method minimizes computational costs while 

improving performance [30]. DenseNet-201 is a densely connected convolutional neural network and was 

developed by Gao Huang et al. DenseNet-201 has 201 layers, and each layer receives information from all the 

previous layers. This densely connected structure prevents gradient loss and increases the information flow, 

allowing for more efficient learning. Another important feature of DenseNet-201 is that it reduces the number of 

parameters, making the model more compact and efficient. Each layer uses the output of the previous layers to 

create a stronger knowledge base, which increases the model's overall performance [31]. When these three 

methods were compared all of them had advantages and disadvantages. 

TABLE 2 PARAMETERS OF MODELS 

 
COMPONENT/HYPERPARAMETER PARAMETERS 

Test train split ratio 80-20 

Input size (image) 227x227x3 

'Initiallearnrate', 3e-4 
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Pooling layers Max 

Filter size 
2x2 
3x3 
5x5 

Epoch number 6 

Activation function ReLu 

Batch size 10 

Optimizer SGDM 

 
In the ablation study, we have tested several kernel sizes, including 2 × 2, 3 × 3, and 5 × 5, to evaluate their impact 
on performance. The skin lesion classification task was performed using the models DarkNet19, EfficientNet, and 
DenseNet201. The following provides specifics on the hyperparameters that were used to train and assess the 
models: Test-Train Split Ratio: 20% was utilized for testing and 80% of the dataset was used for training. 3 channel 
(RGB) images with an input size of 227 x 227 pixels were utilized. Initial Learning Rate: 3e–4 was the calculated 
value. This controls the speed at which the model updates its weights. As layers of pooling Max Pooling was 
applied. By doing this, significant features are preserved while the feature map size is decreased. For the filter size, 
three different filter sizes—2x2, 3x3, and 5x5—were used to compare the performances of the models. In the 
epoch number six epochs were used to train the model. This indicates the number of times the entire dataset was 
processed by the model. Rectified Linear Unit, or ReLU[32], activation function was applied. To improve the 
model's capacity for learning, this function zeroes out negative values and passes positive values through. For the 
batch size, ten was found to be the value. This is a reference to the quantity of data that is fed into the model at 
every training phase. Stochastic Gradient Descent with Momentum (SGDM) [33] was the optimization algorithm 
that was applied. To avoid local minima and accelerate learning, this method adds momentum. MATLAB software 
in version 2024 was utilized for this research. MATLAB [34] is an effective tool for processing data, building and 
evaluating models, and supporting a variety of deep-learning techniques. Carefully selected hyperparameters and 
training methods were employed to maximize model performance and achieve beneficial classification accuracy 
for skin lesions. 

 
2.2. Performance Metrics 

 
These metrics are used to evaluate the performance of the model in classifying skin cancer images. They help 
measure the correct diagnosis rates, false diagnosis rates, and the overall accuracy of the model. 

 
 
 

TABLE 3 CONFUSİON MATRİX REPRESENTATİON 

 

 Actual 

P
re

d
ic

te
d

 

TP FP 

FN TN 

 

In machine learning and statistical models, it is a fundamental tool used to evaluate the performance of a 
classification algorithm. Confusion matrix is the most commonly used evaluation method for binary classification 
problems. It can also be used for multiple classification problems, but its interpretation is more complex. The table 
3 explain TP: True positive (Refers to cases where a disease is present and accurately identified), TN: A true 
negative refers to a situation where a person is healthy and is appropriately diagnosed as such. FP: False positive 
(A situation when a person is healthy but is wrongly classified as having a medical condition), FN: False negative 
(Refers to cases where a person has a disease but is wrongly identified as not having it). 

𝑇𝑃 + 𝑇𝑁 
Accuracy = 

𝑇𝑃 + 𝑇𝑁 + 𝐹𝑃 + 𝐹𝑁 
(1) 

Accuracy indicates how accurately the model classified. It is the ratio of true positive (TP) and true negative (TN) 
results to the total number of tests. 
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Sensitivity (Recall) = 
𝑇𝑃 

 
 

𝑇𝑃 + 𝐹𝑁 
(2) 

Sensitivity is a statistical measure that quantifies the proportion of genuine positive outcomes in relation to the 
combined number of true positives and false negatives. It provides insight into the accuracy of accurately 
identifying individuals with the condition. 

 
𝑇𝑁 

Specificity = 
𝑇𝑁 + 𝐹𝑃 

(3) 

Specificity is a statistical measure that quantifies the proportion of genuine negative findings in relation to the 
total of true negatives and false positives. It provides information on the accuracy of identifying healthy 
individuals. 

𝑇𝑃 
Positive Predictive Value = 

𝑇𝑃 + 𝐹𝑃 
(4) 

The positive predictive value measures the proportion of those categorized as positive who are indeed affected by 
the disease. The term "precision" refers to the ratio of genuine positive findings to the combined number of true 
positives and false positives. 

 
3. Results 

 
The results obtained at the end of this study can be evaluated in two different steps. One step is to compare the 

classification success of three different types of transfer learning methods, and the second step is to apply ablation 

to these three different transfer learning methods. The results obtained by changing the filter size as the ablation 

application and the effect of the filter size are as follows. Accuracy performances of Darknet19, EfficientNet, and 

DenseNet models in classifying benign and malignant tumors for skin cancer using different filter sizes. The 

Darknet19 model generally has a lower accuracy rate compared to the other two models. Particularly, as the filter 

size increases, the performance of Darknet19 noticeably decreases; the accuracy rate, which is 71.97% with a 2x2 

filter size, drops to 67.88% with a 3x3 filter size and to 61.82% with a 5x5 filter size. This shows that the model 

performs better with smaller filters but is overall less effective compared to other models. The EfficientNet model 

stands out with its consistent and high accuracy rates. The accuracy rate, which is 83.48% with a 2x2 filter size, 

slightly decreases to 83.03% with a 3x3 filter size, but exhibits its highest performance with 85.91% with a 5x5 

filter size. These results demonstrate that EfficientNet performs better with larger filter sizes and has a 

significantly superior classification ability compared to Darknet19. The DenseNet model stands out as the model 

that achieves the highest accuracy rates. It starts with an accuracy rate of 84.39% at a filter size of 2x2 and achieves 

its highest performance with an accuracy rate of 87.73% at a filter size of 3x3. If the filter size is 5x5, it still provides 

a significantly high accuracy rate of 86.82%. It is often observed that when the filter size of DenseNet increases, its 

performance tends to improve, but it reaches its peak at a filter size of 3x3. B This study shows that DenseNet gives 

the most effective results with medium-sized filters and outperforms Darknet19 and EfficientNet in skin cancer 

classification. 

Overall, this comparison demonstrates that the EfficientNet and DenseNet models are superior to Darknet19 in 
classifying skin cancer, particularly with DenseNet yielding the best results with a 3x3 filter size and EfficientNet 
achieving the highest accuracy rate with a 5x5 filter size. This also demonstrates that the filter size is a significant 
factor in model performance, and each model responds differently to different filter sizes. EfficientNet and 
DenseNet get higher accuracy with larger filter sizes, but Darknet19 has lower accuracy rates even when working 
with smaller filters and generally lags behind the other two models. The results of our analysis are summarized in 
the Table 4 and 5. We compared the performance of three different deep learning models (DarkNet19, EfficientNet 
and DenseNet201) using three different filter sizes (2x2, 3x3 and 5x5). The metrics used for evaluation are 
sensitivity, specificity, positive predictive value (PPV) and accuracy. 



Benchmarking Deep Learning Models for Dermatological Image Analysis: Efficientnet Takes The Lead 
 

 
389

2x2 3x3 5x5 

DarkNet19 

EfficientNet 

DenseNet201 

349 11 

174 126 
 

350 10 

202 98 
 

344 16 

273 27 
 

326 34 

75 225 
 

327 33 

79 221 
 

315 45 

48 252 
 

332 28 

75 225 
 

315 45 

36 264 
 

312 48 

39 261 
 

 
 
 

 

TABLE 4 PERFORMANCE METRİCS ESULTS OF MODELS 

 

Model FilterSize Sensitivity Specificity PPV Accuracy 

 
DarkNet19 

2x2 0.67 0.92 0.97 0.72 

3x3 0.63 0.91 0.97 0.68 

5x5 0.56 0.63 0.96 0.56 

 
EfficientNet 

2x2 0.81 0.87 0.91 0.83 

3x3 0.81 0.87 0.91 0.83 

5x5 0.87 0.85 0.88 0.86 

 
DenseNet201 

2x2 0.82 0.89 0.92 0.84 

3x3 0.9 0.85 0.88 0.88 

5x5 0.89 0.84 0.87 0.87 

 

TABLE 5 THE ACCURACY RESULTS FROM DİFFERENT FİLTER SİZES OF MODELS 

 

MODEL 2x2 3x3 5x5 

Darknet19 0.7197 0.6788 0.6182 

Efficient-Net 0.8348 0.8393 0.8591 

Dense201 0.8439 0.8773 0.8682 

 
 

 

TABLE 6 THE CONFUSİON MATRİX RESULTS FROM DİFFERENT FİLTER SİZES OF MODELS 

 

 

 

 

 
 
 

 

TABLE 7 THE F-MEASURE RESULTS FROM DİFFERENT FİLTER SİZES OF MODELS 

 

2x2  3x3  5x5 

DarkNet19     

0.79  0.76  0.70 
     

EfficientNet     

0.86  0.85  0.87 
     

DenseNet201     

0.72  0.67  0.66 
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The Table 5 compares the performance of DarkNet19, EfficientNet and DenseNet201 models on 2x2, 3x3 and 5x5 

grid sizes using confusion matrixes. The correct and incorrect classification numbers of the models are used to 

evaluate their classification performance using confusion matrix. These results can be interpreted; while 

DarkNet19 has higher accuracy in small grid sizes such as 2x2 and 3x3, it also exhibits many incorrect 

classifications. The accuracy rate decreases in a 5x5 grid size as the number of misclassifications rises. These 

findings indicate that DarkNet19 has a decline in performance as the grid sizes increase. EfficientNet had a well- 

balanced performance across all grid sizes and achieved decreased misclassification rates compared to other 

models. This demonstrates that EfficientNet is a reliable model for classifying skin lesions. DenseNet201 achieved 

high performance when applied to grid sizes of 2x2 and 3x3. Nevertheless, while using a 5x5 grid size, the accuracy 

rate showed a modest reduction while the number of misclassifications increased. Table 6 shows the confusion 

metrics of the dataset and table 7 shows the F-measure (F1 score) performance of different convolutional neural 

network (CNN) architectures using various kernel sizes. DarkNet19 achieves its highest F1 score with a 2x2 kernel size 

(0.79), and performance decreases as the kernel size increases, with scores of 0.76 and 0.70 for 3 x3 and 5x5 kernels, 

respectively. This suggests that DarkNet19 performs better with smaller kernels, which might capture local features 

more effectively. EfficientNet, on the other hand, consistently shows high F1 scores across all kernel sizes, peaking at 

0.87 with a 5x5 kernel. This indicates that EfficientNet is more robust to changes in kernel size and benefits from larger 

kernels, potentially due to its efficient feature extraction capabilities. DenseNet201 exhibits the lowest F1 scores among 

the architectures, with a decreasing trend as the kernel size increases, scoring 0.72, 0.67, and 0.66 for 2x2, 3x3, and 5x5 

kernels, respectively. This suggests that DenseNet201 might struggle with larger kernels and does not perform as well 

as the other models. Overall, EfficientNet demonstrates superior performance and adaptability across different kernel 

sizes, while DarkNet19 is effective with smaller kernels and DenseNet201 shows limited performance improvements 

with increasing kernel size. The results indicate that the EfficientNet model outperforms other models in the task of 

classifying skin lesions. The EfficientNet model stands out in its high sensitivity, specificity, positive predictive 

value, and accuracy across all filter sizes. This demonstrates the capability of EfficientNet in accurately classifying 

skin lesions. The DenseNet201 model likewise achieved excellent performance. The sensitivity and positive 

predictive value of the system are strong for both 2x2 and 3x3 filter sizes. Furthermore, the system maintains its 

high performance even with a 5x5 filter size. Nevertheless, the level of specificity is relatively low for certain filter 

sizes. The DarkNet19 model yielded inconclusive outcomes. Although the 2x2 filter size yields excellent specificity 

and positive predictive value, the sensitivity and accuracy scores are only average. Although the sensitivity and 

accuracy numbers are relatively low with a 3x3 filter size, they are significantly lower with a 5x5 filter size. 

 

 
4. Discussion and Conclusion 

 
This study aimed to answer these 2 questions: 

1) Firstly, the objective is to compare the outcomes of transfer learning techniques that have not been 
employed for the simultaneous classification of skin cancer. 
2) Secondly, the objective is to conduct ablation experiments in transfer learning approaches by modifying 
the filter size, and to analyze the impact of the filter size on the classification performance. 

This study investigated the classification abilities of DarkNet19, EfficientNet, and DenseNet201 models in 
the classification of skin lesions. The models were tested using three different filter sizes: 2x2, 3x3, and 5x5. The 
EfficientNet model demonstrated better results compared across all filter sizes, exhibiting both balance and high 
efficiency. EfficientNet attracted attention, especially with its low misclassification rates and high sensitivity, PPV, 
and accuracy values. The DarkNet19 model demonstrated outperformed specifically with a 3x3 filter size but gave 
inconsistent results with other filter sizes. The EfficientNet model is the preferred option for skin lesion 
classification investigations. The study demonstrates the impact of various deep-learning models and filter sizes 
on the effectiveness of skin lesion categorization. It offers significant insights that can inform future research. In 
general, EfficientNet performs appropriately, although it does not achieve the same level of accuracy in classifying 
data as DenseNet201. According to these findings, we can conclude that the DenseNet201 model is the most 
efficient model for classifying skin lesions, as it exhibits low rates of misclassification and a well-balanced 
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performance. DenseNet201 provided accurate and reliable results on different filter sizes, without regard for their 
size. Thus, it is recommended to use DenseNet201 for studies including the classification of skin lesions. 

Future research on data augmentation and diversity should prioritize these recommendations. Techniques for 
augmenting data are essential to improving the model's capacity for generalization on small data sets. Generative 
adversarial networks (GANs) [35], [36] can be used to generate synthetic data, which can be assessed in addition 
to data augmentation techniques like color substitution, random cropping, and vertical and horizontal flipping. 
Furthermore, a variety of ablation study designs can be used to investigate how particular model elements affect 
output. The accuracy of the model on a variety of skin types and lesions can be improved by supplementing the 
data set with information from other sources. The creation of more thorough and broadly applicable models will 
be aided by such methods. 
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