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ABSTRACT

In Riemannian geometry, Ricci soliton inequalities are an important field of study that provide
profound insights into the geometric and analytic characteristics of Riemannian manifolds. An
extensive survey of Ricci soliton inequalities is given in this review article, which also summarizes
their historical evolution, core ideas, important findings, and applications. We investigate the
complex interactions between curvature conditions and geometric inequalities as well as the
several kinds of Ricci solitons, such as expanding, steady, and shrinking solitons. We also go over
current developments, unresolved issues, and possible paths for further study in this fascinating
area.
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1. Introduction

R. Hamilton [45] introduced in 1982 the concept of Ricci flow. If one has a Riemannian manifold M with
metric g0, then the Ricci flow is a PDE that evolves the metric tensor:

d

dt
g(t) = −2Ricg(t), g0 = g(0), (1.1)

where Ricg(t) denotes the Ricci curvature of the metric g(t). Specifically, define the curves t 7→ g(t) that are
solutions of the Ricci flow, given an initial metric g(0) and a maximum interval [0, T ) of the variable t, where
0 ≤ t <∞.

In local coordinates xj , the system of nonlinear PDE affects the component gjk = g (ej , ek) of the metrics
g = g(t). The functions depend on variables t in addition to xj . A relatively complex coordinate variant of
condition (1.1) exists as well:

∂gjk
∂t

= −2Rjk, where Rjk = ∂pΓ
p
jk − ∂jΓ

p
pk + Γp

qpΓ
q
jk − Γp

jqΓ
q
pk.

The Christoffel symbols for the metric g = g(t) are Γp
jk, as defined by

2Γp
jk = gpq (∂jgkq + ∂kgjq − ∂qgjk) ,

where
[
gjk

]
represents the inverse matrix of [gjk] at each point of the coordinate domain, with gjk denoting the

contravariant components of the metric.
Hamilton proved in [45] via Ricci flow that if M3 is a closed 3-manifold which admits a Riemannian metric

with strictly positive Ricci curvature, then M3 also admits a metric of constant positive curvature.
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1.1. Ricci flow in the proof of Poincaré conjecture

In [45], Hamilton established the uniqueness and existence of a maximal Ricci flow trajectory on every
compact manifold, with any given initial metric g(0). Additionally, he tried to use this finding to support the
Poincaré conjecture in three dimensions [67].

"The Hamilton program" was his suggested outline of such a proof, and it comprised a particular set of
actions. In 2002, Grigori Perelman [64, 65, 66] completed the final steps.

Perelman also demonstrated the considerably general Thurston geometrization conjecture for three-
dimensional manifolds at the same time.

Surgery plays a key role in Perelman’s work, as they are required when the Ricci flow encounters a
singularity in limited time (T <∞). After the procedure, in a topologically simpler scenario, the Ricci flow
is once again employed.

1.2. Ricci solitons - "fixed points" of the Ricci flow

A Riemannian metric g0 = g(0) is a Ricci soliton on a manifoldM . It develops in an inessential manner under
the Ricci flow, so up to multiplications by positive constants (also known as "rescalings") and diffeomorphisms,
all of the stages g(t) overlap with g(0). Put another way, under the equivalence relationship that was just
mentioned, this kind of metric denotes a fixed point in the quotient of the space of metrics on M of the Ricci
flow.

The aforementioned idea is evident in the case of compact manifolds since there exists only one maximal
Ricci flow trajectory with a given initial metric. A Ricci soliton, in the absence of the compactness condition,
is a Riemannian metric g on a manifold M with a solution of equation (1.1), which reflects an inessential
development of the Riemannian metric and meets the initial condition g(0) = g.

1.3. Applications

In the study of the Ricci flow and differential geometry, Ricci solitons are significant entities. These self-
similar solutions to the Ricci flow equation are important in comprehending the creation of singularities and
the long-term behavior of the Ricci flow.

Understanding Singularities in Ricci Flow: Near singularities, the behavior of the Ricci flow is commonly
modeled by Ricci solitons. They provide insight into the possible shapes and structures that singularities can
take [47].

Example: The Cigar soliton is a two-dimensional steady Ricci soliton with the metric:

ds2 =
dx2 + dy2

1 + x2 + y2
.

It models a steady soliton that represents the behavior near certain types of singularities in two-dimensions.

Geometric Analysis and Topology: Ricci solitons are used in the classification of manifolds in terms of their
curvature properties. They are involved in the research of metrics with non-negative Ricci curvature and
Einstein manifolds [20].

Example: Cylindrical Soliton: The product of a round sphere with Euclidean space, such as (Sn−1 ×R), is an
example of a steady Ricci soliton. It models the behavior of Ricci flow near cylindrical singularities.

Mathematical Physics and String Theory: Ricci solitons are used in string theory and the study of the
renormalization group flow. They model fixed points and other critical phenomena in the theory of quantum
fields [72].

Analysis of Heat Kernels and Eigenvalues: Ricci solitons are used in the study of heat kernels and eigenvalues
of the Laplace-Beltrami operator on manifolds. This has applications in spectral geometry and the study of
heat diffusion on manifolds [85].

Applications in General Relativity: In general relativity, the Ricci curvature tensor plays a crucial role in
describing the curvature of spacetime in terms of Einstein equation [38]. Energy conditions are theoretical
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constraints that relate the energy content of matter and fields to the curvature of spacetime. One such condition
involves the Ricci curvature tensor.

The energy condition related to the Ricci curvature tensor is called the "weak energy condition" (WEC) [49].
It states that for any timelike vector V µ, the contraction RµνV

µV ν is non-negative, where Rµν represents the
components of the Ricci curvature tensor. Mathematically, the weak energy condition can be expressed as:

RµνV
µV ν ≥ 0

for all timelike vector fields V µ. This condition effectively says that any observer’s energy density measurement
must be non-negative.

Connections to Perelman’s Work: Grigori Perelman’s work [64, 66] on the geometrization conjecture and
the Ricci flow with surgery is strongly related to the research of Ricci soliton inequalities. Comprehending
and improving the inequalities linked to Ricci solitons adds to the larger program of comprehending three-
manifold geometry and topology.

2. Preliminaries

2.1. Discovery of solitons

A soliton is a type of nonlinear wave that possesses two distinct properties:
(1) Without changing its shape or speed, a localized wave continues to propagate.
(2) Localized waves maintain their identities and are stable against mutual collisions.

The first is a condition of solitary waves that has been known since the 19th century in hydrodynamics.
The second indicates that the wave possesses a particle-like quality. In contemporary physics, a suffix-on, like
phonon and photon, is employed to denote the particle property. Using the particle attribute of a solitary wave,
Zabusky and Kruskal [80] called it a "soliton."

The story of how soliton was discovered is fascinating and astounding. The Scottish engineer and scientist
John Scott-Russell (1844) made the first on-record observation of the single wave in 1834.

Scott-Russell is credited with coining the term "solitary wave". Scientists like Stokes, Boussinesq, and
Rayleigh were interested in this occurrence. Still, no one had an empirical explanation until 1898, when two
Dutch physicists named Korteweg and de Vries published their now-famous equation [76] (referred to as KdV
equation).

ut + αuux + βuxxx = 0, α and β are constants. (2.1)

In this case, x is the coordinate travelling at the velocity of a linearized wave, and u(x, t) represents the height
above mean sea level. Equation (2.1) (1-soliton) has a solution for solitary waves:

u(x, t) =
3v

α
sech2 [ϑ] , (2.2)

with ϑ = 1
2

√
v
β (x− vt).

Pasta, Fermi and Ulam analyzed the equilibrium state approach in a 1-dimensional non-linear lattice in
1955 [40]. An ergodic system, or an equal distribution of energy among all of the modes, was predicted as a
consequence of the linear system’s nonlinear interactions among its normal modes. Results from a numerical
analysis contradicted this idea. The system eventually reverts to its original configuration, despite the energy
being distributed unevenly among all the modes.

In 1965, Zabusky and Kruskal used a numerical solution of the KdV equation as a model for a nonlinear
lattice to discover the recurrent occurrences. They also discovered an unanticipated KdV equation feature.
Sharply peaks appear on a waveform that was initially smooth. These pulse waves flow through one another
after impacts and travel nearly independently at steady speeds. According to a thorough examination, each
pulse is a sech2-type solitary wave, as shown by (2.2), and these solitary waves exhibit stable particle behaviour,
which leads to the discovery of the soliton.
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2.2. Establishment of soliton concept

1. How can one verify the soliton’s properties analytically?
2. Why do particles like solitons have stability?
3. Is soliton a phenomenon specific to the equation (2.1)?

To construct the concept of solitons, the answers to these questions were essential.
After the independent and dependent variables are appropriately scaled, equation (2.1) takes on its shape

uxxx + ut − 6uux = 0. (2.3)

A stationary waveform is produced by nonlinear and dispersion effects, which are represented by the KdV
equation. Despite mutual interactions, the equation’s preserved parameters guarantee the stability of isolated
waves. Given the infinite degrees of freedom of the field variable, the dynamic properties of the system are
bounded by infinite conservation laws, permitting an arbitrary number of solitons and infinite conserved
values.

The inverse scattering approach is used to study the fundamental properties of solitons. In 1967, C. S.
Gardner et al. developed in [44] a method for solving the initial-value problem of the Korteweg-deVries
equation which is applicable to initial data that approach a constant sufficiently rapidly as |x| → ∞. The
potential function u(x, t) is the solution to equation (2.3):

(x, t)ψ − ψxx = λψ. (2.4)

It is shown that the eigenvalue λ does not rely on time when u evolves as per (2.3). The method of Gardner et al.
can be used to predict exactly the “solitons” or solitary waves, which emerge from arbitrary initial conditions.
Solutions that describe any finite number of solitons in interaction can be expressed in closed form.

In quantum physics, equation (2.4) is simply the Schrödinger equation. Gelfand-Levitan and Marchenko
solved the latter problem for equation (2.4). Further information suggests that the eigenfunction ψ(x, t)’s time
development is

ψt = −4ψxxx + 3uxψ + 6uψx. (2.5)

In summary, the KdV equation’s solution is provided by

u(x, t) = 2
∂

∂x
K(x, x; t), (2.6)

where

K(x, y; t) +

∫ x

−∞
K(x, z; t)F (z + y; t)dz + F (x+ y; t) = 0, (2.7)

and F (x; t) is of the form:

F (x; t) =

N∑
n=1

c2n(t)e
ηnx +

1

2π

∫ ∞

−∞

b(k, t)

a(k, 0)
e−ikx dk. (2.8)

The Gelfand-Levitan equation is the integral equation (2.7). It is important to keep in mind that all of the
calculations in the example above are linear issues. This resolves the KdV equation’s initial-value problem. A
soliton is associated with each limited state that has a discrete eigenvalue. In particular, it is simple to obtain
the N-soliton solution corresponding to N bound states by solving the Gelfand-Levitan equation where the
coefficient for reflection r(k, 0) = b(k, 0)/a(k, 0) is identically zero (the reflectionless potential). Through the
exact formulation of the N-soliton solution [77], we can show that the soliton is stable against mutual collisions
and that the collisions are pairwise, meaning that they only result in position changes in the solitons. The
above-discussed solution methodology is called the inverse scattering method.

It is possible to solve the KdV equation’s initial-value problem. At the time, though, it seemed like a
coincidence. Five years later, Zakharov and Shabat [82] addressed the nonlinear Schrödinger (NLS) problem
by extending on the inverse scattering technique

iψt + ψxx + 2|ψ|2ψ = 0. (2.9)
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Later, Wadati resolved the equation for modified KdV (mKdV ) [75].

ut + 6u2ux + uxxX = 0. (2.10)

Furthermore, we now have more than 100 soliton equations after solving the Sine-Gordon equation [58].
We may precisely define the soliton using the inverse scattering method. Transferring the field variables to

the scattering data is known as a canonical transformation. The scattering data space contains definitions for
the action-angle variables. Because of this, the soliton equation is a fully integrable system, and the soliton is a
system fundamental mode [81].

The greatest advance in the theory of solitons is represented by the discovery of the inverse scattering
method. The inverse scattering method can be thought of as the Fourier transformation expanded into
nonlinear problems if the scattering data space is viewed as an extension of the momentum space. The Fourier
transform’s development allowed for the solution of the diffusion problem in 1811. It was refined into a
cohesive approach for solving nonlinear evolution problems after more than 150 years.

2.3. Ricci soliton

A Ricci soliton is a complete Riemannian manifold (M, g) if and only if there exists a smooth vector field V
such that

Ric(g)− λg +
1

2
LV g = 0.

Here, λ ∈ R is the constant. In this case, the Lie derivative is represented by L, and the Ricci curvature tensor
by Ric. (M, g) is a gradient Ricci soliton if f :M → R exists and V = ∇f . The soliton equation is then expressed
as:

Ric(g) +∇2f = λg.

Note that the Einstein equation is the solution of the above equations when either V = 0 or f = 0.

Role of V in Ricci solitons [20, 34]

1. Characterization of soliton Type:

• Gradient Solitons: For any smooth function f , V = ∇f is a gradient vector field. In this case, the Ricci
soliton equation reduces to Ric +∇∇f − λg = 0. The potential function in this case is denoted by f .

• Rotational Solitons: For rotational solitons, V generates a 1-parameter family of isometries, implying
certain symmetries in the manifold’s structure.

• Homogeneous Solitons: In homogeneous solitons, V exhibits a high degree of symmetry, often reflecting
the underlying symmetry group of the manifold.

2. Geometric Interpretation: V governs the self-similar evolution of the soliton under the Ricci flow. It
determines how the metric g changes along the flow direction induced by V.

3. Physical Interpretation: V can be interpreted as a flow vector field that describes how the metric evolves to
maintain the soliton condition. Depending on the sign of λ, V either contracts, expands, or keeps the metric
unchanged (in the case of steady solitons).

2.4. Self-similar Ricci flow solutions

The Ricci flow equation has a self-similar solution that is produced by a Ricci soliton (M, g0).

∂tgt = −2Ric (gt) .

In particular, putting
σ(t) = 1− 2λt,

and integrating the vector field X(t) := 1
σ(t)V to obtain a family of diffeomorphisms Ψt, with Ψ0 the identity

map, provides a solution of the Ricci flow by taking

gt = σ(t)Ψ∗
t (g0) .

Hence, up to diffeomorphism and depending on the sign of λ , a Ricci soliton homothetically shrinks, remains
steady or expands under Ricci flow.
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2.5. Types of Ricci soliton with example

(i) Shrinking (λ > 0)

• Einstein manifolds with positive scalar curvature [4].
• Gradient compact Kahler-Ricci shrinkers [15, 53, 78].
• The 4-dimensional shrinker given by Bamler et al. [2].
• The 4-dimensional shrinker given by Feldman Feldman et al. [39].
• Round shrinking cylinder Sn−1 ×R, n ≥ 3 [48].
• Round shrinking sphere Sn, n ≥ 2 [34].
• Shrinking Gaussian soliton

(
Rn, geucl , f(x) =

λ
2 |x|

2
)

[48].

In a shrinking Ricci soliton, the metric contracts under the Ricci flow, resembling a shrinking of the manifold.
A classic example is the Gaussian soliton on Euclidean space. Consider Euclidean space with the metric:

g = dx2 + dy2 + dz2.

The Gaussian soliton is given by the metric:

g = (1 + 4t)−
1
2 (dx2 + dy2 + dz2),

where t is time. This soliton shrinks isotropically as time progresses.

(ii) Steady (λ = 0)

• The 2-dimensional cigar soliton
(
R2, g = dx2+dy2

1+x2+y2 , V = −2
(
x ∂
∂x + y ∂

∂y

))
.

• The Bryant soliton with rotational symmetry of 3d and its extension to higher dimensions [12].
• Ricci flat manifold.

The sphere with its standard metric is among the most basic examples. We will use the standard round metric
derived from the ambient Euclidean space to represent the n-dimensional sphere immersed in Rn+1 as Sn.

The standard metric on Sn is given by

g = dβ2
1 + cos2 β1dβ

2
2 + · · ·+ cos2 β1 · · · cos2 βn−1dβ

2
n,

where {β1, . . . , βn} is a standard spherical coordinate system.
The metric g evolves under the following equation under the Ricci flow:

∂g

∂t
+ 2Ric = 0,

where Ric is the Ricci curvature tensor. The metric itself determines the Ricci curvature of a round sphere,
which is Ric = 2(n−1)

n g. As a result, the equation for Ricci flow becomes:

∂g

∂t
= −4(n− 1)

n
g.

Now, consider a time-dependent metric g(t) on Sn given by:

g(t) = e4(n−1)t/ng(0).

The Ricci flow equation is satisfied by this metric, which may be directly confirmed. Furthermore, we may
retrieve the initial metric g(0) if we set t = 0. As a result, g(0) is implied to be a stable Ricci soliton and a fixed
point of the Ricci flow.

(iii) Expanding (λ < 0)

• Negative scalar curvature Einstein manifolds: Kähler Ricci solitons expansion on the complex line
bundles O(−k), k > n over CPn, n ≥ 1.

In an expanding Ricci soliton, the metric expands under the Ricci flow. An example is the Bryant soliton [59].
Consider the affine 3-space with the warped product metric:

g = dx2 + e2x(dy2 + dz2).

This metric represents a soliton with positive curvature and expansion in the x-direction.
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2.6. Different inequalities in Riemannian geometry

Inequalities play a crucial role in the study of Riemannian manifolds, which are geometric spaces that
generalize the concept of curved surfaces. Here are several key reasons why inequalities are important in this
context:

1. Geometric Inequalities: Bonnet-Myers theorem [52] states that if M is a complete Riemannian manifold
such that the Ricci curvature of M satisfies

Ricp(v) ≥
1

r2
> 0

for all p ∈ N and for all v ∈ TpM , then M is compact and the diameter diam(M) ≤ πr.

2. Topological Inequalities: The Bishop-Gromov inequality provides a bound on a Riemannian manifold’s
diameter in terms of its sectional curvature [23]. It states explicitly that for any two points p and q in a
Riemannian manifold M , we have

dist(p, q) ≤ π√
sec(M)

,

where the distance between points p and q is indicated by dist(p, q).

3. Rigidity Theorems: The sphere theorem, also known as the quarter-pinched sphere theorem, strongly
restricts the topology of manifolds admitting metrics with a particular curvature bound. The sphere theorem
states that if M is a complete, simply-connected, Riemannian n-manifold with sectional curvature taking
values in the interval (1, 4], then M is homeomorphic to the n-sphere.

4. Gradient Inequalities: The Laplacian of a functionf and the gradient’s norm on a Riemannian manifold are
related by the Bochner inequality [69]:

∥∇2f∥ ≥ 1

n
∥Hess(f)∥2,

where ∇2f denotes the Hessian of f , and Hess(f) denotes the Hessian operator.

5. Isoperimetric Inequalities: A basic finding in geometry that establishes a relationship between the area and
the perimeter of a closed surface or curve in Euclidean space is known as the isoperimetric inequality.

Let A be the area enclosed by a closed curve or surface in Euclidean space and let P be the perimeter or
circumference of the same curve or surface. Then, the isoperimetric inequality states that for any such curve or
surface,

4πA ≤ P 2.

In two dimension, equality is maintained only when the curve or surface is a circle, and in three dimensions,
it is a sphere. In other words, among all closed curves or surfaces with a given area, the one with the smallest
perimeter or circumference is the circle (or sphere), and the ratio of its perimeter (or circumference) to its area
is P

A = 1
r , where r is the radius of the circle (or sphere).

According to Cheeger’s inequality, the first eigenvalue of the Laplacian operator has a lower constraint in
terms of the isoperimetric constant of a Riemannian manifold.

6. Functional Inequalities: A function f on a Riemannian manifold M has a constant C such that, according to
the Poincaré inequality,

∥f − f̄∥2 ≤ C∥∇f∥2,

where f̄ represents the average of f , the gradient of f is represented by ∇f , and ∥ · ∥2 represents the L2 norm.

2.7. Definitions

Conformal Ricci flow equations : A. E. Fishcher [41] introduced a variation of the classical Ricci flow equation
that modifies the unit volume constraint of that equation to a scalar curvature constraint. The resulting
equations are named the conformal Ricci flow equations because of the role that conformal geometry plays
in constraining the scalar curvature and because these equations are the vector field sum of a conformal flow
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equation and a Ricci flow equation. These new equations are given by

2

(
1

n
g +Ric g

)
+
∂g

∂t
= −pg, R(g) = −1,

for a metric g that is dynamically changing and a static scalar field p. The conformal Ricci flow equations and
the Navier-Stokes equations are the same in fluid mechanics:

ν∆v +∇vv + grad p+
∂v

∂t
= 0, div v = 0.

This comparison results in the time-dependent scalar field p and the term "conformal pressure". Like the real
physical pressure in fluid mechanics, which maintains the fluid’s incompressibility, the conformal pressure
acts as a Lagrange multiplier to conformally adjust the metric flow in order to preserve the scalar curvature
constraint.

Conformal Ricci flow equations with the Einstein constant − 1
n have Einstein metrics at their locations of

equilibrium. The formula −2
(
1
ng +Ric g

)
thus functions as a nonlinear restorative force and quantifies the

flow’s divergence from an equilibrium point. Unless it is in an equilibrium location, the conformal pressure
p ≥ 0 is positive. The constraint force −pg conformally deforms g to maintain the scalar curvature by acting
pointwise orthogonally to the nonlinear restoring force −2

(
1
ng +Ric g

)
.

Conformal Ricci soliton: [34, 16] A conformal Ricci soliton generalizes Ricci soliton concept by allowing a
conformal change in the metric. Formally, a conformal Ricci soliton is defined by

Ric(g) + LXg = λg + µg

where µ is a differentiable function on M .

This equation indicates that the Ricci curvature, modified by the Lie derivative of the metric, is equal to a
scalar multiple of the metric plus a term that varies smoothly over the manifold.

Conformal η Ricci soliton: A. Bhattacharyya and N. Basu [3] introduced in 2015 the conformal type Ricci
soliton, which is a generalization of the classic type Ricci soliton and is represented by the equation

LV g + 2 Ric =

[
2λ− p− 2

n

]
g, (2.11)

where λ represents a constant and p the conformal pressure. It is crucial to keep in mind that the conformal
type Ricci soliton contains a self-similar solution to Fisher’s conformal type Ricci flow equation. Following this,
a multitude of investigations into conformal type Ricci solitons have been carried out on a range of geometric
structures, including (LCS)n-manifolds [42] and generalized Sasakian space forms [43].

Gradient Ricci soliton refers, once more, to the situation in which the potential vector field V in (2.11) is the
gradient of a smooth function f on M . The Ricci soliton potential function is the name given to this function, f .
J. T. Cho and M. Kimura [29] introduced the η-Ricci soliton in complex space forms for the first time. Later, C.
Calin and M. Crasmareanu [13] studied it on Hopf hypersurfaces. A η-Ricci soliton is said to be accepted by the
Riemannian manifold (M, g) when, for a smooth vector field V , the metric g satisfies the following equation:

2µη ⊗ η + LV g + LV g + 2λg + 2S = 0, (2.12)

where LV is the Lie derivative in the direction of V, S, the Ricci tensor, and λ, µ, are real constants. Observe
that when µ = 0, the η-Ricci soliton becomes a Ricci soliton.

The combination of equations (2.11) and (2.12): The following equation represents the conformal η-Ricci
soliton, which was established by M. D. Siddiqi [71].

2µη ⊗ η + LV g +

[
2λ− p− 2

n

]
g + 2S = 0,
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where n is the dimension of the manifold, p is scalar field which is non-dynamical, LV is the Lie derivative
along V and S the Ricci tensor’s direction.

Hitchin–Thorpe inequality: [50, 74, 37] This is a significant finding in differential geometry, particularly
for the investigation of four-dimensional manifolds. It provides a link between the Euler characteristic and
the signature of an oriented compact 4-manifold accepting a Riemannian metric with non-negative scalar
curvature.

For a differentiable compact orientated 4-manifold, the signature τ(M) and the Euler characteristic χ(M) of
M are related by the Hitchin–Thorpe inequality as follows:

3|τ(M)| ≤ 2χ(M).

Hyperbolic Ricci soliton: [1] If a vector fieldX onM has real scalars λ and µ, such that a Riemannian manifold
(Mn, g), then the structure is known as hyperbolic Ricci soliton structure:

Ric+
1

2
LX (LXg) + λLXg = µg.

As previously stated, depending on whether λ is positive, zero, or negative, a hyperbolic Ricci soliton is said to
be expanding, stable, or shrinking. Furthermore, the parameter µ represents the rate of change of our solutions
and has geometric meaning. The equation above reduces to Einstein equation when X = 0 or X is a Killing
vector field.

The gradient hyperbolic structure (M, g,X, λ, µ) is a hyperbolic Ricci soliton structure if there exists a function
f , which is often referred to as the potential function, such that X = ∇f . Hence, (2.7) becomes

Ric + 2λHess f + L∇f Hess f = µg.

Example: Let (Mn, g(t)) = (Rn, gcan) be a static Euclidean space, then it is a stationary solution to the hyperbolic
Ricci flow as given below

∂2gij
∂t2

= −2Rij , g(0) = g0,
∂gij
∂t

= 0,

and is therefore a constant hyperbolic soliton. A hyperbolic Ricci soliton that expands or shrinks modulo
diffeomorphisms could also be applied to this solution.

3. Solitonic inequalities on Sasakian manifolds

3.1. Contact metric structure and D-Homothetic deformation

An odd-dimensional Riemannian manifold (M, g) is called an almost contact metric manifold [8, 73, 79] if there
exist a (1, 1)-tensor field ϕ, a vector field ξ and a one-form η, such that

η(ξ) = 1, ϕ2(X) = −X + η(X)ξ, ϕξ = 0, η ◦ ϕ = 0,

η(X) = g(X, ξ), g(ϕX, ϕY ) = g(X,Y )− η(X)η(Y )

for X,Y ∈ X(M). An almost contact metric manifold is called a contact metric manifold if it satisfies

g(X,ϕY ) = dη(X,Y ).

An almost contact metric manifold M is called normal if the tensor field

Nϕ = [ϕ, ϕ] + 2dη ⊗ ξ

vanishes identically, where [ϕ, ϕ] is called the Nijenhuis tensor of ϕ. A normal contact metric manifold is said to
be a Sasakian manifold. An almost contact metric manifold is called almost cosymplectic if it satisfies dη = 0 and
dϕ = 0 applied to a (1, 1)-tensor. An almost cosymplectic manifold is called cosymplectic if it satisfies ∇ϕ = 0
and ∇ξ = 0. An almost contact metric manifold M is called a Kenmotsu manifold if it satisfies

(∇Xϕ)Y = g(ϕX, Y )ξ − η(Y )ϕX.
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A Sasakian space form is a Sasakian manifold with a constant ϕ-sectional curvature.
Scaling a manifold’s metric tensor by a positive constant is commonly referred to as a homothetic

deformation. A homothetic deformation by a constant c > 0 yields a new metric g̃ defined as follows if g is
the metric tensor on a manifold M such that g̃ = c2g. This idea is extended by D-homothetic deformation,
which applies a differential scale that can change over the manifold. It is frequently examined in relation to
specific geometric structures, including paracontact or virtually contact metric structures.

They explored the behavior of virtually contact metric structures which are common in contact geometry
under scaling transformations using D-homothetic deformations. Assume that a manifold M has a metric
structure (ϕ, ξ, η, g) which is almost contact . This case has the following: a vector field (the Reeb vector field), a 1-form
η, a metric tensor g, and a (1,1)-tensor field ϕ.

A D-homothetic deformation involves transforming these components :

ξ̃ =
1

c
ξ, ϕ̃ = ϕ, η̃ = cη, g̃ = gc2 + (c2 − 1)η ⊗ η,

where c is a positive constant.

3.2. Paracontact structure and para-Sasakian metric manifold

A (2n+ 1)-dimensional smooth manifold M is said to have an almost paracontact structure if it admits a
vector field ξ, (1,1)-tensor field ϕ and a 1-form η satisfying the following three conditions:

(i) ϕ2 = I − η ⊗ ξ,
(ii) η(ξ) = 1,
(iii) ϕ induces on the 2n-dimensional distribution D ≡ ker(η), an almost paracomplex structure P i.e.,

P2 ≡ I , I the identity map, and the eigensubbundles D+ and D−, corresponding to the eigenvalues 1, −1 of P
respectively, have equal dimension n; and hence D = D+ ⊕D−.

The vector field ξ is called characteristic vector field or Reeb vector field. An immediate consequence of
those relations are ϕξ = 0 and η ◦ ϕ = 0. The tensor field ϕ induces an almost paracomplex structure on each
fibre of Ker(η) i.e., the eigendistributions corresponding to eigenvalues 1 and −1 have same dimension n. A
pseudo-Riemannian metric g is said to be compatible with the almost paracontact structure if it satisfies

g(ϕX, ϕY ) = −g(X,Y ) + η(X)η(Y ) (3.1)

holds for arbitrary vector fields X and Y and (M,ϕ, ξ, η, g) is called an almost paracontact metric manifold.
The normality of a paracontact metric manifold (M,ϕ, ξ, η, g) is equivalent to vanishing of the (1, 2)-torsion

tensor defined by Nϕ(X,Y ) = [ϕ, ϕ](X,Y )− 2dη(X,Y )ξ, where

[ϕ, ϕ](X,Y ) = ϕ2[X,Y ] + [ϕX, ϕY ]− ϕ[X,ϕY ]− ϕ[ϕX, Y ]

for any vector fields X,Y ∈ X(M). A normal paracontact metric manifold is called a para-Sasakian metric
manifold.

3.3. Inequalities involving Ricci soliton on para Sasakian manifolds

In order to investigate the connection between extrinsic and intrinsic invariants, M. A. Choudhary et al. [33]
examined in 2022 the scalar curvature for submanifolds of Ricci solitons. They obtained the following.

Lemma 3.1. [33] Let (M̃, g, V,Λ) be a Ricci soliton and M a contact pseudo-slant submanifolds of an (ϵ)-para Sasakian
form M̃(k). We obtain

div(V )−A1 + ∥σ∥2
{
ϵ(k + 1)

(
−ϵ cos2 θ − 2

)
+ (n− 1)(k − 3)

}
(n)

+K2

(
ϵ
(
2ϵ− cos2 θ − 1

)
+ 5− n

)
+ nΛ = 0,

(3.2)

where A1 = n2∥H∥2 and K2 =
∑m

α=n+1

∑n
i,j ̸=1

(
σα
ij

)2.

Theorem 3.1. [33] Let (M̃, g, V, λ) be a Ricci soliton and M be a contact pseudo-slant submanifold of an (ϵ)-para
Sasakian form M̃(k). Then we have

div(V ) ≤n(n− 1)∥H∥2 − nΛ−
{
ϵ(k + 1)

(
−2− ϵ cos2 θ

)
+ (n)(n− 1)(k − 3)

}
−K2

(
5− n+ ϵ

(
2ϵ− 1− cos2 θ

))
.
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A. M. Blaga and M. Crasmareanu [7] proposed an inequality for a lower boundary of the geometry of g in
terms of gradient Ricci soliton for a function ψ on ambient space M such that

∥Hess∥2g −
1

n
(∆ψ)2 ≤ ∥S∥2g, (3.3)

where Hess denotes the Hessian of the differentiable function ψ on M . Let the soliton vector field V satisfy
V = ∇ψ. The authors used (3.3) to obtain the following theorem.

Theorem 3.2. [33] Consider a gradient Ricci soliton (M̃, g,∇ψ,Λ) with a gradient-type soliton vector field V . Let M be
a contact pseudo-slant submanifold of an (ϵ)-PS space form M̃(k). Then we have

∥S∥2g ≥∥Hess∥2g − n3∥H∥4 + ∥σ∥4 + nΛ2 +
{
ϵ(k + 1)

(
−2− ϵ cos2 θ

)
+ (n− 1)(k − 3)

}2

+
1

n
(K2)

2 (
5− n+ ϵ

(
2ϵ− 1− cos2 θ

))2
.

Theorem 3.3. [33] Let M be a submanifold of a (ϵ)-para Sasakian form M̃(k), with complete umbilical contact pseudo-
slant. Assume that 3.2 holds true in its entirety. Next,

∥S∥2g ≥∥Hess∥2g + nΛ2 +
{
ϵ(k + 1)

(
−2− ϵ cos2 θ

)
ϵ+ (n− 1)(k − 3)

}2

+
1

n
(K2)

2 (
5− n+ ϵ

(
2ϵ− 1− cos2 θ

))2
.

Choudhary et al [33] discovered an inequality for pseudo-slant submanifolds of the ϵ-para Sasakian
manifold, notably concerning gradient Ricci soliton and gradient type vector field.

3.4. Sasakian manifold using generalized Wintgen inequalities

Let ∇ be the Levi-Civita connection on an almost para-contact metric manifold (M,ϕ, ξ, η, g). Then M called
an (ϵ)-PS manifold if it satisfies

(∇Xϕ)Y = −g(ϕX, ϕY )ξ − ϵη(Y )ϕ2X

for any vector fields X,Y on M . Let M̃(k) denote an (ϵ)-PS manifold with constant ϕ-para holomorphic
sectional curvature k.

In [32], Choudhary et al. obtained inequalities for Ricci solitons in order to find relationships between
extrinsic and intrinsic invariants. More precisely, they proved the following results involving inequalities of
Ricci soliton.

Theorem 3.4. LetM be a submanifold of an (ϵ)-PS space form M̃(k) adopting a Ricci soliton with a potential vector field
V ∈ TM of Ricci soliton. Assume that (M̃, g, V,Λ) is a Ricci soliton. The Ricci soliton is therefore expanding, steady, and
shrinking in accordance with

1. n
2 ∥H∥2 < 1

n

(
div(V ) + ∥σ∥2 + τ

)
,

2. n
2 ∥H∥2 = 1

n

(
div(V ) + ∥σ∥2 + τ

)
, and

3. n
2 ∥H∥2 > 1

n

(
div(V ) + ∥σ∥2 + τ

)
, respectively.

Corollary 3.1. Let M be a submanifold of an (ϵ)-PS space form M̃(k), and let (M̃, g, V,Λ) be a gradient Ricci soliton
with a potential vector field V = ∇(ψ) ∈ TM of gradient type. Gradient Ricci soliton is then admitted by the submanifold
M of M̃(k) if and only if

n

2
∥H∥2 < 1

n

(
∆(ψ) + ∥σ∥2 + τ

)
.

Theorem 3.5. Let M be a submanifold of an (ϵ)-PS space form M̃(k), and let (M̃, g, V = ∇(ψ),Λ) be a gradient
shrinking Ricci soliton with V = ∇(ψ) ∈ TM of gradient type. Then

|W | ≤ 2

n∥H∥2 − 2∥σ∥2 − 2nΛ− 2∆(ψ)

√
2(n− 1)

n− 2
,

where W denotes the Weyl conformal tensor of M .
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Theorem 3.6. Let (M̃, g, V = ∇(ψ),Λ) be a gradient Ricci soliton of gradient type, and let M be a CPS-submanifold of
an (ϵ)-PS space form M̃(k). Then

|W | ≤
{(

k − 3

4

)
(2p+ q) +

(
k + 1

4

)(
−2ϵ− ϵ2 cos2 θ

)}
(2p+ q + 1)

+

(
k + 1

4

)(
4− 2p− q + 2ϵ2 − ϵ− ϵ cos2 θ

)
+ (2p+ q + 1)2∥H∥2 − ∥σ∥2.

Theorem 3.7. Given V = ∇(ψ) ∈ TM of gradient type and M a completely umbilical CPS-submanifold of an (ϵ)-PS
space form M̃(c), let (M̃, g, V = ∇(ψ),Λ) be a gradient shrinking Ricci soliton. Then

|W | ≤
{
(2p+ q)

(
k − 3

4

)
+
(
−2ϵ− ϵ2 cos2 θ

)(k + 1

4

)}
(2p+ q + 1) (5.12)

+
(
4− 2p− q + 2ϵ2 − ϵ− ϵ cos2 θ

)(k + 1

4

)
+ ∥H∥2(2p+ q + 1)2 − ∥σ∥2.

4. Solitonic inequalities on Kenmotsu manifolds

4.1. In a D-homothetically deformed Kenmotsu manifold

In 2022, a D-homothetically deformed Kenmotsu manifold was investigated by A. M. Blaga [5] for almost
Riemann and almost Ricci solitons. A gradient vector field, a solenoidal vector field, or the Reeb vector field of
the deformed structure are possible vector fields for these solitons. In some situations, it is possible to obtain
the scalar and Ricci curvatures explicitly.

In [5], Blaga derived the following results involving Ricci soliton inequalities.

Theorem 4.1. [5] In a (2n+ 1)-dimensionalD-homothetically deformed Kenmotsu manifold (M, ϕ̄, ξ̄, η̄, ḡ), if a gradient
almost Riemann soliton is defined by (V = grad(f), λ̄), then we have

|Ric|2ḡ ≥ (2n− 1)2 [υ] ,

where υ = |Hess(f)|2ḡ − 1
2n+1 (∆̄(f))2.

Corollary 4.1. [5] In a (2n+ 1)-dimensional Kenmotsu manifold (M, ϕ̄, ξ̄, η̄, ḡ) that is D-homothetically deformed, if a
solenoidal gradient almost Riemann soliton is defined by (V = grad(f), λ̄), then

|Ric|2g ≥ (2n− 1)2|Hess(f)|2ḡ.

Proposition 4.1. [5] In a (2n+ 1)-dimensional D-homothetically deformed Kenmotsu manifold (M, ϕ̄, ξ̄, η̄, ḡ), if (V =
grad(f), λ̄) defines a gradient almost Riemann soliton, then

(2n− 1)2|Hess(f)|2g − 4n
a− 1

a
scal− 4n2(2n+ 1)

(
a− 1

a

)2

− (2n− 1)2

2n+ 1
(∆(f))2 − 2(2n− 1)2

2n+ 1

a− 1

a
[ξ(f)− ξ(ξ(f))]∆(f)

+
2n(2n− 1)2

2n+ 1

(
a− 1

a

)2

(ξ(f))2 − 2(2n− 1)2(n+ na+ a)(a− 1)

(2n+ 1)a2
(ξ(ξ(f)))2

+
2(2n− 1)2(2n+ a)(a− 1)

(2n+ 1)a2
ξ(f) · ξ(ξ(f)) ≤ |Ric |2g.

Corollary 4.2. [5] As per Proposition 4.1’s hypothesis, if V is ḡ-orthogonal to ξ, then

(2n− 1)2|Hess(f)|2g −
(2n− 1)2

2n+ 1
(∆(f))2 +

4n(2n− 1)(a− 1)

a
∆(f)

+
4n2(2n+ 1)

(
a2 − 1

)
a2

≤ |Ric |2g.
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Furthermore, if f is a function that is ∆-harmonic, then

|Ric |2g ≥ (2n− 1)2|Hess(f)|2g +
4n2(2n+ 1)

(
a2 − 1

)
a2

.

Proposition 4.2. [5] (M, ϕ̄, ξ̄, η̄, ḡ) is a (2n+ 1)-dimensional D-homothetically deformed Kenmotsu manifold if a
solenoidal gradient almost Riemann soliton is defined by (V = grad(f), λ̄), then

|Ric |2g ≥ (2n− 1)2|Hess(f)|2g +
a2 − 1

a2
[
4n2 − (2n− 1)2(ξ(ξ(f)))2

]
.

Theorem 4.2. [5] In a (2n+ 1)-dimensional Kenmotsu manifold (M, ϕ̄, ξ̄, η̄, ḡ) that is D-homothetically deformed, if the
gradient defined by (V = grad(f), λ̄) is almost Ricci soliton, then

|Ric|2ḡ ≥ |Hess(f)|2ḡ −
1

2n+ 1
(∆̄(f))2.

Corollary 4.3. [5] If (V = grad(f), λ̄) defines a solenoidal gradient almost Ricci soliton in a (2n+1)-dimensional D-
homothetically deformed Kenmotsu manifold (M, ϕ̄, ξ̄, η̄, ḡ), then

|Ric|2ḡ ≥ |Hess(f)|2ḡ.

Proposition 4.3. [5] In a (2n+ 1)-dimensional D-homothetically deformed Kenmotsu manifold (M, ϕ̄, ξ̄, η̄, ḡ), if (V =
grad(f), λ̄) defines a gradient almost Ricci soliton, then

|Ric |2g ≥ |Hess(f)|2g − 4n
a− 1

a
scal − 4n2(2n+ 1)

(
a− 1

a

)2

− 1

2n+ 1
(∆(f))2

− 2

2n+ 1

a− 1

a
[ξ(f)− ξ(ξ(f))]∆(f) +

(a− 1)2(2n+ a)

(2n+ 1)a2
ξ(f) · ξ(ξ(f))

+
2n

2n+ 1

(
a− 1

a

)2

(ξ(f))2 − (a− 1)2(n+ na+ a)

(2n+ 1)a2
(ξ(ξ(f)))2.

Corollary 4.4. [5] As per Proposition 4.2’s hypotheses, if V is ḡ-orthogonal to ξ, then we obtain

|Ric |2g ≥ |Hess(f)|2g −
1

2n+ 1
(∆(f))2 +

(a− 1)4n

a
∆(f) +

(2n+ 1)
(
a2 − 1

)
4n2

a2
.

Furthermore, if f is a function that is ∆-harmonic, then

|Ric |2g ≥ |Hess(f)|2g +
4n2(2n+ 1)

(
a2 − 1

)
a2

.

Proposition 4.4. [5] In a (2n+1)-dimensional D-homothetically deformed Kenmotsu manifold (M, ϕ̄, ξ̄, η̄, ḡ), if (V =
grad(f), λ̄) defines a solenoidal gradient almost Ricci soliton, then

|Ric |2g ≥ |Hess(f)|2g +
a2 − 1

a2
[
4n2 − (ξ(ξ(f)))2

]
.

4.2. Indefinite Kenmotsu manifolds as a framework for conformal η-Ricci solitons

Y. L. Li et al. [57] investigated certain unique varieties of Ricci tensor in relation to ϵ-Kenmotsu manifolds’
conformal η-Ricci soliton in 2022. Subsequently, the writer examined certain curvature circumstances that
permit conformal η-Ricci solitons on ϵ-Kenmotsu manifolds.

Corollary 4.5. [57] An n-dimensional ϵ-Kenmotsu manifold (M, g) admits a conformal Ricci soliton (g, ξ, λ).
Consequently, (M, g) becomes a η-Einstein manifold, and λ satisfies λ =

(
p
2 + 1

n

)
+ ϵ(n− 1). Moreover, we have:

1. In the event that ξ is spacelike, the soliton is either expanding, stable, or contracting as,
(
p
2 + 1

n

)
> (1− n),(

p
2 + 1

n

)
= (1− n) or

(
p
2 + 1

n

)
< (1− n); and

2. In the event that ξ is timelike, the soliton is expanding, steady, or shrinking as,
(
p
2 + 1

n

)
> (n− 1),

(
p
2 + 1

n

)
=

(n− 1) or
(
p
2 + 1

n

)
< (n− 1).
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Corollary 4.6. [57] λ =
(
p
2 + 1

n

)
+ ϵ(n− 1) describes the relationship between the scalars λ and µ on the manifold

(M, g), which is a η-Einstein manifold. An n-dimensional ϵ-Kenmotsu manifold (M, g) is constant multiple of ξ if it
admits a conformal Ricci soliton (g, V, λ, µ) such that V is pointwise collinear with ξ. Moreover, we have:

1. In the event that ξ is spacelike, the soliton is either expanding, steady, or shrinking as,
(
p
2 + 1

n

)
+ n > 1,(

p
2 + 1

n

)
+ n = 1 or

(
p
2 + 1

n

)
+ n < 1; and

2. In the event that ξ is timelike, the soliton is expanding, steady, or shrinking as,
(
p
2 + 1

n

)
+ 1 > n,

(
p
2 + 1

n

)
+ 1 =

n or
(
p
2 + 1

n

)
+ 1 < n.

Corollary 4.7. [57] If an n-dimensional ϵ-Kenmotsu manifold has a Codazzi type Ricci tensor and admits a conformal
η-Ricci soliton (g, ξ, λ, µ), then

1. if ξ is spacelike then the soliton is expanding, steady or shrinking according to,
(
p
2 + 1

n

)
+ n > 2,

(
p
2 + 1

n

)
+ n = 2

or
(
p
2 + 1

n

)
+ n < 2; and

2. if ξ is timelike then the soliton is expanding, steady or shrinking according to
(
p
2 + 1

n

)
+ 2 > n,

(
p
2 + 1

n

)
+ 2 =

n or
(
p
2 + 1

n

)
+ 2 < n.

Theorem 4.3. [57] Given an n-dimensional ϵ-Kenmotsu manifold (M, g), let (g, ξ, λ, µ) be a conformal η-Ricci soliton.
If the manifold meets the curvature criterion R(X,Y ) · S = 0, it can be said to be Ricci semi-symmetric. In this case,
λ =

(
p
2 + 1

n

)
+ ϵ(n− 2) and µ = 1. Additionally,

1. In the event that ξ is spacelike, the soliton is either expanding, steady, or shrinking as,
(
p
2 + 1

n

)
> (2− n),(

p
2 + 1

n

)
= (2− n) or

(
p
2 + 1

n

)
< (2− n); and

2. In the event that ξ is timelike, the soliton is either expanding, steady, or shrinking as,
(
p
2 + 1

n

)
+ (2− n) > 0,(

p
2 + 1

n

)
+ (2− n) = 0 or

(
p
2 + 1

n

)
+ (2− n) < 0.

5. Solitonic inequalities on Kähler manifolds

5.1. A finding on compactness for Kähler Ricci soliton

Cao and Sesum [19] showed results of compactness for Kähler Ricci gradient compact shrinking solitons. In
case that (Mi, gi) represents a series of Kähler Ricci solitons with real-dimension with n ⩾ 4, curvatures with
uniformly bounded Ln/2 norms, Ricci curvatures with uniform boundedness from below, and µ (gi, 1/2) ⩾ A
(where µ is the Perelman functional), A subsequence (Mi, gi) leads to a compact orbifold (M∞, g∞) with finitely
many isolated singularities, where g∞ is a Kähler Ricci soliton metric in the sense of an orbifold (fulfils the
Kähler Ricci soliton equation in a lifting about singular points and smoothly extends in some gauge to a metric
that satisfies the soliton equation away from singular points.).

Cao and Sesum proved the following theorem

Theorem 5.1. [19] Let (Mi, gi) be a sequence of Kähler Ricci solitons of real-dimension n ⩾ 6, with c1(Mi) > 0,
satisfying

gi(t)− Ric (gi(t)) = ∂∂̄ui(t) =
d

dt
gi(t),

with ∇j∇kui = ∇̄j∇̄kui = 0, such that
(i)

∫
Mi

|Rm |n/2dVgi ≤ C1,
(ii) Ric (gi) ≥ −C2 and
(iii) A ⩽ µ (gi, 1/2),

for some uniform constants C1, C2, A independent of i. Then there there exists a subsequence (Mi, gi) converging to
(Y, ḡ), where Y is an orbifold with finitely many isolated singularities and and ḡ is a Kähler Ricci soliton in an orbifold
sense.

5.2. On the Kähler Ricci flow and Harnack’s inequality

In 1992, H.-D. Cao [14] studied Richard Hamilton’s Ricci flow (see [45, 46]):

∂

∂t
gij = −Rij + gij . (5.1)
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On a compact n-dimensional Kähler manifold X with positive holomorphic bisectional curvature. The
solution of (5.1) yields the following Harnack estimate for the Ricci tensor.

Theorem 5.2. [14] Given a compact Kähler manifold X with positive bisectional curvature and 0 ≦ t <∞, let gij be a
solution of (5.1). Given any pair x ∈ X and v ∈ TxX , let

Qij =
∂

∂t
Rij +RikRkj −Rij +Rij,kv

k +Rij,kv
k̄ +Rijkiv

kvi +
1

1− e−t
Rij .

Then, for any t > 0, and w ∈ TxX,w ̸= 0, we have Qijw
iwj > 0.

Cao obtained gradient estimates for the scalar curvature and the determinant of the Ricci tensor of the metric
gij by taking different traces of Qij .

Corollary 5.1. [14] The estimate is satisfied by the scalar curvature R the following:

∂R

∂t
+R,kv

k +R,k̄v
k̄ +Rijv

ivj̄ +
R

1− e−t
> 0,

for all t > 0, x ∈ X and v ∈ TxX . In particular, taking vi = −R,i/R, we obtain

∂R

∂t
− |DR|2

R
+

R

1− e−t
> 0,

for all t > 0, x ∈ X .

Corollary 5.2. [14] Put ϕ = det (Rij) / det (gij). Then we have

∂ϕ

∂t
− |Dϕ|2

nϕ
+

nϕ

1− e−t
> 0,

for all t > 0, x ∈ X .

The author got the following Harnack inequalities for the scalar curvature and the determinant of the Ricci
tensor by integrating the above estimates as in [55].

Theorem 5.3. [14] Let gij be the solution of (5.1) as in 5.2. Then for any x, y ∈ X and 0 < t1 < t2 <∞, we have:
(i) The scalar curvature R satisfies the inequality

R (x, t1) ≦
et2 − 1

et1 − 1
e∆/4R (y, t2) .

(ii) The determinant of the Ricci tensor ϕ = det (Rij) / det (gij) satisfies the inequality

ϕ (x, t1) ≦

(
et2 − 1

et1 − 1

)n

en∆/4ϕ (y, t2) ,

where ∆ is defined as

∆ = ∆(x, y; t1, t2) = inf
γ

∫ t2

t1

(
|γ′(s)|2s

)
ds.

Taking the infimum over all curves from x to y, where |γ′(s)|s is the velocity of γ at time s.

6. Solitonic inequalities for compactness of a manifold

6.1. Ricci soliton structures and non-compact manifolds as extremes of log-Sobolev inequality

In 2019, M. Rimoldi and G. Veronelli [68] showed that exponential decline occurs at the extremals’ infinity
when Ricci curvature is likewise constrained from above. These analytical results led them to prove that a
gradient Ricci soliton structure is supported by non-trivial shrinking Ricci solitons, under the same conditions.
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Theorem 6.1. [68] Given a non-compact complete Riemannian manifold (connected) (Mm, g), let us assume that

−(m− 1)K ≤ Ric and inj(M,g) ≥ i0 > 0, (6.1)

where inj(M,g) denotes the injectivity radius of (M, g).
In the case K ∈ [0,+∞], i0 ∈ R+, there exists a smooth extremal v for the log-Sobolev functional L if λ < λ∞.

Furthermore, we suppose that in place of the bound Ric ≥ −(m− 1)K, assume that (m− 1)K ≥ |Ric |. After fixing
a point o ∈M , the extremal v fulfills the following positive constants: C, c > 0 such that

Ce−cd2(x,o) ≥ v(x), x ∈M. (6.2)

Remark 6.1. [68]
(a) The scalar curvature R is contained in the log-Sobolev functional L, however deleting the term holding

the scalar curvature does not change the outcome. There isn’t much to change in the proof.
(b) See [83] for remarks on the condition’s universality at infinity λ < λ∞, as well as for several examples of

Riemannian manifolds that meet this condition.
Rimoldi and Veronelli obtained the following geometric consequence, which was also demonstrated in [68],

by utilizing Theorem 6.1.

Theorem 6.2. [68] Consider a connected full non-compact Riemannian manifold (Mm, g) that supports a Ricci soliton
structure that is shrinking. Assume that K and i0 are positive constants such that

(m− 1)K ≥ |Ric |, and inj(M,g) ≥ i0 > 0.

Moreover, λ < λ∞. A shrinking gradient Ricci soliton structure is then also supported by (Mm, g).

6.2. Theorems of compactness for gradient Ricci solitons

X. Zhang’s compactness theorem [84] from 2006 requires a subsequence with uniformly bounded curvatures
when a sequence of compact gradient Ricci solitons of dimension n converges to a compact orbifold with
finitely many isolated singularities.

The author of [84] discussed the finding of compactness for Ricci solitons in this work. When the underlying
manifolds are closed (compact, boundaryless), it is simple to show that the steady and expanding Ricci solitons
are Einstein metrics. As a result, the author focused on the shrinking situation and developed the Theorem that
followed.

Theorem 6.3. [84] Assume that (Mα, gα) is a sequence of shrinking gradient Ricci solitons with dimension n ≥ 4,
meaning that it fulfills the subsequent equation:

gα − Ric (gα) = ∇duα

such that

(1) Ric (gα) ≥ −C1gα,
(2) diam (Mα, gα) ≤ C2,
(3) Vol (Mα, gα) ≥ C3 and
(4)

∫
Mα

|Rm|n2 dVgα ≤ C4,

for some uniform positive constants C1, C2, C3, C4. Then there exists a subsequence of (Mα, gα) converging to (M∞, g∞)
in the Cheeger–Gromov sense, where M∞ is an orbifold with finitely many isolated singularities and g∞ is a Ricci soliton
in an orbifold sense.

Moreover, if n is odd, then there are no singular points and (M∞, g∞) is a smooth gradient Ricci soliton which is
diffeomorphic to Mα for α sufficiently large. In this case, (Mα, gα) (sub)converges smoothly to (M∞, g∞).

Bounds on
∫
M

|Rm|2 are implied for Ricci solitons by lower bounds on Ricci curvature and volume, an upper
bound on diameter, and a bound on b2(M). We possess the subsequent corollary.

Corollary 6.1. [84] Given a sequence of shrinking gradient Ricci solitons of dimension 4, let (Mα, gα) be such that
(1) Ric (gα) ≥ −C1gα, (2) diam (Mα, gα) ≤ C2, (3) Vol (Mα, gα) ≥ C3 and (4) b2 (Mα) ≤ C4 for a few uniformly
positive constants C1, C2, C3, C4. Then, in the Cheeger-Gromov sense, there is a subsequence (Mα, gα) that converges
to (M∞, g∞), where g∞ is a Ricci soliton in the sense of an orbifold and M∞ is an orbifold with finitely many isolated
singularities.
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X. Zhang then made some deductions and derived certain estimates; specifically, C1 estimates for functions
uα and a uniform bound for Perelman’s function and the Ricci curvature. The author then calculated the Ricci
soliton’s ϵ-regularity estimate.

Proposition 6.1. [84] If g is a gradient soliton that is either steady or expanding over a compact manifold M , then g has
to be an Einstein metric.

When λ is a positive constant, from the estimate supx∈M u ≤ C8, we have

|∇u|2 ≤ nλ+ 2λ

(
sup
x∈M

u− inf
x∈M

u

)
−R ≤ C10,

where C10 is a constant depending only on C1, C2, C3 and λ.

Using the following lemma, the author was able to determine a uniform upper bound for scalar curvature.

Lemma 6.1. [84] Consider (Mα, gα) . be a sequence of shrinking Ricci solitons (λ = 1) satisfying conditions (1), (2), and
(3) of Theorem 6.3, and uα satisfying the constraint

(2π)−
n
2

∫
M

e−u dVg = 1. (6.3)

There are positive constants C4, C5 that rely exclusively on C1, C2, and C3, such that

|uα|C1 ≤ C11 and R (gα) ≤ C12.

In the next portion, X. Zhang gave a uniform bound of Perelman’s functional (see [64]), µ
(
g, 12

)
, for a

sequence of shrinking Ricci solitons (Mα, gα) meeting conditions (1), (2) and (3) in Theorem 6.3.
In [64], Perelman proposed a functional fulfilling

W (g, φ, τ) = (4πτ)−
n
2

∫
M

e−φ
[
τ
(
R+ |∇φ|2

)
+ f − n

]
dVg

under the constraint
(4πτ)−

n
2

∫
M

e−φdVg = 1.

Then they defined the functional µ(g, τ) = infW (g, ·, τ), where all functions meeting the restriction (6.2) are
taken over by inf , and τ > 0.

Lemma 6.2. [84] If (M, g) is a shrinking gradient Ricci soliton, that is, g − Ric(g) = ∇du, where u is a minimizer of
Perelman’s functional W with regard to metric g and τ = 1

2 , then u satisfies the constraint (6.3).

Proposition 6.2. [84] Let uα satisfy the constraint (6.3), and let (Mα, gα) be a sequence of shrinking Ricci solitons
(λ = 1) satisfying conditions (1), (2), and (3) in Theorem 6.3. Then, there is a constant C6 that depends only on C1, C2,
and C3, such that

∣∣µ (gα, 12)∣∣ ≤ C6.

The following compactness theorem for Ricci solitons can be obtained with ease using the Gromov-Cheeger
compactness theorem.

Proposition 6.3. [84] Let (Mα, gα) be a sequence of shrinking gradient Ricci solitons of dimension n = 3, such that (1)
Ric (gα) ≥ −C1gα, (2) diam (Mα, gα) ≤ C2 and (3) Vol (Mα, gα) ≥ C3 > 0. Consider the following uniform constants:
C1, C2, C3. A smooth gradient Ricci soliton (M∞, g∞) is then a subsequence in C∞ topology, and it converges to
(M∞, g∞).

The following mean value inequality was determined by the author using Moser’s iteration argument.

Lemma 6.3. [84] Given a compact Riemannian manifold (M, g) and a Lipschitz function f that satisfies

f△f ≥ −θ1|∇f |2 − θ2f
2 − θ3f

3

in a feeble manner. In the event where θ1 ≤ 1
4 , a constant ϵ will exist, and it will only depend on the dimensions of M, θ3,

and the lower bound of the Sobolev constant Cs. This means that if
∫
BP (2r)

f
n
2 dvg ≤ ϵ, then

sup
BP ( r

2 )
f ≤ C∗

(
1 +

1

r2

)(∫
BP (r)

f
n
2 dvg

) 2
n

,

where the Sobolev constant Cs, the lower bound of Vol(M), and the dimensions of M, θ2, θ3 are the only factors that affect
C∗.
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6.3. Geometry of compact shrinking Ricci solitons

In 2014, B.-Y. Chen and S. Deshmukh [27] proved two characterizations of compact shrinking trivial Ricci
solitons. They provided the following results

Theorem 6.4. Let (M, g, f, λ) be an n-dimensional compact connected shrinking gradient Ricci soliton of positive Ricci
curvature. If the Ricci curvature Ric and the scalar curvature S of (M, g) satisfy

Ric(∇S,∇S) ≤ λ

(
∥∇S∥2 + λ

2

(
n2λ2 − S2

))
,

then S is a solution of the Poisson equation ∆φ = σ with σ = λ(nλ− S).

Corollary 6.2. A compact connected shrinking gradient Ricci soliton (M, g, f, λ) of positive Ricci curvature with λ < λ1
is trivial if and only if the scalar curvature S satisfies

Ric(∇S,∇S) ≤ λ

(
∥∇S∥2 + λ

2

(
n2λ2 − S2

))
, n = dimM .

On a compact Riemannian manifold (M, g) and a function φ :M → R, the average value of φ is a real number
defined by

φav =
1

Vol(M)

∫
M

φ.

Chen and Deshmukh also proved the following characterization of trivial Ricci solitons.

Theorem 6.5. [27] A compact connected shrinking gradient Ricci soliton (M, g, f, λ) with normalized potential is trivial
if and only if (fS)av ≤ 1

2n
2λ, where n = dimM and S is the scalar curvature of (M, g).

7. Solitonic inequalities on curvature

7.1. About the Ricci curvature of Lagrangian and isotropic submanifolds in complex space forms

B.-Y. Chen proved in [24] that any isotropic submanifold Mn in a complex space form M̃m(4c) satisfies

(n− 1)c+
n2

4
H2 ≧ Ric. (7.1)

In [24] he also proved that a Lagrangian submanifold of a complex space form satisfying the equality case of
(7.1) is a minimal submanifold. Finally, he gave an explanation of the geometry of Lagrangian submanifolds
satisfying (7.1) for equality, as long as the second basic form kernel’s dimension doesn’t change.

Theorem 7.1. [24] Given a complex space form M̃m(4c) and an isotropic submanifold Mn, the Ricci tensor S of Mn

satisfies (
n2

4
H2 + (n− 1)c

)
g ≧ S. (7.2)

The equality sign of (7.2) holds identically if and only if Mn is a fully geodesic submanifold or if n = 2 and Mn is
entirely umbilical.

Then he proved the main result on the minimality of Lagrangian in the following Theorem

Theorem 7.2. [24] Let Mn be a Lagrangian submanifold of M̃n(4c), which is a complex space form. Then

Ric ≦ (n− 1)c+
n2

4
H2. (7.3)

Clearly, Theorem 7.2 follows from the following.

Lemma 7.1. [24] We have (7.3) for every n-dimensional isotropic submanifold of a complex space form M̃m(4c).
Furthermore, if an isotropic submanifold Mn of M̃m(4c) satisfies the equality case of (7.3) at a point p, then J (TpM

n) is
perpendicular to the mean curvature vector H⃗ at p.
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7.2. Ricci solitons with finite scalar curvature ratio and complete gradient expansion asymptotically

Given (Mn, g, f) , n ≥ 5 is a complete expanding gradient Ricci soliton with nonnegative Ricci curvature.
In 2023, Cao et al., [18], showed that if the scalar asymptotic curvature ratio of (Mn, g, f) is finite (i.e.,
lim supr→∞Rr2 <∞

)
, then the tensor of Riemann curvature must have at least sub-quadratic decay, i.e.,

limsupr→∞ |Rm|rα <∞ for any 0 < α < 2. The following are the main results given by them.

Theorem 7.3. [18] Let (Mn, g, f) , n ≥ 5, be an n-dimensional complete gradient expanding Ricci soliton with
nonnegative Ricci curvature Ric ≥ 0 and finite asymptotic scalar curvature ratio

lim sup
r→∞

Rr2 <∞,

where r = r(x) is the distance function to a given base point x0 ∈M . Then (Mn, g, f) has finite α-asymptotic curvature
ratio for any 0 < α < 2,

Aα := lim sup
r→∞

|Rm|rα <∞.

Additionally, there exist constant C > 0 depending on n and the geometry of (Mn, g, f), sequences {rj} → ∞ and
{αj} → 2 such that

|Rm|(x) ≤ C(r(x) + 1)−αj

for each x ∈M\B (x0, rj + 1), where B (x0, rj + 1) is the geodesic ball centered at x0 with radius rj + 1.

7.3. Estimates of curvature for steady Ricci solitons

P.-Y. Chan’s work [22] from 2019 improves the estimate given in [17] for an n-dimensional full non-Ricci
flat gradient stable Ricci soliton with a potential function constrained by a constant and a curvature tensor
Rm fulfilling Rm| < 5, |Rm| < Ce−r for some constant C > 0. For a four-dimensional complete non-Ricci flat
gradient steady Ricci soliton, the decay rate of |Rm| is exponential.

In [60], O. Munteanu, C.-J.A. Sung and J. Wang investigated the solvability of the weighted Poisson equation
for a certain class of smooth metric measure spaces. They illustrated the following, for example:

Theorem 7.4. [60] Given n ≥ 2, let (Mn, g, f) be a n dimensional complete non Ricci flat gradient steady Ricci soliton.
In the event of constant limits, the potential function f is bounded above and limr→∞ r|Rm| = 0, then a positive constant
C exists such that

|Rm|(x) ≤ C(1 + r(x))3(n+1)e−r(x), (7.4)

where r = r(x) is the distance of x from a fixed point p0 ∈M .

Instead of using Green’s function estimate in [60], the author of [22] sharpens the upper bound under
weaker curvature decay conditions by studying the curvature features of growing gradient Ricci solitons using
Deruelle’s maximum principle [35].

Theorem 7.5. [22] Let (Mn, g, f) be an n dimensional non-Ricci flat complete gradient steady Ricci soliton, where n ≥ 2.
Let us assume that the curvature tensorRm satisfies lim sup

r→∞
r|Rm| < 1

5 and that the potential function f is bounded above

by a constant. Next, a positive constant C exists such that

|Rm|(x) ≤ Ce−r(x) on M, (7.5)

where r = r(x) is the distance of x from a fixed point p0 ∈M .

Remark 7.1. [22] When Σ and Tn−2 represent Hamilton’s cigar soliton and the n− 2 dimensional flat torus,
respectively, the decay rate is sharp on Σ× Tn−2.

Remark 7.2. [22] In Theorem (7.5), there exists a technical constant 1
5 . According to [10] and [11], limr→∞ r|Rm| =√

(n−1)
2(n−2) >

1
5 for the n dimensional Bryant soliton. Whether the constant 1

5 is optimal is not obvious at this time.

Remark 7.3. [22] For simplicity’s sake, the author states the Theorem as follows: limr→∞ r−1f < 1. This
condition on f seems to be weaker than the previous one, but it does not affect the validity of the conclusion
(7.5). For f to be bounded above by a constant, it is necessary that ric ≥ 0 and S → 0 at infinity (see [21]).
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O. Munteanu and J. Wang [61] noted, among other unique characteristics, that the Riemann curvature Rm in
a four-dimensional gradient Ricci soliton can be bounded by ∇Ric and Ric.

|Rm| ≤ A0

(
|Ric |+ |∇Ric|

|∇f |

)
, (7.6)

for some universal positive constant A0.

Here is another main result of this paper:

Theorem 7.6. [22] Let
(
M4, g, f

)
be a four-dimensional non-Ricci flat gradient steady Ricci soliton with limr→∞ S = 0.

There is a positive constant c such that
|Rm| ≤ cS on M. (7.7)

A 4-dimensional full nontrivial gradient stable Ricci soliton’s Riemann curvature Rm decays exponentially
if the potential f is constrained from above and limr→∞rS is small enough, as was shown in [22].

Theorem 7.7. [22] Let
(
M4, g, f

)
be a four-dimensional non-Ricci flat gradient steady Ricci soliton with limr→∞ S = 0.

Assume the potential function f is bounded from above by a constant and limr→∞ rS < 1
5A2

0
, where A0 is the constant in

(7.6). Then there exists a constant C > 0 such that |Rm|(x) ≤ Ce−r(x) on M.

8. Solitonic inequalities on stability and instability

8.1. Stability and instability of Ricci solitons

Kröncke [54] investigated the volume-normalized Ricci flow near compact shrinking Ricci Solitons. Any
normalized Ricci flow that begins near a compact Ricci Soliton (M, g), which is a local maximum of Perelman’s
shrinker entropy, is shown to exist for all time and to converge towards a Ricci Soliton. If g is not a local
maximum of the shrinker entropy, then a nontrivial normalized Ricci flow emerges from it.

Lemma 8.1. [54] Consider a gradient shrinking Ricci soliton (M, g0). Then, in the space of metrics, there is a constant
C > 0 and a C2,α− neighbourhood U of g0 such that∥∥∥∥ d

dt

∣∣∣∣
t=0

fg+th

∥∥∥∥
C2,α

≤ C∥h∥C2,α ,

∥∥∥∥ d

dt

∣∣∣∣
t=0

fg+th

∥∥∥∥
Hi

≤ C∥h∥Hi ,

∣∣∣∣ ddt
∣∣∣∣
t=0

τg+th

∣∣∣∣ ≤ C∥h∥L2 , i = 0, 1, 2,

for all g ∈ U , where g, g0 are Riemannian metric tensors, f ∈ C∞ (M), and H, L are the maps defined in [54].

Theorem 8.1. [54] Consider a Ricci soliton that shrinks gradient shrinkage, (M, g0). Then, given g0 and constants
σ ∈ [1/2, 1), C > 0, there exists a C2,α neighborhood U such that

C

∥∥∥∥τ (Ricg +∇2fg
)
− 1

2
g

∥∥∥∥
L2

≥ |v(g)− v (g0)|σ , (8.1)

for all g ∈ U .

Further, they proved the main results on dynamical stability and instability by considering the τ -flow

ġ(t) = −2Ricg(t) +
1

τg(t)
g(t). (8.2)

It is well defined around a gradient-shrinking Ricci soliton. Note that under the τ -flow, v is nondecreasing.The
writers built a modified τ -flow in this way: The collection of diffeomorphisms produced by X(t) =
− gradg(t) fg(t) is denoted as g̃(t) := φ∗

t g(t), where g(t) is a solution of (8.2). Let φt ∈ Diff(M), t ≥ 1 be the
collection of diffeomorphisms. Then

d

dt
g̃(t) = −2

(
Ricg̃(t) +∇2fg̃(t)

)
+

1

τg̃(t)
g̃(t). (8.3)

This represents the τ gradient flow concerning the weighted L2-measure.
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Lemma 8.2. [54] (τ -flow Shi estimates) Assuming that g(t), t ∈ [0, T ] is a solution to the τ -flow (8.2),

T−1 ≥ sup
p∈M

∣∣Rg(t)

∣∣
g(t)

+
1

τg(t)
∀t ∈ [0, T ].

Then, there exists a constant C(k) such that, for each k ≥ 1, we have

sup
p∈M

∣∣∇kRg(t)

∣∣
g(t)

≤ C(k) · T−1t−k/2 ∀t ∈ (0, T ].

Theorem 8.2. [54] (Dynamical stability) Assume that k ≥ 3 and that the gradient decreasing Ricci soliton is (M, g).
Suppose that a local maximizer of v is g. Then for every Ck-neighborhood U of g, there is a Ck+5-neighborhood V for which
the following is true: A 1-parameter family of diffeomorphisms φt exists for every metric g0 ∈ V , such that the modified
flow φ∗

t g(t) always stays in U and converges to a gradient shrinking Ricci soliton g∞ in U as t→ ∞ for the τ -flow (8.2)
beginning at g0. Polynomial rate convergence suggests that there are constants C,α > 0, such that

∥φ∗
t g(t)− g∞∥Ck ≤ C(t+ 1)−α.

Lemma 8.3. [54] Consider a gradient-shrinking Ricci soliton (M, g0). Then, for any g0, there is a C2,α neighborhood U
with a constant C > 0, such that

C∥k∥C2,α∥h∥H1 ≥
∣∣∣∣ d2dtds

∣∣∣∣
t,s=0

fg+sk+th∥H1 and C∥k∥C2,α∥h∥H1 ≥
∣∣∣∣ d2dtds

∣∣∣∣
t,s=0

τg+sk+th

∣∣∣∣∣ ,
for all g ∈ U .

Proposition 8.1. [54] (Estimates of the third variation of v) Consider a gradient shrinking Ricci soliton (M, g0). It is
possible for g0 to have a C2,α-neighborhood U such that∣∣∣∣ d3dt3

∣∣∣∣
t=0

v(g + th)

∣∣∣∣ ≤ C∥h∥2H1∥h∥C2,α ,

for all g ∈ U and some constant C > 0.

9. Solitonic inequalities on warped product manifolds

For general references on warped product manifolds, we refer to the books [26, 63].

9.1. Inequalities of Ricci soliton in CR-warped product manifold

In 2023, Y. Li et al., [56], applied inequalities by using the notion of CR- warped products introduced in [25].

Theorem 9.1. [56] Assume that M =MT ×f M⊥ is a CR-warped product in M̃(c) that admits a Ricci soliton with a
shrinking gradient. Thus, the following disparity is true:

∥h∥2 ≥ β∥∇(ln f)∥2 + cαβ + β

2α∑
q=1

Ric (Eq, Eq) . (9.1)

Furthermore, the equality holds if and only if M⊥ is a fully umbilical submanifold of M(c) and MT is a totally geodesic
submanifold.

9.2. Ricci solitons on noncompact warped products

Ricci solitons with complete noncompact warped product gradient were studied by V. Borges and K.
Tenenblat [9]. It is proved that the warping function’s gradient and nonexistence results are true. When
the soliton is expanding or steady, some PDE estimates and rigidity discovered when investigating warped
product Einstein manifolds are applied to a wider context. A nonexistence theorem is presented for shrinking
soliton; this theorem has no counterpart in the Einstein case and is demonstrated by utilizing the properties of
a weighted Laplacian’s first eigenvalue. The noncompact warped product Ricci soliton yielded the following
results.
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Theorem 9.2. [9] Let Mn ×h F
m be a complete gradient shrinking Ricci soliton and RF the scalar curvature of Fm.

Suppose that M is noncompact, fix q0 ∈ F and let µ be defined by mµ = RF (q0). The following is true:

1. If h is not constant, then µ > 0.

2. If h ≤
√

µ
λ , then h is constant.

Theorem 9.3. [9] Consider a complete gradient steady Ricci soliton Mn ×h F
m, where the scalar curvature of Fm is

denoted by RF . Assume that M is noncompact. Fix q0 ∈ F . Let mµ = RF (q0) define µ. The following is true:

1. If h is not constant, then µ > 0.

2. If suph < +∞, then h is constant.

Theorem 9.4. [9] Assume that Mn ×h F
m is a complete gradient expanding Ricci soliton and that RF is the scalar

curvature of Fm. Let’s say M is not compact. Adjust q0 ∈ F . To define µ, let mµ = RF (q0). The following is true:

1. If µ < 0, then h ≥
√

µ
λ ,

2. If µ ≤ 0, then |∇ lnh|2 ≤ − λ
m ,

3. If µ < 0 and supM h < +∞, then |∇ lnh|2 ≤ − λ
m + 2µ

m(supM h)2
,

4. If µ ≥ 0 and suph < +∞, then h is constant.

10. Solitonic inequalities on statistical submersion

10.1. Solitons and sharp inequalities for statistical submersion

In 2024, B.-Y. Chen et al. studied in [28] Ricci and scalar curvatures for a given statistical submersion and
constructed some inequalities involving the Ricci and scalar curvatures:

Ric(E,F ) =Ric(E,F )− g (TEF,N∗) + (δ̂T )(E,F ) + g (AE,A∗F )− g (∇∗
Eσ, F ) (10.1)

and

Ric(X,Y ) =R̂ic(X,Y ) + g (∇∗
XN

∗, Y )− g(T X, T Y ) + (δ̂A)(X,Y )

+ g (σ,AXY )− g (AX ,A∗
Y )− g (A∗

X ,A∗
Y ) , (10.2)

where

(δ̂T )(E,F ) =

n∑
i=1

g ((∇Xi
T ) (E,F ), Xi) , (δ̂A)(X,Y ) =

m∑
j=1

g
((
∇Ej

A
)
(X,Y ), Ej

)
,

n∑
i=1

g (AXXi,AYXi) = g (AX ,AY ) =

m∑
j=1

g (A∗
XEj ,A∗

Y Ej) , σ =

n∑
i=1

AXiXi,

n∑
i=1

g (AXi
E,AXi

F ) , g(T X, T Y ) = g(AE,AF ) =
m∑
j=1

g
(
TEj

X, TEj
Y
)
.

In which {Ej} is an orthonormal basis, T and A are O’Neill tensors, and δ(X) is horizontal divergence.

Siddiqui et al. proved in [28] the following results using (10.1) and (10.2).

Theorem 10.1. [28] Let ψ : (M,∇, g) −→ (N, ∇̂, ĝ) be a statistical submersion. Then, we have

Ric(E,E) ≥ Ri(E,E)−m2g (TEE,H∗) + (δ̂T )(E,E)− (δ̄σ)(E,E). (10.3)

The equality case holds in (10.3) if and only if H(M) is integrable.

Since 2A0 = A+A∗, we have

Theorem 10.2. [28] Let ψ : (M,∇, g) −→ (N, ∇̂, ĝ) be a statistical submersion. Then, we have

Ric(X,X) ≤g (∇∗
XN

∗, X) + R̂ic(X,X) + (δ̂A)(X,X)

+ g (σ,AXX)− 2g
(
A0

X ,A∗
X

)
. (10.4)
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The equality case holds in (10.4) if and only if each fiber is totally geodesic for ∇(T = 0).

Theorem 10.3. [28] Let ψ : (M,∇, g) −→ (N, ∇̂, ĝ) be a statistical submersion. Then, we have

2R ≥ 2R̄−m2g (H,H∗) . (10.5)

In (10.5), the equality case is satisfied if and only if T or T ∗ is a multiple of the other. Specifically, every fiber
is either completely geodesic with regard to ∇(T = 0) or completely geodesic concerning ∇∗ (T ∗ = 0).

Theorem 10.4. [28] Let ψ : (M,∇, g) −→ (N, ∇̂, ĝ) be a statistical submersion. Then, we have

2R ≤ 2R̂+ g(σ, σ). (10.6)

The equality case holds in (10.6) if and only if AHH = 0, where H is map defined in [28].

Taking into account relations (10.1) and (10.2), they derived the following equation

R− R̄− R̂ =− 2g(A,A) + g (A,A∗)− g (T , T ∗)− g (N,N∗)− δ̂N − δ̂∗N∗ − δ̄σ + δ̄∗σ + g(σ, σ). (10.7)

The scalar curvatures of the vertical and horizontal spaces of M are denoted by R̄ and R̂. Here

g (T , T ∗) =

n∑
i=1

g (T Xi, T ∗Xi) , g(A,A) =

n∑
i=1

g (AXi
,AXi

) , g (A,A∗) =

n∑
i=1

g
(
AXi

,A∗
Xi

)
.

By using the Cauchy-Buniakowski-Schwarz inequality and equation (10.7), we have the following Theorem.

Theorem 10.5. [28] Let ψ : (M,∇, g) −→ (N, ∇̂, ĝ) be a statistical submersion. Then, we have

R ≥R̄+ R̂− 2∥A∥2 + g (A,A∗)− ∥T ∥ ∥T ∗∥ − g (N,N∗)− δ̂N − δ̂∗N∗ − δ̄σ + δ̄∗σ + g(σ, σ). (10.8)

Note that in (10.8), the equality case is satisfied if and only if T or T ∗ is a multiple of the other. Specifically,
every fiber is either completely geodesic concerning ∇(T = 0) or completely geodesic about ∇∗ (T ∗ = 0).

Results given in this section were applied in [28] to investigate Ricci-Bourguignon solitons on statistical
submersions with conformal or gradient potential vector field.
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