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Abstract 

In the past decade, we have experienced a massive boom in the usage of digital solutions in higher education. Due 

to this boom, large amounts of data have enabled advanced data analysis methods to support learners and examine 

learning processes. One of the dominant research directions in learning analytics is predictive modeling of learners' 

success using various machine learning methods. To build learners' and teachers' trust in such methods and 

systems, exploring the methods and methodologies that enable relevant stakeholders to deeply understand the 

underlying machine-learning models is necessary. In this context, counterfactual explanations from explainable 

machine learning tools are promising. Several counterfactual generation methods hold much promise, but the 

features must be actionable and causal to be effective. Thus, obtaining which counterfactual generation method 

suits the student success prediction models in terms of desiderata, stability, and robustness is essential. Although 

a few studies have been published in recent years on the use of counterfactual explanations in educational sciences, 

they have yet to discuss which counterfactual generation method is more suitable for this problem. This paper 

analyzed the effectiveness of commonly used counterfactual generation methods, such as WhatIf Counterfactual 

Explanations, Multi-Objective Counterfactual Explanations, and Nearest Instance Counterfactual Explanations 

after balancing. This contribution presents a case study using the Open University Learning Analytics dataset to 

demonstrate the practical usefulness of counterfactual explanations. The results illustrate the method's 

effectiveness and describe concrete steps that could be taken to alter the model's prediction. 

 

Keywords: explainable artificial intelligence, actionable explanations, imbalance learning, educational data 

mining, learning analytics 

 

 

Introduction 

For centuries universities have been collecting information about their students. With the rise of 

Information and Communication Technologies (Eurostat, 2023), the information collected and stored is 

transformed from paper-based collections to digital domains (Hilbert and López, 2011). The 

introduction of new digital education formats and the information collection shift resulted in storing vast 

amounts of student and study-related data including student demographics, assessment, learning design, 

and context. In combination with the advancement in Data Mining and Machine Learning (ML)  research 

(LeCun et al., 2015; Vaswani, 2017), the collected data enabled new research exploring the educational 

domain. The most prominent research fields are Educational Data Mining (EDM) and Learning 

Analytics (LA), which explore the educational domain from two different perspectives (Siemens and 

Baker, 2012). More recently, the concerns about the use of Artificial Intelligence (AI) have become 

stronger uncovering the limitations and possible problems such as bias and explainability of models 

developed (Singer, N., 2014). As a consequence, new data and AI regulations such as the General Data 
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Protection Regulation (GDPR1) and the Artificial Intelligence Act (AI Act2) in the EU have been 

established (Hoel et al., 2017). As a consequence trust in the analytical tools and AI methods in higher 

education has been reduced leading to the new approach in LA research called Trusted Learning 

Analytics (TLA) (Drachsler H., 2018). The TLA approach focuses on using intrinsically explainable 

`white box` AI models and systems. This significantly reduces the opportunity of using more “user-

unfriendly” models such as Random Forests (RF) or Neural Networks. Luckily, the field of Explainable 

Artificial Intelligence (XAI) (Molnar, C., 2020) provides researchers with methods with the potential to 

unlock the `black box` models for use in TLA systems (Drachsler H., 2018). The trend of using XAI 

methods in the educational domain is highly resonating within the research community resulting in more 

research in the area in recent years (e.g., Human-Centric eXplainable AI in Education Workshop at 17th 

Educational Data Mining Conference3).  

There are various tasks within the LA that focus on supporting learners and educators using various 

tools and methods. However, one of the most common objectives is the predictive modeling of learner 

success (with varying definitions of success), which focuses on the identification of the learners in need 

of help with their studies (Papamitsiou and Economides, 2014). Within the task of success prediction, 

the legacy learner and learning data are utilized for training the prediction model using the ML algorithm 

(Arnold and Pistilli, 2012; Waheed et al, 2020; Adnan et al., 2021). From the LA point of view, the 

prediction delivered by the ML model is used as a trigger for educational intervention. Thus the model 

itself is used as a tool by the lecturer, teaching assistant, or anyone responsible for supporting the 

students. Yet, there is a constant demand for providing not just the prediction itself, but also the “reasons 

behind the model decision” (Kuzilek et al., 2015). At this stage, again, the XAI comes into play and 

fosters the objectives of TLA (Drachsler H., 2018). 

In the context of ML, predictive models pursue the highest predictive accuracy. The so-called `black-

box` models frequently perform best, sacrificing the understanding of reasoning to deliver a concrete 

prediction. Thus, `black-box` models are preferred over the so-called `white-box` models, which, in 

addition to the prediction, provide intrinsically interpretable predictions. (Guidotti et al., 2018; Biecek 

et al., 2021; Holzinger et al., 2022). However, to enable the power of XAI for the `black-box` models 

the post-hoc methods can be used (Pinto and Paquette, 2024). The XAI methods are primarily 

categorized into global and local. At the global level, they reveal which variables are important in the 

model. In contrast, at the local level, they answer questions about the contributions of variables in 

generating individual predictions (Molnar et al., 2020; Cavus et al., 2023). However, commonly used 

global and local tools, while sufficient for understanding the prediction made for a particular 

observation, are not sufficient for generating a counterfactual understanding of an undesirable outcome. 

Commonly used XAI methods (both local and global) are adequate for understanding particular 

observation predictions and not for generating a counterfactual understanding of an undesirable outcome 

(e. g. negative class in a binary classification problem). 

To improve understanding of the undesirable outcome the method of counterfactual explanations (CEs) 

has become popular. CEs are defined as the minimal change in the variable values to flip the model's 

prediction into the intended outcome (Artelt and Hammer, 2019). In the frame of learner success 

prediction, the models may indicate an unfavorable outcome, but they do not provide recommendations 

                                                      
1 Regulation (EU) 2016/679 of the European Parliament and of the Council of 27 April 2016 on the protection of 

natural persons concerning the processing of personal data and on the free movement of such data, and repealing 

Directive 95/46/EC (General Data Protection Regulation) https://eur-

lex.europa.eu/legalcontent/EN/TXT/?uri=CELEX%3A32016R0679  
2 Proposal for a Regulation of the European Parliament and of the Council laying down harmonized rules on 

artificial intelligence (Artificial Intelligence Act) and amending certain Union legislative acts https://eur-

lex.europa.eu/legalcontent/EN/TXT/?uri=CELEX%3A52021PC0206  
3 https://hexed-workshop.github.io/  

https://eur-lex.europa.eu/legalcontent/EN/TXT/?uri=CELEX%3A32016R0679
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to reverse the learner situation. Counterfactual explanations provide the extension of the baseline model 

and provide such a recommendation by highlighting necessary changes in the learner profile to reverse 

the negative outcome. Learners, teachers, and curriculum designers can be guided toward actions or 

measures to be taken through their generated explanations. 

The use of counterfactual explanations in LA has been explored in several studies (Cavus and Kuzilek, 

2024; Tsiakmaki et al., 2021; Zhang et al., 2023; Afrin et al., 2023). All of the research works focused 

on providing a frame for delivering actionable insights to relevant stakeholders using the CE. Facing 

numerous counterfactual explanations due to the nature of optimization problems requires selecting 

those explanations that fulfill specific criteria beneficial for the stakeholder. Each learner requires 

personalized counterfactuals because of their background, challenges, and differences in needs (Smith 

et al., 2022).  

The research presented in this paper focuses on using CE measures for the evaluation of the effect of 

balancing techniques used on the raw imbalanced dataset. More specifically we focus on the following 

research questions: 

RQ1: What is the most appropriate method for generating the counterfactual explanations after 

balancing? 

RQ2: How do balancing techniques affect the counterfactual explanations of student success 

prediction models? 

This study compares the qualities of different counterfactual generation methods for students whose 

success prediction model developed after balancing the training dataset anticipates failing.  For the 

reproducibility of the developed approach, we used the Open University Learning Analytics Dataset 

(OULAD) (Kuzilek et al., 2017) as a raw data source. The study is essential in two ways: (1) because 

the missing evaluation of the counterfactual quality can lead to inefficient explanations, and this may 

compromise their trustworthiness (Artelt et al., 2021), (2) there is no uniformly better method for each 

domain (Dandl et al., 2023) and this is the first benchmark in the domain of LA, and (3) there are no 

many investigations on the effect of balancing methods on the counterfactual explanations (Gunonu et 

al, 2024). 

The rest of the paper is organized using the following analysis approach. It examines the effect of 

balancing strategies on the quality of counterfactuals generated by the three most commonly used 

methods. Finally, the results are discussed. 

 

Method 

This section contains details of the dataset, counterfactual explanations, resampling methods, and the 

experimental design. 

Data 

The OULAD dataset has been released by the Open University (OU). The OU is the largest distance-

learning institution in the UK. It is utilized to analyze the impact of the balancing strategies on the 

counterfactual generation methods. The typical course duration at the Open University is nine months 

and includes multiple assignments and a final exam. The most important assignments are Tutor Marked 

Assignments (TMAs), which represent critical milestones throughout the course. Fig. 1 presents the 

timeline of the typical Open University course.   
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Figure 1. 

The OU course timeline 

 

The course registration opens several months before the course starts. The registration process involves 

several batch enrollment rounds, during which the students eligible to take the course are enrolled. In 

addition, students can register for the course by themselves. The interaction with the Moodle-like 

Learning Management System (LMS) starts up to four weeks before the official course starts. The 

students can test the course contents and decide if the course is worth attending. Since LMS opened 

student interactions in the form of daily aggregated click-stream logs were recorded. During the course, 

several assessments evaluate the gained knowledge. Before the official end of the course, the exam is 

scheduled. Students can deregister from the course at any time. The information about student 

interactions, demographics, assessment results, and course outcomes forms the core of the OULAD 

dataset.  

For the analysis, the STEM course DDD and its 2013J and 2014J presentations studied by 3741 students 

have been selected. The course includes six TMAs. The final student result was used as the target 

variable for model training. Students with the result “Distinction” have been merged with students with 

the result “Pass”. Reducing the prediction task to binary classification to classes: “Pass” and “Fail”. We 

excluded the actively withdrawn students (n = 1328). The resulting dataset includes data from 2296 

students. 

The previous research with the OULAD and Open University data showed that the importance of the 

demographics is significantly reduced after the first LMS click-stream is recorded and included in the 

prediction modeling (Kuzilek et al., 2015). The first TMA has been identified as a strong predictor of 

student success in the course (Kuzilek et al., 2015). Thus, the importance of interaction data at the 

beginning of the course is even greater since they are strong predictors not just for the outcome 

prediction but also for the first TMA prediction (Kuzilek et al., 2015). In addition, the nature of the 

learning context of the Open University produces specific learning patterns within the student cohort, 

where most students prefer to study only in specific periods (Kuzilek et al., 2017). These periods tend 

to have a weekly repetition pattern. Thus, it makes sense to focus on weekly aggregated click-stream 

data.  

The resulting dataset consists of 42 predictors, numerical variables containing the weekly summary of 

online interactions with the LMS, and the target variable representing the outcome for the student from 

the course. Table 1 provides descriptions of the selected variables. 
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Table 1. 

The description of the variables used to train the student success prediction model 
Variable Description Class Value 

final_result student’s final exam result categorical {𝐹𝑎𝑖𝑙, 𝑃𝑎𝑠𝑠} 

week_minus4 the number of clicks four  weeks before the 

course starts 

numeric [0, 493] 

week_minus3 the number of clicks three weeks before the 

course starts 

numeric [0, 765] 

week_minus2 the number of clicks two weeks before the course 

starts 

numeric [0, 745] 

week_minus1 the number of clicks one week before the course 

starts 

numeric [0, 987] 

week_0 the number of clicks before the course starts numeric [0, 1319] 

week_1 the number of clicks one week after the course 

starts 

numeric [0, 525] 

… … … … 

week_37 the number of clicks thirty-seven weeks after the 

course starts 

numeric [0, 50] 

Counterfactual Explanations 

Counterfactual explanations (CE) illustrate "what-if" scenarios that emphasize the necessary alterations 

to the input data to change a model's output (Watcher et al., 2017). 𝑋 = [𝑥1, 𝑥2, . . . , 𝑥𝑝] represent a data 

matrix with 𝑛 observations and 𝑝 variables and 𝑦 be the response vector. The objective is to identify a 

function 𝑓: 𝑋 →  𝑦 that minimizes the expected value of the loss function 𝐿 in predictive modeling. A 

counterfactual 𝑥′ 𝜖 𝑅𝑝 of observation 𝑥 𝜖 𝑅𝑝 is determined by solving the following optimization 

problem: 

𝑎𝑟𝑔𝑚𝑖𝑛𝑥′𝜖𝑅𝑝  𝐿[𝑓(𝑥′), 𝑦′]  +  𝑑(𝑥, 𝑥′) (1) 

where 𝑅𝑝 represents 𝑝-dimensional real space, 𝐿 is a loss function that penalizes the difference between 

the prediction 𝑓(𝑥′) and the desired outcome 𝑦′, and 𝑑 is a distance function between the observation 𝑥 

and 𝑥′.  A CE specifies the necessary adjustments in one or more variables to change the model's 

prediction. The distance function 𝑑 regulates the proximity between the original observation and the 

counterfactual.  

Figure 1 visualizes an observation and its counterfactuals. Assume that 𝑓 is a student success prediction 

model and 𝑥 is a vector consists the variable values of a student. The prediction of the model 𝑓 for the 

student 𝑥 who has failed. The red zone shows the fail area, and the green one shows the pass area. They 

are divided by the decision boundary of the model. The CEs 𝑥′1 , 𝑥′2 , 𝑥′3  represent the ways how the 

student can pass.  

Counterfactuals strive to minimize the distance between the target observation and the counterfactual; 

however, additional properties are essential for a counterfactual explanation (Wachter et al., 2017; 

Karimi et al., 2020). Sparsity suggests altering the minimal number of variables to keep the explanation 

straightforward. Minimality aims for the most minor feasible changes in the variable values. Validity 

is ensured by reducing the difference between the counterfactual instance 𝑥′ and the original observation 

𝑥 while ensuring the model's output matches the desired label 𝑦′. Proximity emphasizes the necessity 

for a slight variation between the factual and counterfactual features. Plausibility requires that 

counterfactual explanations remain realistic and closely follow the underlying data distribution. Over 

120 known counterfactual generation methods; see Warren et al. (2023) for further details. However, 

we focused on three widely used counterfactual methods WhatIf Counterfactual Explanations, Multi-

Objective Counterfactual Explanations, and Nearest Instance Counterfactual Explanations to facilitate 

the comparison of counterfactual quality. 
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Figure 2. 

The counterfactual explanations for an observation 

 

What-if counterfactual explanations. The What-if method (WhatIf) finds the observations closest to 

the observation 𝑥 from the other observations in terms of Gower distance, solving the following 

optimization problem (Wexler et al., 2019): 

𝑥′ ∈  𝑎𝑟𝑔𝑚𝑖𝑛𝑥 ∈ 𝑋 𝑑(𝑥, 𝑥′) (2) 

Multi-objective counterfactual explanations. The Multiobjective Counterfactual Explanations 

(MOC) method aims to generate counterfactual explanations by optimizing multiple objectives 

simultaneously (Dandl et al., 2020). These objectives often include validity, proximity, sparsity, and 

plausibility.  

𝑥′ ∈  𝑚𝑖𝑛𝑥(𝑜𝑣(𝑓(𝑥), 𝑦′), 𝑜𝑝(𝑥, 𝑥′), 𝑜𝑠(𝑥, 𝑥′), 𝑜𝑝𝑙(𝑥, 𝑋)) (3) 

where 𝑜𝑣, 𝑜𝑝, 𝑜𝑠, 𝑜𝑝𝑙 are the objective functions for the desired properties validity, proximity, sparsity, 

and plausibility, respectively. Thus, it is expected that the counterfactuals generated by the MOC method 

are valid, proximity, sparse, and plausible.  

Nearest instance counterfactual explanations. The Nearest Instance Counterfactual Explanations 

(NICE) method identifies observations that are most similar to a given observation using the 

heterogeneous Euclidean overlap method (Burghmans et al., 2023). This approach allows for two 

options in the objective function, depending on the properties of proximity and sparsity, offering 

flexibility in how it can be applied. 

The WhatIf method produces counterfactuals that are valid, proximal, and plausible. It has been 

demonstrated that the MOC method generates a higher number of counterfactuals that are closer to the 

training data and require fewer feature changes compared to other counterfactual methods (Dandl et al., 

2020). Additionally, NICE specifically generates proximity-focused counterfactuals. However, no 

single method consistently outperforms others across datasets from various domains (Dandl et al., 2023). 

Therefore, evaluating the quality of the generated counterfactuals is essential, and we will conduct 

experiments to evaluate this in the following section. 
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Balancing Techniques 

The most commonly encountered challenge in designing predictive models with high discriminatory 

performance is an imbalanced class distribution in the response variable. In the binary case, the 

imbalance problem occurs when one class is observed less frequently. Models with such response 

variables tend to be biased toward the majority class in their predictions. Consequently, when dealing 

with the imbalance problem, models often have a significantly lower performance in correctly predicting 

the minority class than the majority class. In real-world problems, the class of interest is generally the 

minority class. For example, in predicting student dropouts, students who drop out are observed less 

frequently than those who do not. In the classification problem of predicting whether a student will 

complete a specific educational material or content module, students who do not complete the material 

are observed less frequently than those who do. In learning analytics, when considering student success 

prediction models, students who fail are observed less frequently than those who succeed. In these 

examples, students who drop out, do not complete educational materials and fail constitute the minority 

class. Due to the nature of these problems, the focus is on identifying the minority class. The inaccurate 

models in correctly predicting the minority class is a problem that must be overcome in such scenarios.  

Solutions to this problem are divided into three categories: data-based, model-based, and weighting-

based methods. The most commonly used data-based methods involve balancing class distributions 

through random undersampling or oversampling and synthetic data generation techniques. In 

undersampling, a subset of the majority class is randomly selected to match the minority class, whereas, 

in oversampling, the number of observations in the minority class is increased through resampling to 

match the size of the majority class (Chawla, 2010). In synthetic data generation methods, new 

observations are artificially generated from the distribution of the minority class to balance the size with 

the majority class (Elyan et al., 2021; Liu, 2022). Model-based methods are specific models developed 

to address the imbalance problem (Yin et al., 2020; Gu et al., 2022). Weighting-based methods aim to 

achieve higher prediction performance by penalizing the model more for errors in predicting the 

minority class (Zong et al., 2013; Tao et al., 2019). Although there are many methods to solve the 

classification problem in unbalanced data, in recent years, it has been found that these methods generally 

need to be revised and have adverse effects on classification models (Junior and Pisani, 2022; Stando et 

al., 2024; Cavus and Biecek, 2024; Carriero et al., 2024). These criticisms, mainly focusing on 

oversampling, undersampling, and synthetic data generation methods, brought the cost-sensitive 

approach to the fore (Gunonu et al., 2024). This study used data-based and weighting-based methods 

due to the mentioned criticism, their practical applications, and their frequent usage in the literature. 

Experimental Design 

This paper focuses on which method provides the highest quality counterfactual explanations for the 

student success prediction model trained with and without hyperparameter tuning (i.e., vanilla model) 

regarding the imbalancedness problem using the OULAD dataset. Thus, the approach followed, which 

is given in Figure 2, is (1) balancing the dataset, (2) training the model with and without hyperparameter 

tuning, (3) generating the counterfactuals, and (3) evaluating the effect of the balancing techniques of 

the imbalancedness problem producing the evaluation criteria.   
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Figure 2. 

The flow of the experiments 

 

Balancing. Two balancing strategies are used. The dataset is balanced using several resampling methods 

such as undersampling, oversampling, and SMOTE, and the models are trained on the original dataset 

with the cost-sensitive approach.  

Modeling. The random forest algorithm is used in modeling because tree-based models exhibit lower 

prediction performance than alternative complex models in classifying tabular datasets (Grinsztajn et 

al., 2022). It is trained with and without hyperparameter tuning to achieve higher prediction 

performance. The performance of the random forest models trained on imbalanced (i.e., Original), 

balanced datasets by the oversampling, undersampling, SMOTE, and also trained with the cost-sensitive 

approach are compared. The costs are chosen as 2.37931 for the minority class (i.e., failed students) and 

1 for the majority class regarding the imbalance ratio. Moreover, to achieve better predictive 

performance the models are tuned in terms of hyperparameters mtry, splitrule, and min.node.size using 

the 10-fold repeated cross-validation in addition to the vanilla versions of the model which is trained 

with the default values of the hyperparameters. 

Counterfactual generation. After the modeling phase, the counterfactuals are generated for failing 

students which are estimated by the models using MOC, sparsity-based NICE (NICE_sp), proximity-

based NICE (NICE_pr), and What-If methods. 

 

Results 

In this section, the results are summarized. Firstly, the performance of the models is compared, and then 

the counterfactuals are evaluated to determine the best counterfactual generation method for the case 

considered in the paper. 

Model performance. The performance of the random forest models trained on imbalanced and balanced 

datasets by the oversampling, undersampling, SMOTE, and cost-sensitive approach are given in Table 

2. Accuracy, Area Under Curve (AUC), and F1 score are used to measure the model performance. 
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Accuracy represents the proportion of correct predictions made by the model out of all predictions. The 

AUC is a single number representing the area under the Receiver Operating Curve (ROC), ranging from 

0 to 1. An AUC of 1 means the classifier perfectly distinguishes between positive and negative classes. 

The F1 score shows that the model correctly predicts all positive instances and doesn’t produce false 

positives. The imbalance ratio of the test set is 2.41 (number of observations in the majority 

class/number of observations in the minority class), thus the performance evaluations should be using 

the F1 score as well as accuracy and AUC.   

The vanilla Random Forest models generally outperform tuned models in terms of accuracy and F1 

scores across most balancing strategies, particularly on original data and some resampling methods. 

Vanilla models demonstrate higher accuracy and more balanced F1 scores, especially under 

oversampling and SMOTE techniques. On the other hand, tuned models achieve slightly higher AUC 

values with cost-sensitive learning and SMOTE, indicating better classification discrimination. 

Sampling methods like oversampling and SMOTE improve performance for both vanilla and tuned 

models, while undersampling tends to decrease accuracy and F1 scores but maintains stable AUC values. 

Cost-sensitive learning offers balanced improvements, with both model types benefiting from enhanced 

AUC scores. Overall, while vanilla models excel in accuracy and F1 scores, tuned models show 

enhanced AUC values in specific conditions, highlighting the trade-offs between different performance 

metrics and modeling approaches. The tuned values of the hyperparameters for the models are given in 

Table A in the Appendix. 

Table 2. 

The performance of the random forest models on the test set over balancing strategies 

 Vanilla Random Forests Models Tuned Random Forests Models 

Accuracy AUC F1 Accuracy AUC F1 

Original 0.8196 0.8549 0.7040 0.8044 0.8480 0.6450 

Oversampling 0.8402 0.8652 0.6840 0.8366 0.8658 0.6795 

Undersampling 0.7741 0.8552 0.6560 0.7812 0.8558 0.6611 

SMOTE 0.8286 0.8620 0.6900 0.8321 0.8621 0.6907 

Cost-sensitive 0.8357 0.8643 0.6940 0.8339 0.8671 0.6910 

Counterfactual evaluations. The counterfactual generation methods can generate more than one 

explanation for an observation, also each method may generate different explanations. The number of 

counterfactuals generated by the methods is given in Table 3. The MOC generates the highest number 

of counterfactuals independently from the balancing strategy and model while the NICE methods 

generate the lowest number of counterfactuals. The differences between the number of counterfactuals 

between the balancing strategies depend on the number of students that were predicted as failed by the 

models. The number of counterfactuals for the models is slightly different because of the difference 

between the models caused by the hyperparameter optimization. 
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Table 3. 

The number of counterfactuals generated by the methods across balancing strategies 

 Model Original Undersampling Oversampling SMOTE Cost-sensitive 

WI 
vanilla 2910 4050 2370 2890 2730 

tuned 2890 3950 2430 2800 2740 

MOC 
vanilla 23321 28287 15934 24100 19570 

tuned 24932 38262 15997 23687 19401 

NICE_sp 
vanilla 419 555 320 360 339 

tuned 390 530 327 336 530 

NICE_pr 
vanilla 419 555 320 360 339 

vanilla 2910 4050 2370 2890 2730 

It is necessary to evaluate the quality or usefulness of the counterfactuals before deployment. Thus, we 

conduct a comparison study to analyze the effect of the conditions regarding the balancing and modeling 

strategies on the counterfactual quality. We aim to determine the best counterfactual generation method 

to find actionable insights from the student success prediction models trained on the OULAD dataset. 

The quality of counterfactuals is visualized using error bar plots as in Figure 3. An error bar plot shows 

the variability or uncertainty of data. It features error bars that extend above and below the median of 

the observations. Error bars can show measures of dispersion such as standard deviation, standard error, 

or confidence intervals, providing a visual indication of the reliability and precision of the data. Figure 

3 demonstrates that each method exhibits varying performance regarding quality metrics across different 

balancing and modeling strategies. The error bars represent the median ± standard deviation, reflecting 

the variability in the performance of different counterfactual methods across various datasets and 

balancing techniques. The width of these error bars indicates how robust (or consistent) each method is 

in different scenarios. 
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Figure 3. 

Evaluation of counterfactual generation methods across tuning and balancing strategies 

 

NICE_sp and NICE_pr consistently demonstrate superior performance with the models trained on the 

original dataset. The minimality and plausibility values are particularly low, with medians near 0 and 

minimal variability, suggesting robust performance. On the other hand, MOC and WI show much higher 

values, especially in minimality where median values reach around 30, indicating suboptimal outcomes. 

Similarly, in metrics like proximity and sparsity, NICE_sp and NICE_pr maintain low values, whereas 

MOC and WI exhibit considerably higher values, suggesting that these methods struggle with the 

original data distribution.  

When applying the Undersampling method, there is a general improvement in minimality values across 

all methods, though MOC and WI still trail behind NICE_sp and NICE_pr. While NICE_sp and 

NICE_pr continue to perform well with relatively low values across all metrics, the error bars suggest a 

slight increase in variability. MOC and WI, although showing some improvement, still exhibit higher 

plausibility and proximity values, indicating that undersampling does not fully mitigate their 

performance issues.  

The Oversampling method highlights the strengths of NICE_sp and NICE_pr even further. These 

methods maintain low values across all metrics, particularly in minimality and plausibility, where their 

performance remains nearly flawless with median values close to 0. In contrast, MOC and WI continue 

to struggle, showing higher values across metrics such as proximity and sparsity, with only marginal 

improvements compared to the Original and Undersampling strategies. This suggests that while 

oversampling enhances performance for NICE_sp and NICE_pr, it does not sufficiently benefit MOC 

and WI. 

Moving to SMOTE, NICE_sp, and NICE_pr once again emerge as the top performers, maintaining low 

values across all metrics. The proximity and sparsity values for these methods remain minimal, 

reflecting strong and consistent performance. MOC and WI, however, continue to display higher values 

in metrics like minimality and validity, suggesting that even with synthetic data generation, these 

methods are less effective. The error bars for MOC and WI also indicate greater variability, reinforcing 

the idea that SMOTE does not significantly improve their robustness. 
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Finally, the cost-sensitive approach shows that NICE_sp and NICE_pr maintain their strong 

performance, with median values remaining low across all metrics. Particularly in minimality and 

plausibility, these methods exhibit near-perfect performance, with minimal error bars indicating 

consistent results. MOC and WI show slight reductions in their median values for some metrics, but 

they still lag significantly, with higher values in proximity and sparsity indicating ongoing performance 

issues. The consistent superiority of NICE_sp and NICE_pr across different balancing strategies, 

including Cost-sensitive approaches, underscores their robustness and reliability. 

Tuned models consistently show improved performance compared to their vanilla counterparts across 

various balancing strategies. Tuned models trained on the original dataset exhibit lower minimality and 

plausibility values, indicating enhanced performance. In the Undersampling strategy, the gap between 

tuned and vanilla models narrows slightly, but tuned models still outperform vanilla ones. With 

Oversampling and SMOTE, the advantage of tuning becomes more pronounced, as tuned models 

maintain lower values across all metrics, while vanilla models show higher variability. The cost-

sensitive approach further highlights the superiority of tuned models, particularly in minimality and 

validity, where they consistently demonstrate lower values and greater consistency. Overall, tuning leads 

to better and more reliable performance across different data conditions and metrics. 

When focusing on RQ1: “What is the most appropriate method for generating counterfactual 

explanations after balancing?” the analysis highlighted the consistent superiority of NICE_sp and 

NICE_pr across various balancing strategies and metrics, demonstrating their robustness and reliability. 

To answer RQ2: “How do balancing techniques affect the counterfactual explanations of student success 

prediction models?” we find out that the impact of different data balancing strategies, such as SMOTE 

and the cost-sensitive approaches, further underscores the adaptability of these methods compared to 

MOC and WI, which generally underperform. Additionally, tuned models outperform their vanilla 

counterparts across all conditions, emphasizing the importance of model optimization in achieving 

optimal performance across diverse balancing strategies. 

 

Conclusion 

This study explored the impact of various balancing techniques on the generation of counterfactual 

explanations within student success prediction models. Our analysis reveals that NICE_sp and 

NICE_pr consistently outperform other counterfactual explanation methods across various balancing 

strategies, including Original, Undersampling, Oversampling, SMOTE, and Cost-sensitive approaches. 

These methods demonstrate superior performance in terms of key metrics like minimality, plausibility, 

proximity, sparsity, and validity, showing lower variability (narrower error bars) and higher robustness 

across different datasets. This consistent superiority indicates that NICE_sp and NICE_pr are more 

reliable and effective in generating high-quality counterfactual explanations, regardless of the balancing 

strategy applied. The results indicate that the choice of balancing strategy significantly influences the 

quality and characteristics of the counterfactuals generated by different methods, such as Multi-

Objective Counterfactual Explanations (MOC), Nearest Instance Counterfactual Explanations (NICE), 

and WhatIf. 

Effectiveness of balancing techniques. The results suggest that certain balancing techniques improve 

the validity and plausibility of counterfactuals, aligning them more closely with realistic scenarios that 

educators and students can act upon. For example, balancing methods that mitigate class imbalances not 

only enhanced the performance of the predictive models but also resulted in more actionable and sparse 

counterfactual explanations. These findings are consistent with previous research, which emphasizes the 

importance of balancing in training robust models for educational predictions (Artelt et al., 2021). 

Effect analysis of counterfactual generation methods. Among the methods tested, MOC consistently 

produced counterfactuals that were closer to the original data distribution, showing a higher degree of 

plausibility and sparsity. This is particularly valuable in educational settings where changes to multiple 
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variables might not be feasible. In contrast, the NICE method, which focuses on proximity, often 

generated explanations that were more straightforward but potentially less realistic. This trade-off 

highlights the need to select counterfactual generation methods based on the specific requirements of 

the educational context. 

Implications for educational interventions. The insights gained from this study have significant 

implications for how educational institutions might use counterfactual explanations to inform 

interventions. By understanding how different balancing techniques affect the characteristics of 

counterfactuals, educators can better choose models and explanations that are not only accurate but also 

actionable and interpretable for students and staff. 

This study contributes to the growing field of explainable artificial intelligence in education by 

demonstrating the critical role of balancing techniques in generating effective counterfactual 

explanations. These findings pave the way for more refined and targeted educational interventions, 

ultimately contributing to more personalized and supportive learning environments. 

Limitations and Future Work 

While this study provides a comprehensive analysis, some limitations warrant further investigation. The 

focus on a single dataset and specific counterfactual methods may limit the generalizability of the results. 

Future research should explore these effects across different datasets containing educational data with 

similar and different contexts (López-Pernas, 2024); and additional machine learning such as neural 

networks or support vector machines (Murphy, K., 2022) and counterfactual methods (Guidotti, R., 

2022). Moreover, the long-term impact of using such explanations on student outcomes should be 

evaluated to better understand their practical utility in educational settings. This involves conducting the 

research study with the lecturers and learners on the usability and acceptance of the method together 

with the evaluation of the learning gains and study outcomes similar to the studies conducted to evaluate 

the influence of the predictive modeling on student outcomes (e. g., Herodotou, 2019). 
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