
Sigma J Eng Nat Sci, Vol. 42, No. 4, pp. 988−1008, August, 2024

Sigma Journal of Engineering and Natural Sciences
Web page info: https://sigma.yildiz.edu.tr

DOI: 10.14744/sigma.2024.00084

ABSTRACT

Quality and productivity needs are considered together in software. For this reason, any ex-
isting software should be tested automatically with test automation. Software test automations
is automated software testing activities. Automating constantly manually written tests, on
the other hand, saves time, reduces error rates, produces better quality software, and reduces
costs. This study aims to produce an automatic unit testing framework that is planned to work
in run-time on software products. This developed application performs unit test transforma-
tions that can respond to the desired test scenarios on the product being studied.. Java agent is
used as the basis of all these transformations. All information about the objects, methods, and
variables of the sample java classes to be worked on is converted into data in run-time using
byte code. During this transformation, information is saved in the database, and unit tests are
created automatically through the template engine. Compared to the products developed on
automatic unit test generation in the literature, the opcode parsing method was developed for
this study. This method reads a byte code at run-time, uses the properties of the java class it
belongs to, and automatically creates the unit test class and test methods. The study can also
examine different object definitions and conditional and loop structures within a method and
produce alternative test scenarios. The automatic unit test scenario produced has been turned
into a flexible framework that can encounter minimum errors at run-time.
Considering the scarcity of studies in the field of national software testing; It is thought that
the automatic unit test generation product developed within the scope of this study, using byte
code, will contribute to the work area.

Cite this article as: Genç S. Automatic unit test generator software by collecting run-time
data. Sigma J Eng Nat Sci 2024;42(4):988−1008.

Research Article

Automatic unit test generator software by collecting run-time data

Sevdanur GENÇ1,*
1Department of Computer Technologies, Taşköprü Vocational School, Kastamonu University, Kastamonu, 37400, Türkiye

ARTICLE INFO

Article history
Received: 17 November 2022
Revised: 05 January 2023
Accepted: 04 April 2023

Keywords:
Byte Code; Java Agent; Software
Testing; The Opcode Parsing
Method; Unit Test Generation

*Corresponding author.
*E-mail address: sgenc@kastamonu.edu.tr
This paper was recommended for publication in revised form by
Editor in-Chief Ahmet Selim Dalkilic

Published by Yıldız Technical University Press, İstanbul, Turkey
Copyright 2021, Yıldız Technical University. This is an open access article under the CC BY-NC license (http://creativecommons.org/licenses/by-nc/4.0/).

INTRODUCTION

The main purpose of designing the Java program-
ming language, developed by Sun Microsystems and made
available in 1995, was to develop a portable, easy-to-learn,
general-purpose, platform-independent, object-oriented
programming language. The Java compiler converts the

source code into java bytecode, which is a platform-inde-
pendent intermediate language. This code is then processed
and run through the java virtual machine on each platform.
Java agents are used to flexibly modify the application
logic executed by the JVM at this run-time of the code. A
java agent is a specially crafted jar file. This file uses the

https://sigma.yildiz.edu.tr
https://orcid.org/0000-0003-4774-9265
http://creativecommons.org/licenses/by-nc/4.0/

Sigma J Eng Nat Sci, Vol. 42, No. 4, pp. 988−1008, August, 2024 989

Instrumentation API to replace the existing bytecode loaded
in the JVM. The most important feature of Java agent tools
is that they can redefine or modify classes at run-time. They
can modify method bodies by redefining their constant and
variable properties. They can also change the signatures or
inheritance properties of methods.

Quality and productivity needs are considered together
in software. For this reason, factors such as a fluent algo-
rithm and strong risk management are needed to test the
existing software’s compliance with these criteria. In order
to fulfill these factors, there are serious responsibilities in
the test area. Fast tests and high accuracy of the results are
the factors that make a difference in software development.
In order to realize this factor, software test automation is
needed.

The focus of projects on software is software testing
processes. At the end of a successful test process, highly
accurate software with the least errors is produced. Studies
on software quality in Turkey show that the need for the
test-driven software development process and test tools is
increasing in our country [1]. In test-driven software devel-
opment, the target is to write a testable code first, with the
scenario belonging to this code, before writing the code that
will do the necessary work. After various software develop-
ment principles design this testable code, if it gives a result
with high accuracy, that software has passed the test suc-
cessfully. If the test results are unsuccessful, it is returned
to the beginning, the code is examined, and the problem is
tried to be corrected. In software projects, tests called unit
tests are written to prove that each unit (class or method)
works flawlessly. Unit tests facilitate and accelerate the soft-
ware development process and ensure that each class and
method works correctly.

There are two of the most well-known basic testing
frameworks on Java platforms. These are JUnit and TestNG
[2]. Both are powerful enough to allow testing in complex
test cases on exactly the requested code snippets. Junit is an
open-source framework for writing and running repeatable
tests. JUnit; runs test data with various test cases to test the
expected results from the program. TestNG is more func-
tional and easier to use than Junit. TestNG supports run-
ning test cases in parallel on test threads. It also has many
features, such as flexible test configurations, detailed anal-
ysis of error messages, advanced archiving, and plugin sup-
port for editors.

The developer manually codes all these unit tests.
Automating the tests is recommended to use the time in a
quality manner and speed up the business traffic. Therefore,
the speed and accuracy of testing tools are important. For
example, keyword-driven scripts have significant advan-
tages. In this approach, the size of the software being tested
is important, not the number of tests. This greatly reduces
the script maintenance cost and speeds up the implemen-
tation of automated tests. At the same time, in order to
achieve success in test automation, scripts and data must
be reusable. This eliminates repeated tasks and speeds up

the implementation of new tests. However, automated tests
can also help prevent writing errors compared to manual
tests [3].

This study aims to automatically produce unit tests
that are planned to work on products in run-time. This
software has been developed as a desktop application and
can perform unit test transformations on the specified java
classes. All these transformations are based on java agents
and bytecode. All information about the objects, methods
and variables of the sample java classes to be worked on has
been converted into data in run-time. During this transfor-
mation, information is both saved in the database and unit
tests are created automatically through the template engine.
However, in this developed study, both the byte code side
is analyzed with the improved opcode parsing method and
tests are produced on the desired units. At the same time,
alternative scenarios were produced for each different use
of the objects used in the classrooms. These scenarios can
run as soon as the test is applied and perform automatic
unit test generation. This automatic unit test generation
tool, which can generate unit tests in accordance with the
usage differences of each object, has been turned into a
flexible framework that can encounter minimum errors at
run-time.

Various approaches for automated unit test generation
have been presented in the literature. The contributions of
the study to the literature are as follows;
1.	 An opcode parsing method has been developed with

the help of java string functions to work during byte
code conversions. With this method, values such as
objects, variables and input-output parameters against
each opcode are distinguished and these data are listed
in JSON format. The developed opcode parsing method
is open to be developed in line with different needs in
the future. In the studies in the literature, limited ready
functions of the bytecode API are designed similarly to
these operations.

2.	 Each object in a java class is saved in JSON format using
the NoSql database collections so that the values of the
variables and input-output parameters can be reused in
the unit tests to be created or to assign similar random
values to these values. These data are also stored in an
archive file in the system. In the studies in the literature,
different data storage environments such as XML and
oracle have been used.

3.	 While creating test scenarios, some rules should be
observed. The first of these is the alternative cases such
as condition and loop structures used in the method.
The other is the stage where the mock-stub distinction
should be made for different objects used in the method
and their value transformations. The user is asked to
select a test case through the desktop application devel-
oped for these. This selection automatically creates unit
tests in the framework structure developed according
to the desired scenario. At the same time, the opcode

Sigma J Eng Nat Sci, Vol. 42, No. 4, pp. 988−1008, August, 2024990

parsing method developed for mock-stub separation
leads to automated unit testing generation software.

4.	 The assertion structure required for each unit test to
be created in JUnit standards is prepared using the FTL
template engine. While the application automatically
prepares unit tests at run-time, annotations are created
according to the test case chosen by the user interface.
The use of the FTL template engine has not been found
in any automated unit testing generation products in
the literature. Instead, different methods have been
developed.

RELATED WORKS

Among the different studies in the literatüre published
in the last 20 years on unit test generation in software test-
ing applications, the main ones are examined.

Csallner et al. developed an automated test generation
tool called JCrasher in their work. This tool can work inte-
grated with Eclipse IDE. After examining the information
of the sample java class given to the vehicle for test genera-
tion, it is tested with random data. They performed the test
with JUnit. The tool can also detect errors that occur during
the testing phase [4].

Pacheco et al. developed an automated unit test gener-
ation tool called Randoop using JUnit. This tool can create
feedback-driven unit testing for object-oriented programs.
At the same time, it can catch and archive the errors that
occur. It is a tool developed to generate random test data
and combine test results [5,6].

Simons et al. developed a unit testing tool for java called
JWalk. The study consists of two main stages. First of all,
advanced features of a sample class are revealed, and then
unit tests are applied systematically. As a result, it can pro-
vide information about the status of java test classes. It has
also been compared to specialist unit testing applications
such as JUnit [7].

Sen developed an application named Cute in the java
environment in his study. The application was developed by
targeting the C programming language for testing the codes
written in the c language. This application works by com-
bining automatic and random test logic. It uses executing
symbolic code that helps to overcome distinctive input and
restrictive solutions. There are cases where this tool needs
to be improved, such as the inability to analyze system calls
and solve nonlinear integer equations [8].

Charreteur et al. obtained automated test input for Java
bytecode programs using a constraint-based reasoning
approach. The method has been developed as a constraint
model that allows the bytecode program to be searched
backward for each bytecode and solve complex constraints
on memory shape. This study, which they named JAUT, is
a precedent for studies such as Cute, JTEST and PEX [9].

Fraser et al. developed a test generation tool called
EvoSuite in their work. Written in Java, this test genera-
tion tool has extensive features. All tests performed with

this tool are compared against the desired criteria. Analysis
and optimization processes are performed as a result of the
comparison [10].

Sakti et al. developed an automated test generation tool
called JTExpert that can be used in java programming. The
JTExpert tool, which is an executable jar file, takes a java
file or java project directory as input and automatically gen-
erates a test data package in JUnit format for each tested
java class [11].

Tanno et al. developed a hybrid unit test tool called
CATG in their work. They used a concept called the con-
cholic test, which dynamically performs the symbolic and
concrete inputs [12].

Brill et al. developed an open-source tool called
TACKLETEST to create test scenarios at the automatic unit
level for java applications. It was developed in the context of
application modernization at IBM, but is also used as a gen-
eral-purpose test creation tool. Overall, it implements a new
and complementary way of calculating coverage targets for
unit testing through a new white-box combinatorial testing
application. This tool establishes a new combinatorial test-
based approach for computational scope targets that exten-
sively implement different combinations of parameter types
of methods tested at configurable interaction levels [13].

Higo et al. developed a dataset creation tool using auto-
mated test creation techniques. They predict that there is
a large amount of source code with different implementa-
tions of the same functions and that these can be compiled
into a dataset useful for various research in software engi-
neering. However, they generate a dataset of functionally
equivalent java methods from a source code of about 36
million lines [14].

Lukasczyk et al. developed an automated unit test cre-
ation software for the Python programming language
named Pynguin. While many researchers focus on static
software programming languages such as Java, researchers
have focused on Python, the dynamic programming lan-
guage that has become popular in the last decade. They
have developed an extensible test generation framework
for Python that generates regression tests with high code
coverage. This tool can be expanded to allow researchers to
tailor it to their needs and enable future research [15].

Bardin et al. developed an integrated framework for
automated test generation in their 2021 study. The aim of
the study was to adapt DSE (Dynamic Symbolic Execution),
an ATG (Automatic Test Input Generation) technique, to
effectively cover a wide test target class derived from the
source code of the tested program [16]. In addition, in this
study, they did not use model-based testing techniques
that cover the characteristics of the tested code. Only cer-
tain sequential programs are considered here, and no study
related to Bytecode is encountered. At the same time, they
have developed a useful framework for test automation that
can create tag coverage in the relevant programs.

Arcuri proposed a white-box testing approach where
the tested code is fully accessible by the developers. Test

Sigma J Eng Nat Sci, Vol. 42, No. 4, pp. 988−1008, August, 2024 991

cases are automatically generated using an evolutionary
algorithm, such as the MIO algorithm. Tests are rewarded
based on code coverage and fault detection measures using
this optimization algorithm. The developed approach is
used in conjunction with the open-source tool EvoMaster.
Experiments were conducted on five different web services
containing more than 22,000 lines of code. The applied
technique was able to generate test cases that detected 80
faults in the web services. However, the coverage obtained
was lower compared to the existing test cases in these proj-
ects. A manual analysis of the results found that interac-
tions with SQL databases currently prevented achieving
higher coverage [17].

MATERIALS AND METHODS

Logic of Automated Unit Testing
Software testing is an essential element for the devel-

opment of a software product. Software tests, each test
progresses with the right results, reaching a whole so that
the software can work in a performance way. Examples are
the selection of test data, the test’s prerequisites, and the
intended and expected results.

The logic of software test automation is to automate
handwritten tests and turn it into a tool. Automation means;
is the constant repetition of test scenarios. In this case, the
personnel who prepare the test scenarios need automati-
cally running software that can run the codes, and these
software are called software test automation. In software
test automation, all kinds of testable algorithms, methods,
and classes have these algorithms. Test modules are written
for testing. This is called unit testing.

Test scenarios used in unit tests are first developed and
the firmware is coded according to the results of these sce-
narios. Its purpose is to search for truths and faults in test
results. All bugs found by test code developers can be fixed
at run-time if they can be fixed. If not, they can help the rel-
evant units by directing the reports of the test results. The
test of each unit that is accepted as correct is continued by
writing the code of the firmware, so that after each module
is completed, each module is integrated and the product is
completed.

In this study, a framework structure of automatic soft-
ware test automation, in which unit tests will be produced,
is designed. During the design phase of this structure,
structures such as java bytecode and javassist were used.

Java Bytecode
Just like C and C++ compilers are represented by the

assembler, java programs are represented by byte code. The
byte to be generated by a java compiler is actually the pro-
gram itself. Bytecode is required to be a solution to Java’s
problems such as portability and security. Since the Java
compiler’s output is not executable, it has to use bytecode.
Bytecodes are interpreted by the JVM. In this way, bytecodes

are well-optimized at run-time. Through bytecode, a java
program can be run in many different environments.

The bytecode stream of a method is a sequence of
instructions for the JVM. Each instruction consists of a
one-byte opcode followed by zero or more operands. The
opcode indicates the action to be performed. If more infor-
mation is required before the JVM can take action, this
information is encoded into one or more operands that
immediately follow the opcode. Each opcode type has a
mnemonic.

The bytecode instruction set is designed to be complex.
All instructions are aligned with byte boundaries except for
two codes for table creation. The total number of opcodes is
small enough, so that byte codes only take up one byte. This
helps minimize the size of class files before they are run by
the JVM. It also helps to keep the size of the JVM applica-
tion small. All computations in the JVM are performed on
the stack. Therefore, bytecode instructions run primarily
on the stack [18].

The working logic of Bytecode; Java bytecode is machine
code in .class file format. Bytecode in Java is the command
set for the JVM and works similarly to a compiler. A close
examination of the bytecode reveals that there are certain
opcodes. Some opcodes have letters like a or i in front of
them. For example, aload_0 and iload_2. These prefixes
represent the types that the opcode has worked with. The
prefix a means that the opcode modifies an object refer-
ence. The prefix i means that the opcode is processing an
integer. Other opcodes; They are used as b for byte, c for
char, and d for double. These prefixes provide information
about what type of data is being processed.

A stack-based machine is used for the execution of the
bytecode by the JVM. Each thread has a JVM stack that
stores its data in its frame and turns it into a framebuffer.
Each time a method is called, a frame stack is created and
the operand stack contains data such as a set of local vari-
ables and the run-time of the current class. The local vari-
ables array, also known as the local variables table, contains
the method’s parameters and is also used to hold the values ​​
of local variables. Parameters are stored in the directory,
starting with index 0. If the structure is for a constructor
or dynamic (instance) method, the reference is stored at
position 0. Then position 1 gets the first formal parame-
ter and position 2 gets the second formal parameter. For a
static method, the first formal method parameter is stored
at position 0, and the second at position 1. The size of the
array of local variables is determined at compile time, and
the number and size of local variables depend on a formal
procedure parameter. The operand stack uses the LIFO
(Last in First out) method stack to push and pull values.
Certain opcode instructions values ​​are passed to the oper-
and stack: others take the operands from the stack, manip-
ulate it, and pass the result. The operand stack is also used
to get return values ​​from procedures.

A Java agent is a special java library that can manipulate
bytecodes by interfering with applications running on the

Sigma J Eng Nat Sci, Vol. 42, No. 4, pp. 988−1008, August, 2024992

JVM using the Java Instrumentation API. Generally, it is
prepared as a jar file. Classes that represent Java agents are
nothing more than other classes available in the Java API
library. But what makes them special is that they follow a
certain rule that allows the java code to block any other
application running in the JVM. The sole purpose here is
simply to make agents that probe or modify the bytecode,
This powerful feature goes beyond what a java program
normally does. In a way, it can be entered into a program
and alter the bytecode or cause havoc. Javassist, a library for
editing bytecodes in Java, allows Java programs to define a
new class at run-time and modify a class file when loaded
into the JVM.

The Opcode Parsing Method
In order to create unit tests automatically, a java class is

first defined in the framework. The defined java class is first
converted to bytecode file format with the help of java agent.
Then used in this format; Using many opcode java string
functions such as class name, variables, objects, methods
and their input and output parameters, each of them is
determined line by line before the bytecode file and then
word by word. For example, opcodes such as invokevirtual,
invokestatic, ifge, iflt, ifeq, iinc are controlled by using java
string functions in the bytecode file and the correspond-
ing parameters are determined and passed to variables. At
the same time, Mock-Stub distinction can be made by con-
trolling the parameters given by the opcodes showing the
object types defined in the class. All parameters transferred
to variables are listed instantly in JSON format and saved as
data using NoSql database structure. The recorded data is
automatically converted into unit test format instantly with
the help of the FTL template engine after all the conversion
works are completed.

Another feature that is noted here is that in this advanced
method, unit tests are created simultaneously with different
test scenarios for mock-stub structures, which are distin-
guished according to the difference of objects, and saved
to the system. The test codes saved in the system can be
requested as a printout according to the test scenario the
tester selected from the test case section of the menus.

Thanks to the opcode parsing method produced as a
flexible framework, necessary code changes can be made
for the desired opcode type. It contributes to this project as
it is completely open source code.

Advantages and Disadvantages of the Opcode Parsing
Method

Previous studies in the literature used meta-heuristic
optimization search techniques such as genetic algorithms
to automate a testing task [19]. However, no optimization
search method or genetic algorithm method was used in
this study. Directly, the opcodes of a java class in which byte-
codes are generated are parsed using java string methods.

In addition to the limited and ready-made functions
offered by the Bytecode API, and the developed opcode

decomposition method, the input-output parameters cor-
responding to the desired opcode can be accessed in the
bytecode-converted output. At the same time, since this
developed method is open-source code, the users can add
or remove desired features according to their needs within
each function.

As long as other classes belonging to an object produced
in a class are in the same location, it can be automatically
processed with the base class. Especially if it is considered
for mock-stub applications, no extra action is required by
the user and the developed framework detects this itself.

As used in the study of Venkatesan et al. in the litera-
ture, a flexible data storage system was needed in this study
to store all kinds of data obtained from the opcode parsing
method [20]. Since the output parameters are recorded in
JSON format after the opcode parsing method, these data
can be easily examined in any NoSQL-based database man-
agement system.

A total of 5 types of test scenarios were used in the
developed project. In the future, test users can increase
or improve the number of these test scenarios in line with
their needs, with the project being open source.

The application developed for now can perform
detailed operations on a given java class. With this method
developed in subsequent studies, it is planned to create
automatic unit tests according to the features selected by
the user of the whole project after the location of a project
belonging to many classes that are connected with each
other.

In the system developed as test data, random data
belonging to numeric data types such as int and double are
assigned. In the next study, data selection is planned auto-
matically over random data covering all data types or even
a sample data set that can be imported.

About Other Technologies Used
Apart from java byte code, javassist and java agent tech-

nologies, other technologies and structures have been used
to create automatic unit test generation software. These;
code coverage, mock and stub, NoSql, Maven and FTL.
•	 Code Coverage is a software measurement technique

used to measure how many lines of code are executed
during automated tests. A code coverage reports gen-
erator for Java projects, JaCoCo is a free code coverage
library for Java.

•	 In non-relational databases, there is no integrity among
the data and therefore data can be repeated in differ-
ent ways. This leads to data inconsistency. Changing
the same data in different places on the whole system is
difficult to manage. Since the SQL interface is not used,
it is named No Relation, meaning non-relational. Thus,
the expression NoSQL came to the fore. MongoDB was
used for this system in this study.

•	 Developed by Apache, Maven is a JDT (Java
Development Tool) or java developer tool. While devel-
oping Maven java projects, it creates a standard within

Sigma J Eng Nat Sci, Vol. 42, No. 4, pp. 988−1008, August, 2024 993

the project. In line with these standards, it simplifies the
project development process and enables the creation of
documentation effectively. It is a tool that helps to elim-
inate the dependency on the library and user interface
in the project, and provides convenience for the devel-
oper in processes such as compilation and reporting. In
fact, it is itself a storage unit rather than a tool. There
is a chance to run all libraries, plugins and all neces-
sary information about the developed software on the
servers.

•	 FreeMarker Java Template Engine-FTL (Java Template
Engine) is a template engine produced by Apache. It is a
Java library that can generate text output such as HTML
web pages, emails, configuration files and source codes
based on templates and changing data. Generally, a gen-
eral purpose programming language such as java is used
to prepare the data. Then it displays the data prepared
using FTL templates. It focuses on “how” the data will
be presented in the templates and “what” data will be
presented outside the template [21].

•	 The concept of dependency emerges when the software
is considered as a whole.For example, the software may
be running dependent on a database. This dependency
should be paid attention to when creating the test sce-
nario and it should be tested without using this depen-
dency. At this point, mock objects are needed. When
writing unit tests, pseudo-objects are created to replace
them in order to be able to work independently of real
objects. This event is called Mock-Mocking.

Automatic Unit Test Generator Software by Collecting
Run-Time Data

In the study, a framework was developed that enables
the creation of automated unit tests by collecting data in
run-time. The tool in question was developed as a console
and desktop application using the Java programming lan-
guage in the Netbeans environment. Since this study is built
on the java programming language, JUnit framework was
used to test java-based codes and development was made
in this context.

The flow chart of the developed study is given in Figure
1. Developed framework; It consists of 4 components.
These,
•	 The first module is the screen where the .java and .class

files, which contain the codes of the Java programming
language, are read,

•	 The second module is the screen where all data consist-
ing of variables, object, methods and class names read
simultaneously from the codes is saved to the database
with NoSQL,

•	 The third module is the screen where the java codes are
converted to byte code,

•	 And lastly, it is the screen about creating the automat-
ically generated unit test class file with the help of byte
code and incoming data.

Identification and Analysis of Scenarios Related to
Requirements in Unit Tests

In the study, many scenarios were focused on while cre-
ating unit tests. Probability test methods have been created
especially for testing methods that contain conditional or
loop structures. At the same time, mock and stub structures
are also used as needed. A framework has been developed
to create automatic unit tests to perform the test stages of
all these structures. In this framework, to analyze auto-
matically created test methods and classes, the data used
in the software were taken as an example: at the same time,
random data were produced and used as a variable. In the
sub-headings, each test scenario is examined with code
blocks with related simple java class examples.

Alternative States within the Method
When writing a unit test, a single unit test case should

be created where a class’s method is lean. However, scenar-
ios, where there is more than one situation in the method
are very common. In particular, when conditional struc-
tures are involved, as in Figure 2, there is a need for a unit
test to meet the probability of each condition, and sub-sce-
narios must be developed for them.

Figure 1. Flowchart of automatic unit test generation soft-
ware by collecting run-time data.

Sigma J Eng Nat Sci, Vol. 42, No. 4, pp. 988−1008, August, 2024994

In this case, as in Figure 3, since there will not be a single
unit test that will meet each condition, it is necessary to cre-
ating a separate unit test for each condition. Managing such
conditional states in a single test method is an anti-pattern.

The reason is that when the test code of the first condi-
tion fails, full efficiency cannot be obtained from the test
result when the test code of the other conditions is run. In
this case, independent tests are expected. As a solution to
this situation, different scenarios within the methods are
met with separate unit tests.

Different Objects in Method
When writing a unit test, methods can contain differ-

ent objects. There are sub-methods and objects that these
objects in the method depend on. For these sub-meth-
ods, the object-generated class is expected to exist ready-
made. In summary, the method to be tested depends on the
sub-methods of the object. When a normal test code of the
code given in Figure 4 is written, a NullPointerException
error is received.

Figure 3. Method structures for unit tests of a method with a condition in it.

Figure 2. A method structure with a condition in it.

Figure 4. A method structure with different objects in it.

Sigma J Eng Nat Sci, Vol. 42, No. 4, pp. 988−1008, August, 2024 995

The reason for this NullPointerException error is that
the object in the method, namely instance, has not been
created. This error can be managed by two situations. The
first is the Stub method and the other is the Mock method.

Stub method : It provides ready-made responses to calls
made during testing. It usually doesn’t respond to anything
other than situations written for testing. A class or object
structure that implements the methods of the class/object
to be called and always returns the desired value. In Figure
5, calCredit.recCalculation = new RecordCalculation(); line
has been added.

This is an option that is not easy to manage. Because
there are sub-components of the class that need to be called
and an object structure that cannot be easily created. Besides
all these, there may be content dependent components such

as Spring and EJB. Therefore, due to all these disadvantages,
the stub method, which enables to create a counterpart of
these objects, is not preferred as much as possible.

Mock method : It is used to ensure everything in the
method is correct before returning the correct value. It
just tests the behavior and makes sure certain methods are
called. Like the stub method, the mock method also acts as
a mock. This method has a structure that allows an object
to serve as if it were operating normally without its actual
existence. That is, empty methods and objects replace
real methods and objects. However, the difference is; stub
focuses on a testable version of a particular object, while
mock focuses on the correctness of everything.

Mockito library is used together with JUnit for mock-
ing. The downside is that there is no integration with the

Figure 5. Using the Stub method.

Figure 6. Using the mock method.

Sigma J Eng Nat Sci, Vol. 42, No. 4, pp. 988−1008, August, 2024996

respective class. However, unit tests by their nature do not
deal with integrations with subunits. Therefore, such tests
are expected to be performed within integration tests. In
Figure 6, calCredit.recCalculation = Mockito.mock(Record-
Calculation.class); line is added to mock the object. The
existence of a class file belonging to the object is defined as
a parameter to the mock method. Accordingly, the content
of the save method in that object will no longer be executed.

Annotation-based uses are also available to manage
mocking. In Figure 7, the Mockito library shows a method
for mocking the object by adding annotations directly to it.

As seen in the figure, if annotations are defined in the
test class, the code will become even more readable and
concise. Thus, related classes were defined in annotations
and an object was produced from them. Afterward, these
objects were used in test methods.

Value Conversions on Mocked Objects
Sometimes a real unit test environment cannot be cre-

ated because methods or objects carry their default values
in a mocked object. In this case, AssertionError error is
received at the time of test. The meaning of this error indi-
cates that a different result is obtained as a result of compar-
ing the expected and actual values. When the mock method
mocks an object, it removes the method bodies inside it.
In order to manage this, certain states are assigned to the
mocked objects. Given-When-Then standards were used to
manage these situations, as seen in Figure 8.

Thus, even if the object is mocked, the desired states can
be created and tests can be written. In the Given stage, the
variables that are desired to be obtained and to be used are

created. The object to be tested is configured. In the When
phase, the values and variables are brought together with
the configured object in the Given phase, and the code to be
tested is processed. In the Then phase, the expected result is
passed to the test code.

Design of Automated Unit Test Generation Software

Java-class-bytecode conversions
In the developed framework, first of all, a java class is

loaded into the system to create unit tests. This java file is
converted into a .class file with the click of a button, and
the .class file is used in almost every part of the developed
software. The JavaCompiler library is used to compile the
class file. If a class that needs more than one java class is
read here, class files are read in other classes in the specified
location. The developed system stores all the files it reads
in the Iterable collection list, and then this list is used for
conversion operations.

After conversion from Java file to Class file, byte
code conversion operations are performed. For this pro-
cess, ClassPool, CtClass, CtMethod and InstructionPrinter
subclasses in the javassist library are used. The class and
method information in the class file being read is kept in
the class pool named classPool. Afterward, information is
drawn from the class pool with InstructionPrinter and the
results are displayed as a printout.

As seen in Figure 9, in a byte code output, each method
in the class is separated between the MethodName lines.
Each method starts with line number 0. This method

Figure 7. Using the mock method with annotation.

Sigma J Eng Nat Sci, Vol. 42, No. 4, pp. 988−1008, August, 2024 997

returns a value with the dreturn keyword, and it also shows
that it takes parameters with the keyword lcd2_w.

These byte codes are read by the Javassist library and
keep the filename and path of the relevant class in param-
eters such as ClassPool, CtClass and CtMethod. All code
lines converted to byte code can be seen on the console
screen of the Netbeans interface, as well as output as text

documents. Another class developed for this framework is
FindObjectsInClasses. With the help of this class, each byte
code is read line by line from the output of the byte code
file and these codes are stored in the MongoDB database
as NoSQL format. For this, a class called ConnectionDB has
been created in the framework. In this class, features such as
creating a collection and accessing the data in the collection
using the methods of the com.mongodb library are gathered
in a common class. This class also provides archiving of all
JSON format data in a text document

The important point here is that the help of java string
functions is taken to retrieve the information and save it
to the database. This is done by the opcode parsing method
developed for the study. Variables used in the class, method
names, if any, the parameters they have received and the
results they have sent, all created objects, Information about
used condition and loop blocks are retrieved with the help
of string functions, respectively. and saved in MongoDB. In
addition to these, information about the opcodes used such
as invokevirtual, getfield, invokestatic, getstatic, ifge, ifle, iflt,
ifgt, ifeq, ifne, iinc, if_icmp and goto are also recorded. At
the same time, all this information is archived under system
files in text document (.txt) format according to the day and
time of the transaction. Thus, two collections are used by
MongoDB. The first of these is the collection named byte-
Coding seen in Figure 10. Under NoSQL structure, data is
listed with key-value structure. The naming of key fields is
related to the operations to be performed in some, while
in others it reminds of byte code terms. For example, the

Figure 9. An example of Bytecode.

Figure 8. Using the When-Then Standard when mocking.

Sigma J Eng Nat Sci, Vol. 42, No. 4, pp. 988−1008, August, 2024998

key name of MethodReturnType stores the value that that
method sends as a result, while the key name ifge45Line
stores the value of the operation to which the if block
corresponds.

The second collection name used in MongoDB is kayit-
lar. As seen in Figure 11, all information about classes and
methods has been recorded. So much so, that the class and
object names of the objects to be mocked are included in
this list under the mocking keyword.

Data Migration – Template Extraction
All data archived on MongoDB must be able to commu-

nicate with automated unit testing software for operations
such as data reading or writing. For this reason, a POJO
class has been written to enable communication between
the database and the software. All constructor and get-
ter-setter methods suitable for the scenarios are defined
together with their variables. The POJO class acts as a data
carrier within the framework. The data is stored in two
tables in the database. These tables were combined with ids
using join and they were communicated with each other.
Two different classes are written for the data to be read
from the database with these join operations.

The first of these is the GetItFromMongoDB class devel-
oped for software. The codes of the conditions and loops
read in run-time were kept in the byteCoding collection.
The data read in this collection is directed to FTL format
to be converted to unit test code with the help of pojo class.
Variables for keywords that start with if in the byteCoding
collection; the class name is sent to the pojo class along with
the method name and return values. Then, these values are
written to the template file named writeIfTests.ftl as a unit
test method.

The ReadDataFromDB class has been created, which
pulls data from the MongoDB database. In this class, two
collections are connected using join. All relevant variables
are both read from the database and checked if there are
fields that need to be updated for join operations. All vari-
ables are redirected to the framework’s main class. At the
same time, unit test methods are created by copying the
template variables selected for the FTL file.

All data pulled from the database is fetched with the
bearer class POJO. Together with these data stored in
the database, unit tests are automatically prepared in the
desired file format using FTL and turned into an output.
The content of these outputs are codes belonging to a new
class created based on run-time collected data.

The data produced from the parameters used in
the java class read to the frame are saved in MongoDB
and the data in the database is pulled with FTL

Figure 10. Structure of the collection named byteCoding.

Figure 11. Structure of the collection named kayitlar.

Sigma J Eng Nat Sci, Vol. 42, No. 4, pp. 988−1008, August, 2024 999

templates. A class that generates random data named
GenerateRandomJavaDataType has been written in the
framework and this random data is used where it is needed
in the application. Java string functions are also used in this
class, and with the help of these functions, it is determined
which data type will be generated randomly for the relevant
test class. All generated data is kept in java collection lists
and directed for sending to the relevant test class.

RESULTS AND DISCUSSION

Implementation of Automated Unit Test Generation
Software

After the back-end codes of the application were com-
pleted, the front-end codes were prepared and the unit test
code was produced to work in run-time on the scenarios
specified in the requirements section.

The application was developed not only as a console
environment, but also as a desktop platform. For this, a
class called UnitTestGeneratorGUI has been designed. The
screenshot given in Figure 12 is designed with this class.
The class uses the necessary hierarchy for the relevant parts
of the framework to work; it contains the functions of all
command buttons, lists and text boxes.

Many methods and class types were studied on the
developed framework, scenarios created for each alternative

situation were tried, and automatic unit test codes were cre-
ated from all of them, as planned.

Various trial tests and performance analyzes were car-
ried out within the scope of the study. Framework doesn’t
just work on variables, objects and methods. In addition,
additional features such as conditional constructs and loops
are also included. With these additional features, studies
were carried out with scenarios prepared on the framework,
and from all of them a test class file containing them and
automated unit test codes that may be suitable as planned.

As seen in the screenshot in Figure 12, the interface
consists of two main parts. First, the java code for which
the test file is to be prepared is selected with the Choose
button. Then, in the second part, the data to be sent to
the framework is prepared by using the tab object on the
screen. The content of the selected java class comes to the
Java Code File window as a dump. Each code within the
class codes will be converted to the bytecode, but any code
structure in comments or comment lines are not converted
by bytecode. This feature is available in all compilers. In the
example in the figure, this class has both conditional and
loop constructs.

When the Get Info button is clicked, the name of the
class and the names of the methods it belongs to will be
listed on the right side of the screen. For this, a class named
GetInfoAboutJavaAndByteCodeFile was designed and run
in the background. Here, first of all, the java file, which is

Figure 12. Screenshot of automated unit test generation Framework.

Sigma J Eng Nat Sci, Vol. 42, No. 4, pp. 988−1008, August, 20241000

read with the file path, is transformed into a class file by
using the JavaCompiler library. Along with this conversion,
byte code conversion of the relevant class is also performed.
After these transformations are completed, the class name
of the relevant class and the names of its methods are col-
lected with an array variable and this information is trans-
ferred to the list on the right side of the screen. When the
Generate Bytecode File button is clicked, the Bytecode File
tab shown in Figure 13 will open.

With the help of the Javassist library, the class file of
the relevant example class was created and converted to
byte code. Byte codes are created in accordance with the
standard determined by the javassist library, separated by
method names. The required values from this byte code
will be directed into the unit test classes and methods cre-
ated as a template, and unit tests will be created automati-
cally at run-time. Which test scenario will be used for this,
its test case should be selected from the drop-down list at
the top of the screen. In addition to normal test method-
ologies, there are names of test scenarios developed with
mock and stub methods. According to the structure of the
class opened with the framework, these test scenarios can
be selected and the results can be obtained.

By choosing the test case, it is determined with which
test scenario the automatic unit test will be generated.
Definitions of these scenarios and sample file names are

given in the drop-down list with their explanations. After
this selection is made, a configuration file is created, such as
the lines displayed under the Contest of the Config File title
in the figure, by clicking the Generate to ConfigFile button.
In the created configuration file; the names of the java and
class files and their path, chosen test method, the name of
the java class and the method names it belongs to, along
with the file name of the byte code, there is information
such as the creation date and time of this configuration file.

Clicking the Run All Framework button will pull all the
necessary information from this configuration file sequen-
tially. As seen in Figure 14, the command line screen opens
and the framework starts working with the information it
reads from the config.properties configuration file.

Thanks to the Maven structure, it creates three different
test class instances that belong to the test codes of the given
class according to the data it pulls from the configuration
file. At the same time, data is recorded in the database in
run-time. The documents belonging to the test classes that
come out are both saved in the system as a file and also
collectively reflect the results on the command line screen
as seen in the figure.

After the command line screen is closed, the Export Test
Results to Lists button is clicked. The inventories of these
unit test files, which are created and then saved in the sys-
tem, are presented to the user as a screen output in the third

Figure 13. Bytecode conversion of the Java class.

Sigma J Eng Nat Sci, Vol. 42, No. 4, pp. 988−1008, August, 2024 1001

Figure 15. Display of all possible unit test methods.

Figure 14. run-time of framework and obtaining test results.

Sigma J Eng Nat Sci, Vol. 42, No. 4, pp. 988−1008, August, 20241002

tab of the application, named Test Results, as seen in Figure
15. There are three sub-tabs on this screen. The first of these
tabs is called All Test File and this area contains codes for all
possible test methods. The second tab contains all possible
unit test methods related to loops and the third tab all pos-
sible unit test methods related to condition structures.

The fourth tab of the application belongs to the screen
named MongoDB – JSon View Format. Figure 16 shows two
tabs. There are also two NoSQL collection structures in
MongoDB software. In the first tab; when the data collected
by the framework is logged, class name and method names
of the relevant java class, the parameters it takes, values
associated with objects, the names belonging to the class
names they have, return values from methods, It is the list
of the records collection that includes information such as
whether there is a mocking or not.

In the second tab; The data of the byteCoding collection
can be seen. The analysis of the loop and condition struc-
tures of each method in the Java class was made separately,
and the summary information of the values related to them
was collected and recorded separately.

In Figure 17, a screenshot of the results of the code cov-
erage of each test scenario generated from this software is
given.

Realization of Alternative Situations Scenario in Method
The scenarios given under the title of alternative sit-

uations in the method are analyzed under the title of this
section. In this case, the code coverage result of the test sce-
nario of a class and a method structure created at a simple
level is given in Figure 18. According to this result, it is seen
that a successful test is produced with the percentage value
of the generated test code.

Figure 17. Code coverage results of scenarios.

Figure 16. JSon format of kayitlar collection in MongoDB.

Sigma J Eng Nat Sci, Vol. 42, No. 4, pp. 988−1008, August, 2024 1003

It does not always work with a simple method. There
are other alternative method structures in the class. For this
reason, thanks to the conditional structure in the method,
the test developer resorts to alternative ways while prepar-
ing the test scenario. This conditional structure gives the
user a kind of guidance on whether the method to be writ-
ten unit test will work correctly. The result of the code cov-
erage of the scenario of the output given by the automatic
unit test creation software is given in Figure 19. According
to this result, it is seen that a successful test is produced with
the percentage value of the generated test code. Because the
condition structure is used in this scenario, the percentage
value in the missed branches column has changed.

To summarize this section’s analysis results of this
section; objects used in a method, loops, and conditional
statements are checked and recorded at the time of opera-
tion with their relevant data and unit test code generated.
However, when there is more than one method in a class,

all the values in each method are checked and solutions are
developed for each of them.

Realization of Different Objects Scenario in Method
The scenarios given under the title of different objects

in the method are analyzed under the title of this section. In
this case, different objects are checked within the method as
priority. For this, scenarios are realized by creating objects
from classes that have interdependencies. For this scenario
in the method, a unit test was prepared with two different
methods. These methods are realized with the use of mock
and stub objects. As can be seen in Figure 20, the result
regarding the code coverage of the scenario obtained using
the stub method has been obtained.

In another scenario, Mockito library is used together
with JUnit. With the addition of this library, the object is
mocked up. In Figure 21, the code coverage result of the
fourth scenario is given. Here, after mocking, both the

Figure 21. Code coverage result of Scenario4.

Figure 20. Code coverage result of scenario3.

Figure 19. Code coverage result of Scenario2.

Figure 18. Code coverage result of Scenario1.

Sigma J Eng Nat Sci, Vol. 42, No. 4, pp. 988−1008, August, 20241004

percentage value of RecordCalculation and the value of
CalculateCredit2 appear low.

Another use of the mock method is with annotations.
Mockito directly marks the object with annotations and
performs the mocking process. In Figure 22, the code cov-
erage result of the fifth scenario is given. Here, after mock-
ing, both the percentile value of RecordCalculation and the
value of CalculateCredit2 appear low.

Another feature that needs attention in mocked objects
is the value transformations of the objects. Methods and
objects in the mocked object have their default values. For
this reason, baseline values cannot be generated in the unit
test environment from time to time. In order to overcome
this, Given-When-Then standards are followed. Figure 23
shows how this situation was resolved with a test scenario.

In Figure 24, the code coverage result of the sixth sce-
nario is given. Here, the existence of the mocked object and

Figure 24. Code coverage result of scenario6.

Figure 23. Realization of scenario 6.

Figure 22. Code coverage result of scenario5.

Sigma J Eng Nat Sci, Vol. 42, No. 4, pp. 988−1008, August, 2024 1005

the InterestRate class can be interpreted from the falling
percentage rate.

Thus, it is shown how six important scenarios are
resolved in automated unit test creation.

Examination of the Developed Framework in Real-World
Unit Test Case Studies

Experiments were conducted on a computer with an i7
2.50 GHz CPU and 16.0 GB memory, running on Windows
10 with JDK 11. For the developed framework, real-world
unit test case studies are also reviewed. Multiple experi-
ments were conducted for each test scenario given in the
study. For example, for each test case, five independent and
simple Java classes were selected from the SF110 Corpus of
Classes [22].

SF110 classes collection is an open source repository of
100 sample java projects. Within this repository, unit tests
of each project are also included. Line spacing of each java
class is generally; It is 10 - 100, 100 - 1000 and 1000 - 10000.
These experiments included code blocks and class struc-
tures that could yield different CPU and memory results,
such as a simple test method and a comprehensive test
method like mock. In particular, data obtained from byte-
code files were transformed using an opcode parsing method
in this test production framework. Therefore, the number
of lines of code (LOC) for this was also added to the table.
The results such as CPU, memory, time, number of lines
of code in Java class files and number of lines of code in
bytecode files, which are approximate value ranges for all
examples, are shown in Table 1.

In this study, test scenarios were determined and test
cases were classified in a table. Test cases were examined
in six different categories: test case of a simple java method
(TC - 01), test case created for alternative situations in a
java method (including complex methods with conditional
and/or loop structures) (TC - 02), test case created for dif-
ferent objects in a java method using the Stub method (TC
- 03), test case resolved with the Mockito library (TC - 04),
test case resolved with the Mock method’s annotations (i.e.
MockitoJUnitRunner) (TC - 05), and test case created for
value conversions performed for fake objects using the
Given-When-Then standard (TC - 06).

According to the results, the conversion time varies
with an increase in the number of code lines for bytecode
and Java classes. Additionally, there is an increase in dif-
ficulty levels of test scenarios from TC - 01 to TC - 06,
which also affects the conversion time. Furthermore, the
processing of different classes, object creation, mock-stub,
loop and conditional structures were considered in the
analysis.

The comparison of the automatic unit test creation soft-
ware and the processes performed with it by collecting the
generated run-time data with other widely used automatic
unit test creation tools in the literature is discussed in the
discussion and conclusion section.

The application of this developed study has been
published at https://github.com/SevdanurGENC/
Nano-Automatic-Unit-Test-Generator.

Table 1. Approximate value ranges obtained from The Opcode Parsing Method when considering Bytecode LOC.

Test Case Bytecode LOC Java Class LOC Time (Sec) CPU (%) Memory (Mb)

TC – 01
5 – 200 10 – 100 10 – 13

15 – 20
15 – 18

200 – 2100 100 – 1000 13 – 16 18 – 21
2100 – 22000 1000 – 10000 16 – 20 21 – 25

TC – 02
5 – 230 10 – 100 12 – 16

17 – 22
16 – 21

230 – 2250 100 – 1000 16 – 19 21 – 26
2250 – 23200 1000 – 10000 19 – 22 26 – 33

TC – 03
5 – 250 10 – 100 13 – 17

17 – 25
19 – 25

250 – 2340 100 – 1000 17 – 22 25 – 33
2340 – 24000 1000 – 10000 22 – 25 33 – 39

TC – 04
5 – 270 10 – 100 15 – 18

20 – 30
22 – 31

270 – 2400 100 – 1000 18 – 24 31 – 39
2400 – 27900 1000 – 10000 24 – 29 39 – 43

TC – 05
5 – 300 10 – 100 16 – 19

23 – 39
25 – 35

300 – 2800 100 – 1000 19 – 28 35 – 49
2800 – 30000 1000 – 10000 28 – 37 49 – 61

TC – 06
5 – 320 10 – 100 17 – 25

23 – 42
29 – 41

320 – 2950 100 – 1000 25 – 32 41 – 55
2950 – 31500 1000 – 10000 32 – 41 55 - 73

Sigma J Eng Nat Sci, Vol. 42, No. 4, pp. 988−1008, August, 20241006

CONCLUSION

In this study, an application has been developed that
collects data at run-time with the help of Java Agent, stores
the collected data in the NoSql database and transforms this
data into unit test using a JTL template engine. The studies
conducted and the developed tool use a different structure
compared to previous studies in the literature in various
aspects.

A structure has been created to respond to all possible
test scenarios mentioned in the study. When the resulting
test classes are run in JUnit, results about which class is
being tested can be easily obtained. At the same time, it was
observed that successful results were obtained with code
coverage. Through this framework, which is easy to use for
users, unit tests are created automatically in a very short
time.

Recent studies show that each test tool prepared for
studies is intended to generate test scenarios healthily auto-
matically. While most of the studies were prepared with the
Java programming language, programming languages such
as C/C++ and C# make up the rest. Many of these are desk-
top applications, while the rest are developed as web appli-
cations or plug-ins. Usually, these test cases are randomly
generated to check the running of the programs. For the
development of random tests and their derivatives, tech-
niques based on dynamic symbolic execution are mostly
preferred.

Pex, one of the important studies in the literature, is a
tool developed for unit testing of C# code. It generates test
inputs with different parameters for test scenarios by using
dynamic symbolic execution techniques. It also produces
results based on the return values ​​of the methods. However,
it is limited to classes that require complex method arrays.
Randoop and EvoSuite can be given as examples of other
important studies in the literature made in the Java pro-
gramming language. Randoop is known for its ease of use,
but unlike EvoSuite, it cannot test complex code structures
without guidance. It also aims to produce compact test
cases with high code coverage. When using code coverage,
a common systematic approach is to select a coverage target
(for example, a control flow) at a time and generate a test
case that implements that specific objective. They devel-
oped this technique by working with the bytecode API.
In this study, each control flow of the condition and loop
blocks is controlled by the opcode parsing method devel-
oped on the bytecode. Separate automatic unit test meth-
ods were created with solutions suitable for all conditions.
At the same time, all objects defined within the Java class
are individually determined by the bytecode. During unit
test generation, it is decided whether to use the mock or
stub method in accordance with the selected test case while
transferring these objects. While preparing the output of
the code of the unit test, notation operations are created
automatically according to the chosen test case.

Both TestFul and eToc tools used a search-based
approach aimed at creating JUnit test cases to maximize
structural coverage. However, eToc has not been updated
for several years. Therefore, it does not include the latest
developments for generating test data. On the other hand,
TestFul differs from EvoSuite in many critical details and
does not have a fully automated feature. For example,
TestFul requires manual editing of XML files for each tested
class. EvoMaster, an automatic test generation RESTful API,
developed using evolutionary algorithm and optimization
techniques such as the MIO algorithm. It can export test
files in JSON format and can be used in integration with
software such as EvoMaster. Within the scope of this study,
both the data used in the Java class imported to the applica-
tion and random data that have a similar approach to these
data are produced and used as parameters in the methods
required for unit testing. All these operations are recorded
at run-time both in a backup file to the system and in a
NoSql collection in JSON structure.

Charreteur et al., in their work where they used byte
code, they used the limited memory variable method in
the java virtual machine. Their application named JAUT,
which tests input generation at the bytecode level, performs
constraint-based test input generation from Java bytecode.
Therefore, it is mainly associated with other works named
JPF, Cute and Pex. Unlike these three tools, JAUT performs
backward discovery, i.e. it starts from a target bytecode
location and discovers a suitable path to step-by-step input.
In fact, JPF, Cute, and Pex rely on forward symbolic exe-
cution, which involves symbolically evaluating instructions
along a path in the same order as execution. Within the
scope of this study, a system that converts byte codes with
opcode parsing method has been prepared and a different
perspective has been brought to these studies. Each opcode
line obtained after the conversion of the Java class to java
byte code was analyzed in turn, and the object, variable or
input-output parameters of the opcode, if any, were deter-
mined. These values ​​were then used in unit test generation.

On the subject of Assertion, Randoop allows descrip-
tions of the source code to specify the observer methods
to be used to create the annotation. Orstra generates asser-
tions based on observed return values ​​and object states, and
adds assertions to check future work against these observa-
tions. While such approaches can be used to produce effi-
cient objects, they do not serve to determine which of these
assertions are actually useful, and so such techniques can
only be checked in regression testing. In contrast, the µTest
tool uses mutation testing to select an effective subset of
assertions via EvoSuite. Within the scope of this study, the
case can be selected from a list of the test scenario option-
ally from the user through the application. In accordance
with this test case, annotations are turned into unit tests
while turning them into outputs via FTL.

It is thought that the tool developed within the scope
of this study will also take an important place in the
national software testing field. The developed tool is

Sigma J Eng Nat Sci, Vol. 42, No. 4, pp. 988−1008, August, 2024 1007

intended to be actively used in unit tests to be carried
out by software testers. This tool, which can respond
to the most basic test scenarios in its current form, has
a structure that can be developed about how it should
behave in much more advanced scenarios, since it has a
bytecode-based framework. One of the biggest reasons
for this is that Java has an open source system. Different
modules can also be developed for this framework that
will translate other relevant bytecodes in future test sce-
narios that may be required.

With the development of the automatic unit test cre-
ation software, which is targeted as a domestic product,
automatic unit tests are created after the opcode conversion
processes are carried out. This work currently works for a
single java file defined, excluding linked classes of objects
generated within the class. In future studies, after adding
multiple Java files as project integrity to the framework,
generating possible automatic unit tests according to the
specified test scenarios is planned. In addition, the latest
developments will be compared with all other examples
given for SF110 corpus of classes [23]. At the same time,
random test data within the framework is currently only
performed for numerical data types. Another goal of the
study is to both replicate these data types and perform
random data assignments from a test data set that can be
exported by the user. For this, it is planned to use fuzz test-
ing methods.

AUTHORSHIP CONTRIBUTIONS

Authors equally contributed to this work.

DATA AVAILABILITY STATEMENT

The authors confirm that the data that supports the
findings of this study are available within the article. Raw
data that support the finding of this study are available from
the corresponding author, upon reasonable request.

CONFLICT OF INTEREST

The author declared no potential conflicts of interest
with respect to the research, authorship, and/or publication
of this article.

ETHICS

There are no ethical issues with the publication of this
manuscript.

REFERENCES

	 [1]	 Damar M, Özdağoğlu G, Özdağoğlu A. Software
quality and standards on a global scale: Trends in
the literature from scientific and sectoral perspec-
tive. Alphanumeric J 2018;6:325-348. [CrossRef]

	 [2]	 Felice S. JUnit Vs TestNG: Differences between
JUnit and TestNG. Available at: https://www.brows-
erstack.com/guide/junit-vs-testng. Accessed on Jun
26, 2024.

	 [3]	 Graham D, Fewster M. Software test automa-
tion: effective use of test execution tools. Boston:
Addison-Wesley Professional; 1999.

	 [4]	 Csallner C, Smaragdakis Y. JCrasher: An auto-
matic robustness tester for Java. Softw Pract Exp
2004;34:1025-1050. [CrossRef]

	 [5]	 Pacheco C, Lahiri SK, Ernst MD, Ball T. Feedback-
directed random test generation. In proceedings
of the 29th International Conference on Software
Engineering; 2007: Minneapolis, MN, USA. IEEE;
2007. pp.75-84. [CrossRef]

	 [6]	 Pacheco C, Ernst MD. Randoop: Feedback-
directed random testing for Java. Proceedings of
the Conference on Object-Oriented Programming
Systems, Languages, and Applications, OOPSLA
2007:815-816. [CrossRef]

	 [7]	 Simons AJH. JWalk: A tool for lazy, systematic test-
ing of java classes by design introspection and user
interaction. Autom Softw Eng 2007;14:369-418.
[CrossRef]

	 [8]	 Sen K, Marinov D, Agha G. Cute: A concolic unit
testing engine for C. Available at: https://www.cs.co-
lumbia.edu/~junfeng/08fa-e6998/sched/readings/
cute.pdf. Accessed Jun 26, 2024.

	 [9]	 Charreteur F, Gotlieb A. Constraint-based test input
generation for java bytecode. In proceedings of the
21st IEEE International Symposium on Software
Reliability Engineering; 2010 Nov; San Jose, CA,
USA. IEEE; 2012. [CrossRef]

[10]	 Fraser G, Arcuri A. Evosuite: automatic test suite
generation for object-oriented software. In proceed-
ings of the 19th ACM SIGSOFT symposium and
the 13th European Conference on Foundations of
Software Engineering; 2011 Sept; New York, United
States. 2011. pp. 416-419. [CrossRef]

[11]	 Sakti A, Pesant G, Gueheneuc YG. Instance gener-
ator and problem representation to improve object
oriented code coverage. IEEE Trans Softw Eng
2015;41:294-313. [CrossRef]

[12]	 Tanno H, Zhang X, Hoshino T, Sen K. TesMa and
CATG: automated test generation tools for models
of enterprise applications. In proceedings of the
37th IEEE International Conference on Software
Engineering; 2015 May 16-24; Florence, Italy. IEEE;
2015. pp. 717-720. [CrossRef]

[13]	 Tzoref-Brill R, Sinha S, Abu Nassar A, Goldin
V, Kermany H. TackleTest: A tool for amplify-
ing test generation via type-based combinato-
rial coverage. Available at: https://research.ibm.
com/publications/tackletest-a-tool-for-amplify-
ing-test-generation-via-type-based-combinatori-
al-coverage. Accessed on Jun 26, 2024.

https://doi.org/10.17093/alphanumeric.404102
https://doi.org/10.1002/spe.602
https://doi.org/10.1109/ICSE.2007.37
https://doi.org/10.1145/1297846.1297902
https://doi.org/10.1007/s10515-007-0015-3
v
https://doi.org/10.1145/2025113.2025179
https://doi.org/10.1109/TSE.2014.2363479
https://doi.org/10.1109/ICSE.2015.231

Sigma J Eng Nat Sci, Vol. 42, No. 4, pp. 988−1008, August, 20241008

[14]	 Higo Y. Constructing dataset of functionally equiv-
alent Java methods using automated test generation
techniques. Available at: https://papers.ssrn.com/
sol3/papers.cfm?abstract_id=4543198. Accessed on
Jun 26, 2024. [CrossRef]

[15]	 Lukasczyk S, Fraser G. Pynguin: Automated unit
test generation for python. Available at: https://arxiv.
org/abs/2202.05218. Accessed on Jun 26, 2024.

[16]	 Bardin S, Kosmatov N, Marcozzi M, Delahaye
M. Specify and measure, cover and reveal: A uni-
fied framework for automated test generation. Sci
Comput Program 2021;207:102641. [CrossRef]

[17]	 Arcuri A. RESTful API automated test case gen-
eration with EvoMaster. ACM Trans Softw Eng
Methodol 2019;28:1-37. [CrossRef]

[18]	 Venners B. Bytecode basics : A first look at the
bytecodes of the Java virtual machine. Available
at: https://www.infoworld.com/article/2077233/
bytecode-basics.html?page=2. Accessed on Jun 26,
2024.

[19]	 McMinn P. Search-based software testing: past, pres-
ent and future. In proceedings of the IEEE Fourth
International Conference on Software Testing,
Verification and Validation Workshops; 2011 Mar
21-25; Berlin, Germany. IEEE; 2011. pp. 153-163.
[CrossRef]

[20]	 Venkatesan P, Rozario RG, Fiaidhi J. Junit frame-
work for unit testing. Available at: https://www.
techrxiv.org/doi/full/10.36227/techrxiv.12092259.
v1. Accessed on Jun 26, 2024.

[21]	 FreeMarker. What is a Apache FreeMarker?
Available at: https://freemarker.apache.org/index.
html. Accessed on Jun 26, 2024.

[22]	 Evosuite. SF110 corpus of classes. Available at:
https://www.evosuite.org/experimental-data/sf110/.
Accessed on Jun 26, 2024.

[23]		 Fraser G, Arcuri A. A large-scale evaluation of auto-
mated unit test generation using evosuite. Available at:
https://www.evosuite.org/wp-content/papercite-data/
pdf/tosem_evaluation.pdf. Accessed on Jun 26, 2024.

https://doi.org/10.2139/ssrn.4543198
https://doi.org/10.1016/j.scico.2021.102641
https://doi.org/10.1145/3293455
https://doi.org/10.1109/ICSTW.2011.100

