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Abstract 

 

The aim of this study is to obtain the new exact solutions of the Bogoyavlenskii equation (BE) using the 

modified F-expansion method. With the aid of symbolic computation, this method has been successfully 

implemented in the BE and the exact solutions obtained have been expressed by the hyperbolic 

functions, trigonometric functions, and rational functions. To the best of our knowledge, the BE has not 

been previously investigated by the modified F-expansion method. The findings of this study 

demonstrate that the suggested method is highly effective, powerful, and practical for obtaining the exact 

solutions of one dimensional and higher-dimensional nonlinear partial differential equations arising in 

mathematical physics and engineering. 
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1. Introduction 
 

In science, many important complex phenomena in various fields can be described by nonlinear 

partial differential equations (NPDEs) and these equations are widely used to describe many 

phenomena and processes in various scientific fields. 

 

In recent years, the study of exact solutions to highly nonlinear partial differential equations has 

been of great importance. In particular, the investigation of the traveling wave solutions, exact 

or numerical solutions to NPDEs play an important role in nonlinear science. These equations 

are mathematical models derived from complex physical phenomena that arise in engineering 

and applied mathematics, ranging from physics to biology, chemistry, optics, fiber optics, 
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mechanics, and numerous other fields. Furthermore, investigating exact solutions of NPDEs 

will enhance our understanding of these phenomena. 

 

In the recent years, many powerful and reliable methods have been developed to obtain exact 

solutions of NPDEs, such as the the modified simple equation method [1-4], different types of 

F-expansion methods [5-10], several forms of (𝐺′/𝐺)-expansion methods [11-18], exp-function 

method [19-23] and many more [24-29].  

 

In this paper, we study the following Bogoyavlenskii equation (BE)  [41]  

 

4𝑢𝑡 + 𝑢𝑥𝑥𝑦 − 4𝑢2𝑢𝑦 − 4𝑢𝑥𝑣 = 0 ,             (1) 

𝑢𝑢𝑦 = 𝑣𝑥  

 

where  𝑢(𝑥, 𝑦, 𝑡) is the physical field and 𝑣(𝑥, 𝑦, 𝑡) is some potential. The BE is used to describe 

some kinds of waves on the sea surface. The BE was first proposed by Bogoyavlenskii [41], 

describing the (2+1)-dimensional interaction of a Riemann wave propagating along the 𝑦-axis 

with long waves propagating along the 𝑥-axis.  

 

Several different methods have been applied to find exact solutions to the Bogoyavlenskii 

equation. In [30], exact solutions of Eq. (1) were obtained by the singular manifold method and 

the traveling wave method, respectively. The (𝐺′/𝐺)-method was utilized to obtain exact 

traveling wave solutions of the BE [31]. In [32], the exact traveling wave solutions of the 

Bogoyavlenskii equation using a modified extended tanh-function method is presented. In [33], 

the exp(-Φ(𝜉))-expansion method was used to find  exact solutions of the BE. The 

exact traveling wave solutions of the Bogoyavlenskii equation were constructed using modified 

method of simplest equation in [34]. In [35], Lie symmetry method to find the exact solutions 

of the BE equation was used. (𝐺′/𝐺,1/𝐺)-expansion and (1/𝐺′)-expansion techniques were used 

for obtaining traveling wave solutions of the Bogoyavlenskii equation in [36]. In paper [37], 

the dynamical behavio,r and exact traveling wave solutions for a (2+1)-dimensional 

Bogoyavlenskii coupled system by using the modified extended tanh method via a Riccati 

equation were investigated. In paper [38] three various techniques, [39] nonlocal symmetry 

method and [40] improved  𝐺′/𝐺2 and simplified  tan(𝜙(𝜉)/2) methods were used for solutions 

of the BE. 

 

The motivation of this paper is to investigate the new exact solutions of the BE. Using the 

proposed modified F-expansion method [42], we found some new rational functions, 

trigonometric functions, and hyperbolic functions that can be the exact solutions to this 

equation.  

 

The structure of this article is organized as follows: Section 1 provides an introduction to the 

topic. In section 2, we present a detailed description of the modified F-expansion method. 

Section 3 applies this method to find exact solutions of the Bogoyavlenskii equation. Finally, 

section 4 summarizes the results obtained and presents the conclusion of the study. 
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2. Description of the modified F-expansion method 
 

In this section we describe the modified F-expansion method. Considering a given nonlinear 

partial differential equation  

 

𝑃(𝑢, 𝑢𝑥, 𝑢𝑡 , 𝑢𝑥𝑥, 𝑢𝑡𝑡 , … ) = 0             (2) 

 

with independent variables 𝑥, 𝑡 and dependent variable 𝑢. 

P is a polynomial in 𝑢 = 𝑢(𝑥, 𝑡) and its partial derivatives. In the following, we outline the 

main steps of the modified F-expansion method [42]. 

 

Step1: In Eq.(2), wave transformation 

 

 𝑢(𝑥, 𝑡) = 𝑢(𝜉), 𝜉 = 𝑘𝑥 + 𝜆𝑡               (3) 

 

where 𝑘 and 𝜆 are constants to determined later is used. Substituting Eq.(3) into Eq.(2),  we get 

a nonlinear ordinary differential equation (NODE) for 𝑢(𝜉), 

 

𝑄(𝑢, 𝑢′, 𝑢′′, … ) = 0.              (4) 

 

Step2: Suppose that the solution 𝑢 of Eq.(4) can be expressed as a finite series in the form 

 

𝑢 = 𝑎0 + ∑ (𝑎𝑖𝐹𝑖(𝜉) + 𝑏𝑖𝐹−𝑖(𝜉))𝑁
𝑖=1              (5) 

 

where  𝑎0, 𝑎𝑖 , 𝑏𝑖 , (𝑖 = 1, 2, … 𝑁) are constant to be determined later. The right-hand side of 

Eq.(5) is also a polynomial in 𝐹(𝜉) and 𝐹(𝜉) is a solution of the auxiliary NODE 

 

𝐹′ = 𝐴 + 𝐵𝐹 + 𝐶𝐹2              (6) 

 

where 𝐹′ =
𝑑𝐹(𝜉)

𝑑𝜉
  and 𝐴, 𝐵, 𝐶 are constants. 

 

Step3: The positive integer 𝑁 can be determined by considering the homogeneous balance 

between the highest order derivative and the highest degree nonlinear term appearing in (4). 

 

Step4: Inserting (5) into (4) together, and using (6), then collecting all terms with the same 

degree of 𝐹(𝜉) together, we reach a polynomial in 𝐹(𝜉). We set each coefficient of the resulting 

polynomial to zero, yield a set of algebraic equations for 𝑎0, 𝑎𝑖 , 𝑏𝑖 , 𝑘, 𝜆 . 
 

Step5: Solving the algebraic equations, we get the constants 𝑎0, 𝑎𝑖 , 𝑏𝑖   (𝑖 = 1, 2, … 𝑁), 𝑘, 𝜆. 

The solutions of the first order NODE Eq.(6) have been well known for us (Table 1). 

Substituting 𝑎0, 𝑎𝑖 , 𝑏𝑖    (𝑖 = 1, 2, … , 𝑁), 𝑘, 𝜆 and solutions of Eq.(6) into Eq.(5) we obtain more 

exact solutions of Eq.(2). 
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Table 1. Relations between 𝐴, 𝐵, C, and corresponding  𝐹(𝜉) in Eq. (6) 

Values of 𝐴, 𝐵, 𝐶         𝐹(𝜉) 

𝐴 = 0 ,  𝐵 = 1,   𝐶 = −1 
 1

2
+

1

2
tanh(

1

2
𝜉) 

𝐴 = 0 ,  𝐵 = −1,   𝐶 = 1 
 1

2
−

1

2
coth(

1

2
𝜉) 

𝐴 =
1

2
 ,  𝐵 = 0,   𝐶 = −

1

2
 

 
coth (𝜉) ± csch(𝜉) , tanh(𝜉) ±isech(𝜉) 

𝐴 = 1 ,  𝐵 = 0,   𝐶 = −1  tanh(𝜉) , coth(𝜉) 

𝐴 =
1

2
 ,  𝐵 = 0,   𝐶 =

1

2
 

 
sec(𝜉) + tan(𝜉) , csc(𝜉) − cot(𝜉) 

𝐴 = −
1

2
 ,  𝐵 = 0,   𝐶 = −

1

2
 

 
sec(𝜉) − tan(𝜉) , csc(𝜉) + cot(𝜉) 

𝐴 = 1 (−1) ,  𝐵 = 0,   𝐶 = 1 (−1) 
 

tan(𝜉) , cot(𝜉) 

𝐴 = 0 ,  𝐵 = 0,   𝐶 ≠ 0 

 
−

1

𝐶𝜉+𝑑
 , (𝑑 is arbitrary constant) 

𝐴 ≠ 0 ,  𝐵 = 0,   𝐶 = 0  A𝜉 

𝐴 ≠ 0 ,  𝐵 ≠ 0,   𝐶 = 0 
 −𝐴 + exp (𝐵𝜉)

𝐵
 

 

3. Exact solutions of Bogoyavlenskii equation 
 

In this section, we will make use of the modified F-expansion method and symbolic 

computation to find the exact solutions of Bogoyavlenskii equation.  

 

Let us consider the Bogoyavlenskii equation (1). We seek the traveling wave solution for Eq.(1) 

in the form 

 

𝑢(𝑥, 𝑦, 𝑡) = 𝑈(𝜉) , 𝑣(𝑥, 𝑦, 𝑡) = 𝑉(𝜉),      𝜉 = 𝑥 + 𝑦 − 𝜆𝑡.               (7) 

 

By using this transformation into Eq.(1), we have  

 

 −4𝜆𝑈′ + 𝑈′′′ − 4𝑈2𝑈′ − 4𝑈′𝑉 = 0 ,             (8a) 

𝑈𝑈′ = 𝑉′ .             (8b) 

 

First, we integrate Eq.(8b) w.r.t. 𝜉, and letting the integration constant equal to zero for 

simplicity, and substitute in Eq.(8a). Next integrating Eq.(8a) w.r.t 𝜉, we obtain  

 

𝑈′′ − 2𝑈3 − 4𝜆𝑈 = 0 ,            (9a) 

𝑉 =
1

2
𝑈2.              (9b) 
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Considering the homogeneous balance, the highest order derivative term 𝑈′′ with the nonlinear 

term 𝑈3 , we get 𝑁 = 1. Hence for 𝑁 = 1, the form of the solution of the NODE in Eq.(9a) 

using the Eq.(5) can be expressed as 

 

𝑈(𝜉) = 𝑎0 + 𝑎1𝐹(𝜉) +
𝑏1

𝐹(𝜉)
                                                                    (10) 

 

where 𝑎0, 𝑎1, 𝑏1  are constants to be determined later.  

 

Substituting Eq.(10) into Eq.(9a) and using Eq.(6), the left-hand side of Eq.(9a) can be 

converted into the finite series in powers of 𝐹(𝜉).  

 

Collecting all the terms with the same powers of 𝐹(𝜉) and equating all of the obtained 

coefficients of each power of  𝐹(𝜉) to zero, we acquire the following system of nonlinear 

algebraic equations for the unknown constants 𝑎0, 𝑎1, 𝑏1, 𝜆. 

 

𝐹−3 ∶    2𝑏1𝐴2 − 2𝑏1
3 = 0, 

𝐹−2 ∶   3𝑏1𝐴𝐵 − 6𝑎0𝑏1
2 = 0, 

𝐹−1 ∶    𝑏1𝐵2 + 2𝑏1𝐴𝐶 − 4𝑏1𝜆 − 6𝑎0
2𝑏1 − 6𝑎1𝑏1

2 = 0,       (11) 

𝐹0   ∶    𝑎1𝐴𝐵 + 𝑏1𝐵𝐶 − 12𝑎0𝑎1𝑏1 − 2𝑎0
3 − 4𝑎0𝜆 = 0, 

𝐹1   ∶   𝑎1 𝐵2 + 2𝑎1𝐴𝐶 − 4𝑎1𝜆 − 6𝑎0
2𝑎1 − 6𝑎1

2𝑏1 = 0, 

𝐹2   ∶    3𝑎1𝐵𝐶 − 6𝑎0𝑎1
2 = 0, 

𝐹3   ∶    2𝑎1𝐶2 − 2𝑎1
3 = 0. 

 

Solving this algebraic system (11) by Matlab, we get many solution sets as follows: 

 

Case-1: When 𝐵 = 0, we have 

Set11:  𝑎0 = 0 ,  𝑎1 = 0 ,  𝑏1 = ±𝐴 ,  𝜆 = 𝐴𝐶 2⁄  

Set12:  𝑎0 = 0 ,  𝑎1 = ±𝐶 ,  𝑏1 = ±𝐴 ,  𝜆 = −𝐴𝐶   

Set13:  𝑎0 = 0 ,  𝑎1 = ±𝐶 ,  𝑏1 = ∓𝐴 ,  𝜆 = 2𝐴𝐶 

 

Case-2: When 𝐴 = 0, we have 

Set21:  𝑎0 = ±𝐵 2⁄  ,  𝑎1 = ±𝐶 ,  𝑏1 = 0 ,  𝜆 = −𝐵2 8⁄  

 

Case-3: when 𝐴 = 0, 𝐵 = 0, we have 

Set31:  𝑎0 = 0 ,  𝑎1 = ±𝐶 ,  𝑏1 = 0 ,  𝜆 = 0 

 

Many exact solutions of Eq.(1) can be obtained by substituting the various values of A, B, and 

C and the function F(ξ) in Table 1. The exact solutions of the Bogoyavlenskii equation are in 

the form of hyperbolic functions, trigonometric functions, and rational functions. 

 

Now by substituting the values of 𝑎0, 𝑎1, 𝑏1 , and 𝜆  corresponding to the parameter values in 

Case-1, Case-2,  and Case-3 and using  Table 1., we give some of the exact solutions of the BE: 

 

Solution Set-1:  

When  𝑨 = 𝟏, and  𝑪 = −𝟏, from Table 1., then 𝐹(𝜉) = tanh(𝜉)  or 𝐹(𝜉) = coth(𝜉).   

By Case-1, we get the following hyperbolic function exact solutions: 
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From Set11:   

𝑢1𝑎(𝑥, 𝑦, 𝑡) = 𝑈1𝑎(𝜉) = ±
1

tanh (𝜉)
 ,  

𝑣1𝑎(𝑥, 𝑦, 𝑡) = 𝑉1𝑎(𝜉) =
1

2
(

1

tanh (𝜉)
)

2
   

or 

𝑢1𝑏(𝑥, 𝑦, 𝑡) = 𝑈1𝑏(𝜉) = ±
1

coth (𝜉)
 ,  

𝑣1𝑏(𝑥, 𝑦, 𝑡) = 𝑉1𝑏(𝜉) =
1

2
(

1

coth (𝜉)
)

2
   

where 𝜉 = 𝑥 + 𝑦 +
1

2
𝑡. 

 

From Set12:   

𝑢2𝑎(𝑥, 𝑦, 𝑡) = 𝑈2𝑎(𝜉) = ∓tanh(𝜉) ±
1

tanh (𝜉)
 ,  

𝑣2𝑎(𝑥, 𝑦, 𝑡) = 𝑉2𝑎(𝜉) =
1

2
(∓ tanh(𝜉) ±

1

tanh (𝜉)
)

2

 

or 

𝑢2𝑏(𝑥, 𝑦, 𝑡) = 𝑈2𝑎(𝜉) = ∓ coth(𝜉) ±
1

coth (𝜉)
 ,  

𝑣2𝑏(𝑥, 𝑦, 𝑡) = 𝑉2𝑏(𝜉) =
1

2
(∓coth(𝜉) ±

1

coth (𝜉)
)

2

 

where 𝜉 = 𝑥 + 𝑦 − 𝑡. 
 

When 𝑨 = 𝟏/𝟐, and  𝑪 = −𝟏/𝟐, from Table 1., then 𝐹(𝜉) = coth (𝜉) ± csch(𝜉)  or 

𝐹(𝜉) = tanh(𝜉) ±isech(𝜉) . 

 

By Case-1, we get the following hyperbolic function exact solutions:  

From Set11:  by using 𝐹(𝜉) = coth (𝜉) ± csch(𝜉), 

𝑢3𝑎(𝑥, 𝑦, 𝑡) = 𝑈3𝑎(𝜉) = ±
1

2(coth(ξ)±csch(𝜉))
 ,  

𝑣3𝑎(𝑥, 𝑦, 𝑡) = 𝑉3𝑎(𝜉) =
1

2
(±

1

2(coth(ξ)±csch(𝜉))
)

2
   

where 𝜉 = 𝑥 + 𝑦 +
1

8
𝑡. 

From Set12:   

 𝑢4𝑎(𝑥, 𝑦, 𝑡) = 𝑈4𝑎(𝜉) = ∓
1

2
(coth(ξ) ± csch(𝜉)) ±

1

2 (coth(ξ)±csch(𝜉))
 ,  

𝑣4𝑎(𝑥, 𝑦, 𝑡) = 𝑉4𝑎(𝜉) =
1

2
(𝑈4𝑎(𝜉))

2
 

where 𝜉 = 𝑥 + 𝑦 −
1

4
𝑡. 

In a similar manner, by using 𝐹(𝜉) = tanh(𝜉) ±isech(𝜉), one can easily obtained 𝑢3𝑏(𝑥, 𝑦, 𝑡), 

𝑣3𝑏(𝑥, 𝑦, 𝑡), and 𝑢4𝑏(𝑥, 𝑦, 𝑡), 𝑣4𝑏(𝑥, 𝑦, 𝑡) solutions. 

 

When 𝑨 = 𝟏/𝟐, and  𝑪 = 𝟏/𝟐, from Table 1., then  F(ξ) = sec(𝜉) + tan(𝜉) or 

F(ξ) = csc(𝜉) − cot(𝜉). 

 

By Case-1,  we get the following trigonometric function exact solutions:  

From Set11:   
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𝑢5𝑎(𝑥, 𝑦, 𝑡) = 𝑈5𝑎(𝜉) = ±
1

2(sec(ξ)+tan(𝜉))
 ,         

𝑣5𝑎(𝑥, 𝑦, 𝑡) = 𝑉5𝑎(𝜉) =
1

2
(±

1

2(sec(ξ)+tan(𝜉))
)

2
  

or 

𝑢5𝑏(𝑥, 𝑦, 𝑡) = 𝑈5𝑏(𝜉) = ±
1

2(𝑐𝑠𝑐(𝜉)−𝑐𝑜𝑡(𝜉))
 , 

𝑣5𝑏(𝑥, 𝑦, 𝑡) = 𝑉5𝑏(𝜉) =
1

2
(±

1

2(csc(𝜉)−cot(𝜉))
)

2
  

where 𝜉 = 𝑥 + 𝑦 −
1

8
𝑡. 

 

From Set12:   

𝑢6𝑎(𝑥, 𝑦, 𝑡) = 𝑈6𝑎(𝜉) = ±
1

2
(sec(ξ) + tan(𝜉)) ±

1

2 (sec(ξ)+tan(𝜉))
 , 

𝑣6𝑎(𝑥, 𝑦, 𝑡) = 𝑉6𝑎(𝜉) =
1

2
(𝑈6𝑎(𝜉))

2
 

 or 

 𝑢6𝑏(𝑥, 𝑦, 𝑡) = 𝑈6𝑏(𝜉) = ±
1

2
(csc(ξ) − cot(𝜉)) ±

1

2 (csc(ξ)+cot(𝜉))
 , 

 𝑣6𝑏(𝑥, 𝑦, 𝑡) = 𝑉6𝑏(𝜉) =
1

2
(𝑈6𝑏(𝜉))

2
 

where 𝜉 = 𝑥 + 𝑦 +
1

4
𝑡. 

 

Solution Set-2: 

When 𝑩 = 𝟏 , and 𝑪 = −𝟏 , from Table 1., then F(ξ) =
1

2
+

1

2
tanh(

1

2
𝜉). 

 

By Case-2, we get the following hyperbolic function exact solutions:  

From Set21:   

𝑢7𝑎(𝑥, 𝑦, 𝑡) = 𝑈7𝑎(𝜉) = ±
1

2
tanh(𝜉/2),   

𝑣7𝑎(𝑥, 𝑦, 𝑡) = 𝑉7𝑎(𝜉) =
1

8
tanh2(𝜉/2) 

where 𝜉 = 𝑥 + 𝑦 +
1

8
𝑡. 

 

When  𝑩 = −𝟏 , and  𝑪 = 𝟏 , from Table 1., then F(ξ) =
1

2
−

1

2
coth(

1

2
𝜉). 

 

By Case-2, we get the following hyperbolic function exact solutions:  

From Set21:   

𝑢8𝑎(𝑥, 𝑦, 𝑡) = 𝑈8𝑎(𝜉) = ±
1

2
coth(𝜉/2) ,   

𝑣8𝑎(𝑥, 𝑦, 𝑡) = 𝑉8𝑎(𝜉) =
1

8
coth2(𝜉/2) 

where 𝜉 = 𝑥 + 𝑦 +
1

8
𝑡. 

 

In a similar manner, one can easily derive some more exact solutions for the Bogoyavlenskii 

equation. 
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4. Conclusion 
 

In this study, we successfully applied the modified F-expansion method to derive exact 

solutions for the Bogoyavlenskii equation. We presented these solutions in terms of both 

hyperbolic and trigonometric functions, demonstrating the versatility and effectiveness of the 

method.  To the best of our knowledge, the modified F-expansion method is used for the first 

time in the literature to obtain exact solutions of the Bogoyavlenskii equation. Our results 

confirm that the modified F-expansion method is a robust and reliable tool for obtaining exact 

solutions to nonlinear partial differential equations (PDEs) in mathematical physics.  

 

The method has proven to be not only powerful but also the solution procedure is practical and 

straightforward, making it a valuable tool for generating new solutions. All solutions were 

computed using MATLAB,  and it has been verified that all obtained solutions satisfy the 

original equation. When comparing our findings with existing literature, we identified that some 

solutions are novel while others align with previously known results. The method yields a 

variety of solutions, including hyperbolic functions, rational functions, and trigonometric 

functions, depending on the coefficients 𝐴, 𝐵 and 𝐶 in Eq.(6). These solutions are important to 

help us understand some physical phenomena since they have rich spatial structures. 
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