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Abstract: Green energy supply can be achieved by integrating intermittent renewable energy resources into 

the electrical distribution network. The intermittent nature of solar power generation presents 

significant technical challenges for integration that affect the network reliability and stability in 

relation to the grid power quality and voltage profile. Maximum utilization of photovoltaic in the 

electrical distribution network requires siting and sizing optimization. Distribution and 

transmission lines incur voltage drops and power losses due to their reactive and resistive 

properties. Application of evolutionary optimization techniques is adopted for optimal 

photovoltaic distributed generations placement in an electrical distribution network. Improved 

network voltage profile and system reliability was achieved by the application of particle swarm 

optimization algorithm to minimize the system’s power losses in a radial distribution network-

IEEE 33-bus system. This was achieved through a MATLAB code implementation, with 

validation of the solution techniques and the developed model realized through a genetic 

algorithm case study. The active and reactive total loads linked to the network test system were 

3.720 MW and 2.310 MVAr, accordingly. The conversion of solar power was modeled at a 

constant power factor with cut-off solar radiation ≥ 4.0 kWh/m2/day under normal operating 

conditions. As an initial configuration, active and reactive power losses were found as 211.02 kW 

and 143.04 kVAr without photovoltaic distributed generation at 0.85 pf, respectively. Integration 

of solar distributed generations at optimal location and capacity resulted in reduction of the 

network power losses by 57.98% reactive and 61.60% active. Improvement in voltage profile 

attained was 8.46%, while the ASAI network reliability index value before integrating solar 

source was 0.99734 p.u. but improved by 1.82% on installation. In conclusion, the system’s power 

losses reduced as acceptable voltage profile was maintained for sustained distribution network 

reliability. 
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1. INTRODUCTION 

A distributed generation is operated practically at the maximum rated output power; the power utilities 

have no direct control over the power the unit injects into the network. Intermittent renewable energy 

sources are not predictable [1]. Solar energy is available in day time while at night it is absolutely 

unavailable. The quality and supply of power in a distribution network can be maintained by optimally 

placing and sizing solar distributed generations (DGs) using their availability characteristics. The 

reliability golden rule must be adhered to in all solutions to distributed energy drawbacks pertaining to 

regulatory and technical issues. Extra load current is drawn from a source if the distribution network 

load increases, thus causing increased network power losses and voltage drops, which lowers the 

performances of grid networks [2,3]. Grid network reliability is the network’s ability to supply load 

demand with no failure as the system’s constraints are observed. The purpose of a grid distribution 

network is to supply the end users with electrical power within an entire electrical grid network. Small-

scale power generation up to 5 MW represents a DG integrated in the electrical network for delivering 

electricity to local loads [4]. The minimization of network power loss generally offers a practical 

technique to achieve reliability assessment for DGs that are optimally placed and sized. Evolutionary 

optimization methods provide solutions, which suffer premature convergence when applied for optimal 

placement of DG, and therefore modifications and enhancement is required on them when adopted to 

solve optimization problems so as to obtain viable solutions for intermittent renewable energy sources 

installed to the electrical grid network. The extent to which variation of solar irradiance with regards to 

the weather and period of the day affects the electrical distribution network reliability, due to the 

intermittent nature of these renewable energy sources, it is not clear when the electrical energy demand 

share they supply is large. Solar photovoltaic (SPV) siting and capacity determination is a requisite for 

their integration into an electrical distribution network because of the uncertainties linked to their energy 

extraction in relation to solar radiation [5]. Solar PV productivity change with regards to the 

geographical siting. Optimal operation of a distribution network can only be realized when a reliable 

and exact solar energy prediction is availed for the subsequent days and hours [6,7]. A particle swarm 

optimization (PSO) technique is suggested in this research for the placement and sizing of intermittent 

renewable energy resources, solar, that represent spatially distributed generations. The distribution 

network reliability to supply load demand sustainably and attainment of improved voltage profile is 

enhanced by integrating distributed generation into the grid network [2,8]. A standard IEEE - 33 bus 

configured distribution network is provided by the proposed approach, which yields optimal capacity 

and site of the DG with reduced electrical power losses and improved voltage profile for sustained grid 

network reliability. The considered distribution system has no storing units; and its constraints and 

restrictions were disregarded, and the ART Suniva 245-60, 240 Wp solar PV characteristics were used 

to model the solar PV DG. The proposed method for solving the optimization problem was validated 

through software simulation with the aim of keeping the grid distribution system reliable when operated 

on intermittent sources, solar. It has been revealed by studies that there is a likely hood of increased 

network electrical losses if these sources are integrated having non-optimal capacities or when at non-

optimal locations [9]. Applying PSO-approach [4] attained 51.40% reduction in power losses by 

appropriately sizing and locating the DGs in a radial network. Similarly, [2] used genetic algorithm 

(GA) technique and achieved 46.4% reduction in objective function for better radial network 

performance with regards to power loss minimization and voltage profile improvement. The network 

SAIFI and SAIDI reliability indices improved by 30.70% and 32.26% accordingly on the integration of 

the DG units [10]. Different reliability indices can be used to express reliability evaluation results with 

regards the application. In this research; 

Average System Availability Index =
 𝐿𝑜𝑎𝑑−ℎ𝑜𝑢𝑟𝑠−𝑠𝑒𝑟𝑣𝑖𝑐𝑒−𝑎𝑣𝑎𝑖𝑙𝑎𝑏𝑖𝑙𝑖𝑡𝑦

𝐶𝑢𝑠𝑡𝑜𝑚𝑒𝑟−ℎ𝑜𝑢𝑟𝑠−𝑠𝑒𝑟𝑣𝑖𝑐𝑒−𝑑𝑒𝑚𝑎𝑛𝑑
 

was adopted in which the customer hours service demand is 8760 annually, with a standard target value 

for this index being 0.99983 [11]. A lower value implies that the delivered power is inadequate or 
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insecure. The novelty of the proposed optimization algorithm is its ability to achieve optimal solutions 

with few iterations while giving consistent results as well as its versatility in integration with weather 

predictive software and can incorporate more intermittent DG sources. 

 

2. METHODOLOGY 

2.1. Distribution Network Dataset 

The principal objective of this research was to carry out siting and capacity optimization of intermittent 

distributed generations such as solar, using PSO technique to achieve improved voltage profile and 

network reliability through minimization of network losses in a standard IEEE – 33 bus radial 

distribution network (RDN) system. The primary data was derived from the solar irradiance 

quantification profiles raw data obtained at selected meteorological department sites in Kenya. A 

MATLAB-coded program was developed to compute the solar power outputs from the sampled sites.  

The PSO test flowchart shown in Fig. 1 was used to develop a particle swarm optimization algorithm 

on MATLAB software for optimizing placement and sizing of solar DGs installed into the RDN IEEE 

33-bus system to minimize network losses, improve voltage profile and enhance system reliability. The 

dataset of solar irradiance indicated in Table 2 represent the direct normal irradiance. Bus data and line 

data were the required network characteristic data. The standard IEEE 33-bus loading is obtained from 

Table 1. 

Table 1. Standard IEEE 33-bus distribution system loading data 
Bn BP (kW) BQ (kVAr) 

1 0 0 
2 100 60 

3 90 40 

4 120 80 
5 60 30 

6 60 20 

7 200 100 
8 200 100 

9 60 20 

10 60 20 
11 45 30 

12 60 35 

13 60 35 
14 120 80 

15 60 10 

16 60 20 
17 60 20 

18 90 40 

19 90 40 
20 90 40 

21 90 40 

22 90 40 
23 90 50 

24 420 200 
25 420 200 

26 60 25 

27 60 25 
28 60 20 

29 120 70 

30 200 600 
31 150 70 

32 210 100 

33 60 40 
BN - Bus  

number 

BP - Bus  

Active Power 

BQ - Bus  

Reactive Power 
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Table 2. Solar irradiance data of a normal day. Source: Lodwar Weather Station, Kenya 
Time (Hours) Solar irradiance data (kW/m2) 

1 0 

2 0 

3 0 
4 0 

5 0 

6 0.02572 
7 0.20358 

8 0.41152 

9 0.5726 
10 0.67496 

11 0.71254 

12 0.84856 
13 0.72082 

14 0.73097 

15 0.63798 
16 0.5846 

17 0.3584 

18 0.14505 
19 0.03584 

20 0 

21 0 
22 0 

23 0 
24 0 

2.2. The Particle Swarm Optimization Algorithm Testing Flowchart 

The application of PSO has been successful in integrating renewable energy sources into electrical 

networks and in real power dispatch. While using PSO technique, the searching strategy to obtain the 

best solution is by following the particle nearer to the optimal solution known as global best solution, 

gBest, and computing the fitness of each solution, pBest, using the objective function. A flowchart to 

achieve improvement in voltage profile, network loss minimization, system reliability for optimally 

sized and placed SPV DGs in a radial distribution system is provided in Fig. 1. The solar DG 

optimization was realized with the parameters of the PSO being l = 50; population size, m = 2; members 

in a particle, and kmax = 1000. 

 
Figure 1. IEEE Standard 33-bus system PSO test flowchart 
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2.3.The RDN IEEE 33 – Bus Test Network 

This study adopted a radial distribution system for its simplicity and is generally more preferred for 

distributed generations, additionally, it is not expensive to implement. A system constant load of 

reference voltage 12.660 KV and apparent power of 100.0 MVA are assumed. The total load on the 

network was set at 2.31 MVAr and 3.72 MW. The maximum real power output of the DG was adopted 

as 5 MW. The main components of test network include branches, loads, buses and utility grid; 32 loads, 

32 branches and 33 buses. 

 
Figure 2. The RDN IEEE 33 – bus standard test network single line diagram. 

2.4. Mathematical Background 

The research theoretical reference was inferred from the concepts of voltage drops and principle of 

power losses in an electrical distribution network due to its reactive and resistive properties. 

 
Figure 3. Two buses RDN section. 

Here, 

Impedance of the line (Z), 

R + jX (1) 

Bus 2 through power, 

P2 + jQ2 (2) 

Voltage drop between bus 2 and bus 1, 

Vd =  -  

= I2Z = I2 (R + jX) 
(3) 

Bus 2 receiving end power is: 

P2 + jQ2 = V2
2I2

* → I2 = (P2 – jQ2)/V2
* (4) 
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Again, 

Vd / Z = I2  →  
−

𝑅+𝑗𝑋
 (5) 

δ2 = δ1 – tan-1[(P2X – Q2R) / (V2 
2 +P2R + Q2X)] (6) 

An expansion of electrical distribution network results to increased power losses and bus voltages that 

are not within the required range leading to reduction in system efficiency, reduced power quality and 

network instability [1,16]. Similarly, increased solar PV integration may cause negative impacts on 

distribution grids resulting to violation of standards and limits [7,17]. Solar PV penetration optimization 

in power networks has been a recent focus in maintaining power quality and acceptable bus voltage 

profiles [5,18]. 

A particle swarm optimization approach is developed in this study for optimizing the capacity and 

location of DG units, solar, in an RDN system to achieve an improved voltage profile through the 

reduction of voltage difference between the receiving and sending end buses, and minimization of 

network losses in order to enhance the system reliability [4]. 

In this research, the solar generating units modelling was based on constant - p.f. model. The considered 

average solar radiation cut-off for power generation in this case is ≥ 4.0 kWh/m2/day [12]. The research 

considered bus voltage, reliability, network loss, DG type and siting and capacity parameters of the DG. 

The classification of distributed generation technologies is shown in Fig. 4 [5].  

 
Figure 4. A model of distributed generation technology. 

2.5. PQ Type Constant Power Factor Model 

Real power and p.f values in this case are specified. reactive power and current injection equivalent 

calculations is achieved by the application of Eqs. (7,8) respectively. 

Qi, source, (Reactive power) = Pi, source tan [Cos-1(p.fi, source)] (7) 

Ii, source, (Equivalent injected current) = 
𝑃𝑖,𝑠𝑜𝑢𝑟𝑐𝑒+𝑗𝑄𝑖,𝑠𝑜𝑢𝑟𝑐𝑒

𝑉𝑖.𝑠𝑜𝑢𝑟𝑐𝑒
 (8) 

2.6. Modelling of Solar Power  

A direct current power output is obtained from solar power generating plant, which produces electrical 

power from converting solar energy; grid-tie inverters are used to change such output to AC power for 
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grid compatibility. The module surface area, solar irradiance and efficiency of the module determine the 

SPV module power output. The solar module maximum output power at instant of time t is expressed 

as: 

P (t)solar DG power = Aμ(t) β (9) 

Whereby; 

A - surface area of the module (m2) 

μ - intensity of solar irradiance (W/m2) 

β - efficiency of the solar module  

Normally, the solar power is produced at rated maximum capacity within the day in periodic intervals. 

The power output of a SPV module into a distribution network is determined using Eq. (10) during the 

implementation of the proposed PSO technique, whereby; 

ACSPV output power to grid = Inverter efficiency x SPVmax power out, at instant time (t). 

P AC-SPV(t) = ƞinverter x PSPV-max output(t) (10) 

The maximum power rating of a solar farm is computed by obtaining the cumulative day averages of 

the AC powers calculated from Eq. (9). The elementary specifications and features of the SPV module 

in consideration in this case, for the solar DG unit modelling, are provided in Table 3. The module 

efficiency is 14.75%. Suniva BYD company solar PV manufactured module, BYD240P6-30, is adopted 

with regards to its output power rating; with cell’s temperature of 25 0C, A.M 1.5 global and the module 

cell is rated 1000 W/m2, and on standard test conditions, the module performance is proportional to the 

solar radiation falling perpendicularly on its surface. 

Table 3. Specifications of the BYD240P6-30 Suniva BYD solar panel.  
Parameters Unit of Rating Parameters Unit of Rating 

Nominal power (Pnom) 240.0 Wp Maximum series fuse 25.0 A 

Tolerance of power ±3/0% Temperature range -40.0 0C to 85.0 0C 

Efficiency 14.750% Power temperature coefficient -0.340%/0C 

Rated voltage 27.840 V Voltage temperature coefficient -0.280%/0C 

Rated current 8.120 A Current temperature coefficient 0.060%/0C 

Open circuit voltage (Voc) 37.54 V Weight 21.50 kg 

Short circuit current( Isc) 8.90 A Solar cells Monocrystalline 

Maximum system voltage (IEC) 1500.0 V L x B x H mm2 2362.0x1092.0x35.0 

Table 2 shows an annually averaged solar irradiance data over 24 hours. Applying Eq. (9) for every 

solar irradiance level, the power generated is computed. On average, the solar farm in this analysis yields 

1.0268 p.u of the real power generated. 

2.7. The Electrical Distribution Network Optimization Objective Function Formulation 

The set of constraints that the optimization objective function (OF) is subjected to are given in Eq. (11). 

The single-objective optimization problem mathematical expression is often given by: 

Optimize [F(x0)], under constraints: 

{
 
 

 
 𝑔(𝑥) =  0

ℎ(𝑥) ≤  0

𝑥𝑖
𝑚𝑖𝑛  ≤ 𝑥 ≤  𝑥𝑖

𝑚𝑎𝑥

𝑥 = {𝑥1,𝑥2,………..𝑥𝑛} 

 (11) 

Whereby, F(x0) is the single-objective function for optimization, and vector x of n variables represents 

the problem parameters required for optimization and include g(xi) and h(xi) representing constraints set 
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of inequality and equality respectively, with xi
max and xi

min being domains constraints [9,13]. The 

improvement in the attributes of the system is achieved by determining voltage profile (VP), total 

network power loss, maximum MVA capacity of the conductor, distributed energy resources sizing and 

siting, and system reliability, by applying a multiple-objective optimization process in all the sub-

problems. The optimum size and location of the SPV array are computed for electrical loss reduction 

and voltage deviation in this optimization technique. Studies have indicated that a distribution network 

system incurs power losses close to about 13.0% of the total power generated injected into the electrical 

network [14]. The basis of undertaking this study is on this fact given that power demand continues to 

increase resulting in more loading of the distribution network; Solar, being an intermittent distributed 

generation, needs to be appropriately placed and sized in a radial distributed network for reduced power 

line losses; distributed generations offer a solution to the increasing grid power demand. The network 

line current is expressed as: 

Ii =  
(12) 

The reactive and real/active system power losses (i.e. RPL and APL) are both computed as: 

Reactive power, Qloss = [
𝑃𝑖+1 
2 + 𝑄𝑖+1 

2

𝑉𝑖
2 ] 𝑋𝑖 (13) 

Real power, Ploss = [
𝑃𝑖+1 
2 + 𝑄𝑖+1 

2

𝑉𝑖
2 ] 𝑅𝑖 (14) 

Index of the MVA Capacity, CI = 𝑚𝑎𝑥𝑗=1
𝑛𝑙 [

𝑆𝑗

𝑆𝐶𝑗
] (15) 

Index of the Voltage profile, VPI = 𝑚𝑎𝑥𝑖=2
𝑛  [

𝑉1−𝑉𝑖

𝑉1
] (16) 

With; 

n - is the number of buses in the grid 

V1 - substation bus voltage; the  

reference voltage  

Vi - the ith bus voltage 

This study has an OF intended to achieve system power loss reduction, for both RPL and APL. ASAI 

reliability assessment is then undertaken by fitting the optimal location and size of the Solar PV DGs in 

the proposed PSO technique. The principal purpose of any OPF in an electrical network is to reduce the 

network’s real power loss. 

The general objective function optimization expression is given by: 

OF=Wa 
𝑇𝑝𝑙𝑜𝑠𝑠;𝑤𝑖𝑡ℎ 𝐼𝑅𝐸𝑆

𝑇𝑝𝑙𝑜𝑠𝑠;𝑤𝑖𝑡ℎ𝑜𝑢𝑡 𝐼𝑅𝐸𝑆
 + Wb 

𝑇𝑞𝑙𝑜𝑠𝑠;𝑤𝑖𝑡ℎ 𝐼𝑅𝐸𝑆

𝑇𝑞𝑙𝑜𝑠𝑠;𝑤𝑖𝑡ℎ𝑜𝑢𝑡 𝐼𝑅𝐸𝑆
 + Wc 𝑚𝑎𝑥𝑗=1

𝑛𝑙 [
𝑆𝑗

𝑆𝐶𝑗
] + Wd 𝑚𝑎𝑥𝑖=2

𝑛  [
𝑉1−𝑉𝑖

𝑉1
] 

OF = [𝑊𝑎 . 𝑅𝑃𝐿𝐼 +𝑊𝑏 . 𝑄𝑃𝐿𝐼 +𝑊𝑐 . 𝐶𝐼 +𝑊𝑑 . 𝑉𝑃𝐼] 

(17) 

The PSO parameters setting up involved the number of particles ‘l ’, C2 and C1 weighting factors. The 

initial population is established by randomly selecting the DG location and size from the original 

population set. C2 and C1, acceleration weights were determined from [14]. The DG location variable is 

represented by L while Pg represents the DG size. The expression for the proposed particles is: 

χparticle = [Pg1, Pg2, …Pgγ, L1, L2, …Lδ], 

where δ represents number of locations and γ is the number of DGs. 
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In this study, the inertia weights are adopted as; Wa = 0.40, Wb = 0.20, Wc = 0.250, Wd = 0.150 according 

to [15,19], and the expression of the constraints maintained is, 

∑𝑊𝑥 = 1

4

𝑥=1

 (18) 

Whereby, Wx represents the space within [0,1]. The implementation of optimizing algorithms follows 

after the optimization problem (see Appendixes A1). It is defined in order to establish a near-optimal or 

optimal result for the problem. The proposed PSO approach algorithm computes these optimal results. 

The movement of the particles depend on both their experiences with the other members and their own 

experience within the swarm; Qbestj and Pbesti respectively. The current velocity and position; Vi
k+1 and 

Xi
k+1 for the particle is updated in accordance with Eqs. (19,20) respectively and in relation to Gbestj and 

Pbesti. 

After every iteration, the particles’ updating, for the two best solutions linking the cognitive factor- 

personal best value and social factor-global best value, is therefore done through the PSO tracking. 

Vi
k+1 + Xi

k = Xi
k+1, j = 1, 2,...m (swarm) and i = 1, 2,....l (particle) (19) 

C2 rand2 (Gbestj – Xi
k) + C1 rand1 (Pbesti – Xi

k) + ωVi
k + = Vi

k+1 (20) 

whereby particles’ i0 current velocity and searching position are Vi
k and Xi

k at iteration k0, rand2 and 

rand1 representing random values within the range of 1 to 0, on equal distribution. Pbestio is the particle’s 

i function’s finest value the particle has achieved; the best position of particle i0 before iteration k0, while 

Gbestj is the function’s fitness best value achieved so far by any particle; the best position of particles’ 

global in the swarm amongst all particles prior to iteration k0, C2 and C1 are the random positive 

acceleration terms weighting factor constants whose values are in the range between 2 to 1, although 2 

is mostly adopted in many cases [14,15]; and therefore their values are normally set to 2.0.  

The particle’s i updated velocity is Vi
k+1 while Xi

k+1 is the updated position. m is the total members within 

a particle and l represents the total particles within a group. The particle’s i function of velocity weight, 

which typically represents inertia weight ω, is set in accordance with the equation given below [2]: 

ωmax - ⌊
𝜔𝑚𝑎𝑥 − 𝜔𝑚𝑖𝑛

𝑘𝑚𝑎𝑥
⌋ 𝑘 = (k+1) ω (21) 

where the new iteration number is k0 and kmax represents the highest number of iterations. ωmax and ωmin 

indicates the inertia weights highest and lowest values respectively, having recommended values of 0.90 

and 0.40 accordingly. 

The accomplishment of the system reliability assessment (i.e. RA) follows after computing the reduced 

system’s power loss and improved bus voltage. The performance analysis of the chosen distribution 

network and the grid’s RA are obtained for integrated SPV DGs and without. The reliability assessment 

of the electrical distribution system (EDS) observes the IEEE standard number 1366-2012 guide that 

provides the requirements for the analysis of different reliability indices for an EDS [5]. 

2.8. Optimal Placements for IEEE-33 Bus RDN System 

In minimizing power system line losses, it is critical to determine the location and size of the distributed 

generation to be integrated into the EDS [20]. Therefore, integration of DGs in an electrical distribution 
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network, it is important to carry out techno-economic analysis in order to lower the system’s overall 

operational and investment cost. 

The proposed power loss reduction technique is implemented on the 33-bus RDN system. The optimal 

locations of the SPV DGs are established based on the power loss index (PLI) values shown in Table 4, 

at upf and 0.85 pf lagging, with the best SPV placements at bus 24 on the 33-bus RDN system. 

Table 4. IEEE 33-bus RDN system PLI values for the locations. 
PLI value @upf PLI value @0.85 pf Bus number 

0.4798 0.6262 6 

0.5802 0.7143 13 

0.6718 0.8572 24 

 

3. RESULTS AND DISCUSSION 

The following four system cases are considered: 

Case 0: NO Solar DGs, 

Case 2: TWO Solar DGs, 

Case 1: ONE Solar DG, 

Case 3: THREE Solar DGs 

3.1. Real and Reactive Power 0 Loss 0 Results 

The reduction in both APL and RPL in the electrical distribution system were realized by optimizing 

the location as well as the capacity of the distributed Solar PV generations through their integration onto 

the radial distribution network. After estimating the values of VP, RPL, and APL, the network’s 

reliability assessment is done. Hence, the network’s reliability assessment is carried out at optimized 

sites and capacities for the distributed generations, and with minimal network losses and improved 

voltage profile. Table 4 shows network losses after and before solar PV distributed generation at upf. 

Table 5. Network loss after and before Solar PV distributed generation integration at upf. 

Test system 

Without DG power loss On DG integration power loss % Power loss reduction 
Optimal 

location 

DG size 

x 10kW/ 
x 10kVAr 

Ploss 
(x100kW) 

Qloss 
(x 100kVAr) 

Ploss 
(x 10kW) 

Qloss 
(x10kVAr) 

Ploss 
(W) 

Qloss 
(VAr) 

Without DG 2.026 1.351       

1-Solar DG   10.74 7.825 47.98 43.14 6 40.31 

2-Solar DGs   8.308 5.873 58.02 55.56 13 64.982 
3-Solar DGs   6.852 4.947 67.18 64.43 24 257.644 

On operating the RDN with no DGs at 0.85 power factor, the overall power loss, real and reactive, was 

observed to be 143.04 kVAr and 211.02 kW respectively. When SPV DG that has optimal capacity and 

placement is integrated, the total network loss reduced by 56.98% and 62.62%, both reactive and real 

power line losses accordingly, Table 5. Again, the network losses reduced by 68.46% and 71.43% re-

active and real on installation of 2-solar DGs that are optimally sized and placed. Similarly, integration 

of 3-Solar PV DGs onto the distribution network further reduces the network losses by 83.56% and 

85.72% for RPL and APL accordingly. 

Table 6. Power loss after and before Solar PV integration at 0.85 power factor 

Test system 

Without DG power loss On DG integration power loss % Power loss reduction 
Optimal 
location 

DG size 

x 10kW/ 

x 10kVAr 
Ploss 

(x100kW) 

Qloss 

(x 100kVAr) 

Ploss 

(x 10kW) 

Qloss 

(x10kVAr) 

Ploss 

(W) 

Qloss 

(VAr) 

Without DG 2.1102 1.4304       

1-Solar DG   8.13 6.011 62.62 56.98 6 40.321 

2-Solar DGs   5.82 4.368 71.43 68.46 13 64.983 

3-Solar DGs   2.81 2.20 85.72 83.56 24 257.646 
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When the proposed PSO technique is applied in case 3, 2, 1 and 0 at 0.85 power factor, the amount of 

network line loss reduced from 211.02kW to 81.3kW; approximation of 61.62% reduction for 1-solar 

DG. It is noted that when a similar network is applied on Genetic Algorithm technique, it results to a 

less network power loss reduction of 13.73% (201.1kW to 175.4kW). Therefore, the proposed particle 

swarm optimization algorithm in this research leads to a better system power loss improvement in 

comparison to Genetic Algorithm approach; with a total power loss improvement of 85.72% for 3-solar 

DGs. The PSO approach presents a superior capability of having better performance and giving faster 

solutions than the known conventional methods. In respect to that, the superiority of the technique is 

manifested in the configuration of SPV DGs integration in an electrical distribution grid system.  

3.2. Improvement of the Bus Voltages 

Achievement of the system’s voltage profile improvement was accomplished when the distribution 

network run on optimally sized and sited Solar PV distributed generations on their installation. Variation 

of bus voltages depends on the power losses for both active and reactive in the distribution grid network. 

Fig. 7 illustrates these results; which show the voltage profile improvement results on locating and sizing 

of the solar distributed generations in the RDN system as obtained through the application of the 

proposed particle swarm optimization algorithm. Further improvement of the network buses’ voltage 

profile at the connections can be achieved when reactive power support is higher; notably by operating 

the distribution system at 0.85 power factor. 

 
Figure 5. RDN 33-bus system improvement of voltage profile on PV DGs at 0.85 power factor. 

It is observed that there is a voltage peak at buses 26 and 7 since these two buses are connected directly 

to bus 6 at which there would be optimal siting of the Solar PV DG, Table 4 0. Integration of spatial 

generations has a greater effect at buses of low voltage; 33, 25, 22, and 18, whereby the voltage 

improvement rate is notably observed to decrease when the number of connected distributed generations 

are increased. The low voltage buses had voltage that was lower than the permissible limit prior to 

optimum sizing and siting of the SPV distributed generations but after the installation of the distributed 

generations, the voltage at all the buses was within the acceptable levels. The distribution grid system 

bus voltages are required to be sustained within maximum and minimum limits. The upper and lower 

limits of bus voltage are set at 1.05 and 0.95 p.u. accordingly with reference to the base bus voltage. The 

bus 18 base case voltage is 0.9038 per unity. as observed from Table 6; this voltage is lower than the 

acceptable distribution system limit of 0.95 per unity. The installation of solar DGs of optimal placement 

and size improves this low-voltage; a voltage profile improvement of 8.45% is achieved by integrating 

solar onto the distribution system. 

Table 7. % Minimum voltage at unity power factor, and 0.85 power factor 
% Min voltage 

pf Testing system 

Without DG 1-Solar DG 2-Solar DGs 3-Solar DGs 

1.0  93.16 95.77 97.75 

0.85 91.38 96.62 97.02 99.11 
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3.3. Network Reliability Assessment 

The radial distribution network testing system reliability index is calculated by applying the MATLAB 

code while inferring the reliability data from the reliability library. Four scenarios were simulated to 

establish the average system availability index (ASAI) reliability index improvement. Before 

installation of the solar DGs, the ASAI value was 0.99736p.u., and it improved by 1.83% after their 

integration. 

Improvement of the network reliability is best obtained when RT, repair time, is 12h and λρ, failure rate, is 0.2. 

The reliability data values are given as: 

Scenario a: 12h, 0.2f/yr Scenario d: 24h, 0.2f/ty 

Scenario b: 12h, 0.4f/ty Scenario e: 48h, 0.2f/yr 

Scenario c: 12h, 0.6f/yr Scenario f: No failure 

The ASAI index determination is carried out by manually fitting these values of reliability data into the 

particle swarm optimization algorithm which establishes the network’s reliability improvement.  

Table 8. The per unity computation of ASAI index for the 6 scenarios 
Network configuration Scenario ‘a’ Scenario ‘b’ Scenario ‘c’ Scenario ‘d’ Scenario ‘e’ Scenario ‘f’ 

NO DG case 0.99734 0.99734 0.99734 0.99734 0.99734 0.99734 

1-Solar DG – case 1 0.99776 0.99763 0.99746 0.99763 0.99731 0.99793 

2-Solar DGs – case 2 0.99814 0.99808 0.99800 0.99808 0.997921 0.99823 

3-Solar DGs – case 3 0.99916 0.99908 0.99901 0.99908 0.99897 0.99923 

It is noted that the ASAI index increases when 3SPV DGs are integrated into the distribution network, 

and thus the network reliability improves. Similarly, its value reduces with increased repair time and 

rate of failure; hence the distributed generations are recommended to have a lower λp and RT adopted. 

Consequently, the electrical power service availability will increase in all the system loads when 

multiple distributed generations are integrated onto the distribution network. It is evident that for an 

enhanced network reliability, the ASAI value is desirably increased. 

3.4. Cost-benefit Analysis for the Implementation of the Proposed PSO Algorithm 

The voltage profile, RPL and APL, and the energy loss cost together with the cost of power obtained 

from the SPV DGs are provided for the IEEE 33-bus RDN test system at 0.85 pf lagging and upf. These 

values were computed as follows: 

Annual Energy Loss Cost, ELC = $(TAPL) x [(Ke Lsf 8760) + Kp] (22) 

In which, TAPL → total active power loss, Ke → annual energy loss cost ($/kWh), Lsf → power loss 

factor, Kp → annual power loss demand cost ($/kW). The load factor (Lf) is used to express the system’s 

loss factor from the equation below: 

Lsf = [(1-K) Lf
2] + (K Lf) (23) 

In calculating the power loss factor, the coefficient values adopted are: K → 0.2, Lf → 0.469, Ke → 

0.00961539 $/kWh, and Kp → 57.6922 $/kW. The SPV DG cost component for the RP and AP is given 

by: 

For the AP supplied by the SPV DGs, S(Psdg) = (aPsdg
2 + bPsdg + c) $/MWh (24) 
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Whereby, the cost coefficients chosen are: c → 0.250, b → 20.0 and a → 0.0 

For the RP cost supplied by the SPV DGs, C(Qsdg) = {(Sgmax) cost – (√𝑆𝑔𝑚𝑎𝑥2 − 𝑄𝑔2) cost * k} (25) 

The value of the maximum apparent power generated is: 

Sgmax = 
𝑃𝑔𝑚𝑎𝑥

𝐶𝑜𝑠𝜃⁄  (26) 

And, Pgmax → 1.10*Pg,. The pf used have been considered at 0.85 and 1 for the analysis. Normally, the 

range of K is 0.1 – 0.05. This study adopts 0.1 as the value factor of K.  

The energy loss cost (ELC), active power cost (Psdg) and the reactive power cost (Qsdg) are shown in the 

Table below. 

 

Table 9. Results of the IEEE 33-bus RDN system with SPV DGs at upf and 0.85 pf. 

 
Without 

SPV DG 

At upf At 0.85 pf 

Method 
(Hari et al 2019) 

Proposed method 
Method 

(Hari et al 2019) 
Proposed method 

SPV DG location - 30 24 30 24 

SPV DG size (kW) - 1544.5 2576.44 1939.3 2576.46 
Total active power loss (TAPL); kW 211.02 125.2 68.52 78.4 28.1 

Total reactive power loss (TRPL); kVAr 143.04 89.3 49.47 58.97 22.0 

Minimum voltage (Vmin); pu 0.9138 0.9272 0.9775 0.9386 0.9911 

Energy loss cost (ELC); $ 16982.6 10067.3 9030.56 6308.8 4700.02 

Psdg cost ($/MWh) - 31.15 29.05 35.108 31.5 

Qsdg cost ($/MVArh) - - - 3.928 3.3 

The energy loss cost, as shown from table Table 9, reduced from $ 16982.6 to $ 4700.02 when the SPV 

DGs are operating at 0.85 pf lagging while it reduced to $ 9030.56 when the network operated at upf. 

The energy loss cost is lower when the RDN is operating at 0.85 pf and therefore when compared with 

the results of Hari et al, better results are obtained with the proposed method. 

3.5. PSO and GA Performance Comparison 

Performance comparison of PSO and GA for the cases considered is by examining the performance of 

each algorithm in reaching the optimal solution in terms of computing time, number of iterations and 

accuracy percentages. Regarding achieving of the optimal solution, the difference in iterations is 1657, 

with PSO algorithm being superior and of better speed. The PSO always obtained the solution 100% 

accuracy while GA average accuracy was 99% as more SPV DGs are integrated. 

Table 10. PSO and GA performance comparison 
Method 1SPV DG 2SPV DGs 3SPV DGs 

Average 
accuracy 

Best 
iteration 

Average 
accuracy 

Best 
iteration 

Average 
accuracy 

Best 
iteration 

PSO (Proposed) 1.0 62 1.0 3564 1.0 43850 

GA (Wihartiko et al, 2018) 1.0 49 0.99 5221 0.93 56743 

In Table 10, it is observed that there is no significant difference when applying PSO and GA for the case 

of 1SPV DG. The GA decreases in accuracy when the number of DGs increase as it demonstrates less 

stable condition compared to PSO in finding the optimal solution. Generally, the PSO technique is 

superior in finding the optimal solution in terms of iterations and accuracy. 
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4. CONCLUSIONS 

There are issues of network power losses, reliability and voltage drops in a RDN system. In optimizing 

placement and sizing of solar energy sources, improvement of the RDN reliability was significantly 

realized on application of the proposed PSO technique. The BYD240P6-30power output Suniva SPV 

module was adopted to perform the results analysis. SPV uncertainties in their reliability data were 

considered for further analysis so as to obtain better RA results; these factors are the rate of failure and 

time of repair. The distribution network bus voltage profile and power loss reduction were enhanced by 

optimally placing and sizing the SPV DGs for their installation, as opposed to a network with no 

distributed solar generations. Integration of numerous DGs provides better results compared to a mono-

installation. The APL value was observed to reduce by 0.00178MW at upf for 1SPV and by 0.00126MW 

for 3SPV cases, in comparison to results of GA approach. There was an improvement in minimum value 

of the bus voltage by 7.070% for 3SPV case at upf in comparison to NO DG case. At 0.85 p.u., further 

improvement was achieved, yielding to 8.45%. Adopting scenario ‘a’ with three SPV case; a more 

favored configuration, results to an acceptable network reliability improvement that yields to 0.99917 

ASAI reliability index, that is ~ 0.99982 recommended by other studies. The proposed technique 

implementation is simple and has a potential of having capability to compute near optimal and desirable 

solutions on few iterations. Further study is required on complex distribution systems; the IEEE 69 or 

118-bus distribution grids on factors concerning network reconfiguration and emission of carbon in 

order to establish the network’s reliability. 
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APPENDIX 

A1. The Particle Swarm Optimization Algorithm 

clc; 
clear all; 
format short; 
tic 
m=load('loaddata33bus.m'); 
l=load('linedata33bus.m'); 
disp('%-----Solar Based DG------%'); 
% m=load('loaddata33bus.m'); 
% l=load('linedata33bus.m'); 
. 

. 

    % --Position of Swarms--- 
    for uu=1:Swarms; 
        Swarm(uu,1)=Swarm(uu,1)+Swarm(uu,5)/1.2; % update u Position 
        Swarm(uu,2)=Swarm(uu,2)+Swarm(uu,6)/1.2; % update v Position 
. 

. 

                % ---updating velocity vectors 
                for vv=1:swarms                      

swarms(vv,5)=rand*inertia*swarm(vv,5)+correction_factor*r

and*(swarm(vv,3)... 
-swarm(vv,1))+correction_factor*rand*(swarm(qbest,3)-

swarm(vv,1)); % u velocity parameters             

swarm(vv,6)=rand*inertia*swarm(vv,6)+correction_factor*ra

nd*(swarm(vv,4)... 
-swarm(vv,2))+correction_factor*rand*(swarm(qbest,4)-

swarm(vv,2)); % v velocity parameters 
. 

.           

Sprintf('Power-Loss=%d KW, Power-Loss=%d KVAr', PL,QL') 
Sprintf('DG Location=%d, DG Power=%d KVA', DG_Location, DG_Size') 

 

 


